

Tetrahedron Letters 42 (2001) 6319-6322

TETRAHEDRON LETTERS

Stereoselective intramolecular radical addition of polyhaloacyl pendant groups to the 1,3-dihydro-2-imidazolone moiety: the chiral synthesis of *threo*-diaminocarboxylic acids

Tomokazu Katahira, Tadao Ishizuka, Hirofumi Matsunaga and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Received 8 June 2001; revised 25 June 2001; accepted 6 July 2001

Abstract—The intramolecular Ru(II)-catalyzed radical addition of trichloroacetyl and 2,2-dichloro-4-hexenoyl pendant groups to a 1,3-dihydro-2-imidazolone moiety provides a perfectly stereocontrolled approach to the preparation of 1,2-diamines which contain contiguous multi-stereocenters. Typical examples for this approach are given by the chiral synthesis of *vicinal*-diaminocarboxylic acids, which are amino analogs of statine and MeBmt. © 2001 Elsevier Science Ltd. All rights reserved.

Diamines are, biologically, medicinally and synthetically, an important class of compounds.¹ The 1,2diamine skeleton can be a structural unit found in a number of bioactive compounds of medicinal interest such as peptidic antibiotics, vitamin H, antitumor agents and opioid receptor agonists¹ and also functions as a chelating ligand for metal catalysts in asymmetric synthesis.² The simple heterocycle, 1,3-dihydro-2-imidazolone,³ which is susceptible to various modes of addition reactions, represents a potential building block for the synthesis of 1,2-diamines,⁴ as outlined in Scheme 1.

In this paper, we describe an alternative stereocontrolled approach to the preparation of chiral 1,2diamines with contiguous multi stereocenters, which involves an intramolecular Ru(II)-catalyzed addition of polyhaloacyl groups to the 2-imidazolone moiety as the key step.

Thus, the 1-apocamphanecarbonyl-2-imidazolones (1),⁵ containing a trichloroacetyl pendant group, were

Scheme 1.

heated with $\text{RuCl}_2(\text{PPh}_3)_3^6$ as the catalyst in benzene, resulting in completely diastereocontrolled cyclization to the 12-membered macrolides (2) with or without the use of Lewis acid additives, such as rare metal triflates or zinc chloride.⁷ As seen in Table 1, the addition of catalytic amounts of La(OTf)₃ and ZnCl₂ as the additives was found to dramatically accelerate the rate of intramolecular cyclization to near completion within 1 h, while the reaction was much more sluggish in the absence of these additives. The use of La(OTf)₃ in less than equimolar amounts of the RuCl₂(PPh₃)₃ catalyst was found to be preferable.⁸

The cyclization product (2), which was obtained diastereoselectively (99% de), was treated with boiling methanol followed by *N*-tosylation to give the *N*-tosyl-4-methoxy-cycloadduct (4) (Scheme 2). The stereostructure of **3** was unequivocally confirmed by X-ray crystal analysis.⁹

The apocamphanecarbonyl auxiliary was reductively removed by treatment with LiBH_4 -MeOH (1:2)¹⁰ to give the 4-methoxy-2-imidazolidinone (5), in which the methoxy group could be substituted for a variety of alkyl, alkenyl and aryl groups with full retention of configuration, as has been previously pointed out.¹¹ Thus, compound (5) would be expected to serve as a versatile chiral synthon for the preparation of a wide variety of 2,3-diamines. This versatility was demonstrated by a facile conversion to the amino analog of (3*S*,4*S*)-4-amino-3-hydroxy-6-methylheptanoic acid (statine), a key structural component of amastatine.¹²

^{*} Corresponding author. Tel.: +81-96-371-4680; fax: +81-96-362-7692; e-mail: tkuni@gpo.kumamoto-u.ac.jp

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01242-4

Table 1. Diastereoselective Ru(II)-catalyzed intramolecular additions of the trichloroacetyl pendant group^a

Entry	R	RuCl ₂ (PPh ₃) ₃ (equiv.)	Additive (equiv.)	Time (h)	Yield (%) ^b
1	Ac	0.1	_	93	48
2	Ac	0.1	$La(OTf)_{3}$ (0.05)	1	76
3	Ac	0.05	$La(OTf)_{3}$ (0.025)	7	72
4	Ac	0.1	$La(OTf)_{3}(0.1)$	1	57
5	Ac	0.1	$ZnCl_{2}$ (0.05)	1	82
6	Ac	0.1	$ZnCl_2(0.1)$	1	85
7	PhCO	0.1	La(OTf) ₃ (0.05)	1	92

^a The reaction was performed in refluxing benzene under an argon atmosphere.

1

^b Isolated yield.

Scheme 2. (a) MeOH; reflux, 1 h; (b) Tos-Cl, Et₃N, DMAP/CH₂Cl₂; rt; (c) (1) LiBH₄ (6 equiv.), MeOH (12 equiv.)/THF; rt; (d) (1) imidazol, TBDMS-Cl/DMF; rt, (2) iso-BuCuCNMgBr, LiCl, BF₃·OEt₂; -78°C, 4 h; (e) (1) TBAF/CH₂Cl₂; rt, (2) PCC, NaOAc/CH₂Cl₂; rt, (3) CH₂N₂; (f) (1) Bu₃SnH, AIBN/benzene; reflux, 1 h, (2) Ba(OH) 8H₂O/EtOH-H₂O; reflux, 24 h, (3) (Boc)₂O, Et₃N/CH₂Cl₂; rt, (4) CH₂N₂.

Thus, the protection of hydroxy group as the tertbutyldimetylsilyl ether followed by treatment with isobutylcuprates in the presence of $BF_3 \cdot OEt_2$ gave the trans-4-isobutyl derivative (6) with complete retention of configuration. The removal of the silvl group followed by oxidation with pyridinium chlorochromate (PCC) and subsequent esterification gave 7 in moderate yield. Reductive dechlorination with tributyltin hydride followed by ring-opening smoothly gave the reasonable yield of the optically pure 3,4-diamino carboxylic acid derivative (8),¹³ an amino analog of statine, in which each of the amino groups was derivatized by a different protecting group.

This methodology was applied to the chiral synthesis of the diaminocarboxylic acid with three contiguous stereogenic centers, which is the amino analog of (2S,3R,4R,6E)-3-hydroxy-4-methyl-2-(methylamino)-6octenoic acid (Me-Bmt), an unusual and key amino acid component of cyclosporin.¹⁴ When compound 9 was subjected to the intramolecular Ru(II)-catalyzed reaction, the addition of the 2,2-dichloro-(4E)-hexenoyl pendant group to the 2-imidazolone moiety proceeded much more sluggishly than that for the trichloroacetyl function described above and the effect of additives, La(OTf)₃ and ZnCl₂, on accelerating the cyclization was quite limited and not as effective, as seen in Table 2. The cyclization

Table 2. Ru(II)-catalyzed intramolecular additions of the 2,2-dichloro-(4E)-hexenoyl pendant group^a

Entry	RuCl ₂ (PPh ₃) ₃ (equiv.)	La(OTf) ₃ (equiv.)	Solvent	Time (h)	Yield ^b (%)
1	0.1	0.05	Benzene	48	16 (61)
2	0.3	0.05	Benzene	188	55 (0)
3	0.3	0.05	Toluene	24	34 (36)
4	0.3	_	Toluene	24	29 (44)
5	0.3	0.05	Toluene	48	64 (0)

^a The reaction was carried out in refluxing benzene or toluene under an argon atmosphere.

^b Recovery yield in parentheses.

proceeded with excellent diastereoselectivity in excess of 99% de, although a higher temperature and prolonged reaction time were required to give moderate yields.

Methanolysis of the cycloadduct (10), followed by *N*-tosylation and diastereoselective dechlorination with $(Me_3Si)_3SiH$ in the presence of an initiator, Et_3B , resulted in the smooth formation of the macrolide (12) in excess of 99% de¹⁵ (Scheme 3).

The excellent chiral functionalization observed can be rationalized by assuming a stereocontrolled intramolecular radical-based addition to the 2-imidazolone moiety, followed by attack of the bulky reductant to the less hindered side of the radicals generated in situ. Reductive removal of the chiral auxiliary with LiBH₄–MeOH (1:2)⁸ gave the 2-imidazolidinone derivative (**13**), of which the hydroxymethyl group was converted to a methyl group by conventional procedures. *N*-Methylation of **14**, followed by 4-cyanation gave a mixture of *trans* and *cis*-cyanides, which, after treatment of the isomeric mixture with K₂CO₃ in MeOH, gave the *trans*-methyl ester (**15**) in good yield. Hydrolytic ring-opening with Ba(OH)₂ furnished the 2,3-diamino carboxylic acid with completely controlled (2*R*,3*R*,4*R*)-stereocenters (**16**),¹⁶ the amino analog of MeBmt.

Scheme 3. (a) (1) MeOH, (2) Tos-Cl, *n*-BuLi/THF; (b) Et_3B , (TMS)₃SiH/toluene; -78°C; (c) LiBH₄ (6 equiv.), MeOH (12 equiv.)/THF; (d) (1) MsCl, Et_3N/CH_2Cl_2 , (2) NaI/DME; reflux, (3) Bu₃SnH, Et_3B/THF ; -78°C; (e) (1) MeI, NaH/THF; rt, (2) TMSCN, BF₃·OEt₂/CH₂Cl₂; 0°C, (3) K₂CO₃/MeOH; rt, (4) 2N HCl; rt; (f) (1) Ba(OH)₂·8H₂O/EtOH-H₂O, reflux, 24 h, (2) CH₂N₂.

References

- 1. For a review, see: Denis, L.; Thierry Le, G.; Charles, M. *Angew. Chem., Int. Ed.* **1998**, *37*, 2580–2627.
- For examples, see: (a) Kobayashi, S.; Uchino, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247–4252; (b) Mukaiyama, T.; Iwasawa, N.; Stevens, R. W.; Haga, T. Tetrahedron 1984, 40, 1381–1392 and references cited therein.
- 3. Wang, P. C. Heterocycles 1985, 23, 3041-3042.
- Seo, R.; Ishizuka, T.; Abdel-Aziz, A. A.-M.; Kunieda, T. Tetrahedron Lett. 2001, 42, 6353–6355.
- 5. Compounds 1 and 9 were obtained in 70–80% overall yields by condensation of *N*-monoacetyl-2-imidazolone with the corresponding 2-(2-acyloxyethoxy)-1-apocamphanecarboxylic acid.
- Matsumoto, H.; Nikaido, T.; Nagai, Y. J. Org. Chem. 1976, 41, 396–398; (cf.) Yamamoto, T.; Ishibuchi, S.; Ishizuka, T.; Haratake, M.; Kunieda, T. J. Org. Chem. 1993, 58, 1997–1998.
- 7. Exclusive cyclization to the 12-membered macrolide(2) may be rationalized by assuming that the pendant chain length would be adjusted to form the less strained ring-structure based on an intramolecular steric and electrostatic interaction, although the details are not clear.
- It seems likely that coordination of the Lewis acids to carbonyl groups would be responsible for the enormous acceleration observed, but we have no direct evidence for this at present.

- Crystal date for 3 (mp 227°C): orthorhombic, P2₁2₁2₁, a=15.314(2) Å, b=20.569(1) Å, c=12.623(1) Å, V= 3976.1(6) Å³, Z=4. The structure was refined to the R-value of 0.181%. We are much indebted to the Fukuoka Research Laboratories, Welfide Corporation for the X-ray crystallographic analysis.
- (a) Matsunaga, H.; Kimura, K.; Ishizuka, T.; Kunieda, T. *Tetrahedron Lett.* **1991**, *32*, 7751–7754; (b) Matsunaga, H.; Ishizuka, T.; Marubayashi, N.; Kunieda, T. *Chem. Pham. Bull.* **1992**, *40*, 1077–1079.
- Ishizuka, T.; Ishibuchi, S.; Kunieda, T. *Tetrahedron* 1993, 49, 1841–1852.
- (a) Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, M.; Takeuchi, T. J. Antibiot. 1970, 23, 259–262; (b) Workman, R. J.; Burkitt, D. S. Arch. Biochem. Biophys. 1977, 194, 157–165.
- 13. Compound 8: mp 44–45°C. [α]_D –45.5° (*c* 1.00, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.65 (d, 3H, J=6.1 Hz), 0.68 (d, 3H, J=6.1 Hz), 0.81 (m, 1H), 1.41 (s, 9H), (m, 2H), 1.32–1.44 (m, 2H), 1.70 (s, 3H), 2.49 (m, 1H), 2.71 (m, 1H), 3.47 (m, 1H), 3.69 (s, 3H), 4.06 (m, 1H), 4.85 (br s, 1H), 4.91 (br s, 1H), 7.30 (d, 2H, J=7.9 Hz), 7.73 (d, 2H, J=7.9 Hz).
- (a) Dreyfuss, M.; Harri, E.; Hofmann, H.; Kobel, H.; Pache, W.; Tscherter, H. *Eur. J. Appl. Microbiol.* **1976**, *3*, 125–132; (b) Wengar, R. M. In *Cyclosporin A*; White, D. J. G., Ed.; Elsevier, Biomedical: Amsterdam, 1982; pp. 19–34.
- 15. The configurational assignment was made on the basis of a positive NOE effect between Ha and Hb. Use of Bu₃SnH in the place of (Me₃Si)₃SiH resulted in lower selectivity of 80% de.
- 16. Compound **16**: $[\alpha]_{D}$ +30.4° (*c* 1.00, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 0.92 (d, 3H, *J*=6.7 Hz), 1.54 (d, 3H, *J*=6.1 Hz), 2.01 (m, 2H), 2.11 (m, 1H), 2.51 (s, 3H), 2.97 (s, 3H), 3.78 (m, 1H), 3.85 (s, 3H), 4.22 (m, 1H), 4.80 (br s, 1H), 4.95 (br s, 1H), 5.41 (m, 2H), 7.29 (d, 2H, *J*=7.9 Hz), 7.75 (d, 2H, *J*=7.9 Hz).