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The synthesis of small molecule based 1,3,5-trisubstituted 

benzenes for photo-mediated capture of human carbonic 

anhydrase II with visualisation by fluorescence is described. 10 

 

The ‘capture’ of proteins by small molecules via irreversible 

cross-linking mediated by photo-irradiation is of interest in the 

field of proteomics (for reviews see ref. 1). The technique has the 

potential for profiling protein-binding by small molecules, an 15 

objective of importance both for basic cell biology and in 

pharmaceutical science. Capture compounds, or photoaffinity 

probes, are typically endowed with three functions comprising (i) 

a selectivity function, such as an enzyme inhibitor, (ii) a photo-

cross linking group (capture function) and (iii) a sorting group to 20 

enable separation of the captured protein from biological 

mixtures, such as biotin or an alkyne for subsequent modification. 

The captured protein(s) can be isolated using streptavadin beads 

and identified by mass spectrometry or western blotting (for 

examples see ref. 2). We are interested in developing methods for 25 

protein capture and visualisation without necessitating an 

isolation or chemical conjugation step (Figure 1).3  

Various ‘tripodal’ molecules have been employed for protein 

capture by small molecules, for example amino acids, peptides 

and trisubstituted aromatics including 1,2,4-trisubstituted benzene 30 

derivatives.4 However, there are few examples of the use of 1,3,5-

trisubstituted benzenes for this purpose.5 Here we report that 5-

amino dimethylisophthalate can be readily modified to produce 

compounds (1, 2) suitable for fluorescence based monitoring of 

protein capture (Figure 2) as exemplified by work on human 35 

carbonic anhydrases (HCA), increases in the level of some 

isoforms of which are indicative of disease especially those 

related to hypoxia (CA IX). 

We employed two sulphonamide derivatives that are known 

inhibitors for human carbonic anhydrase II (HCA II) as the 40 

selectivity function.6 An aryl azide was chosen for photo-

mediated cross-linking due to its ability to react irreversibly via 

nitrene formation.7, 8 A propargylated pyrene derivative was 

selected as a fluorescent visualisation function. 
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Figure 1: Working principle of fluorescence based visualisation of 70 

capture.  

 It was envisioned that the three groups could be attached to 5-

amino dimethyl isophthalate acting as a tripodal template. A polar 

linker (diamino ethylene) was introduced between the 

visualization group and the template in order to distance the 75 

former from the other two groups and to increase the 

hydrophilicity (Figure 2).  
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                       Figure 2: Design of capture compounds  
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 The synthesis started with BOP- mediated amide coupling with 

4-azidobenzoic acid to link the cross-linking function to amino 

dimethyl isophthalate 4. The product, 5, was hydrolysed (NaOH) 

to give acid 6. Subsequent coupling of 6 with mono-Boc 

protected ethylenediamine afforded amide 7. Deprotection 5 

(CF3CO2H) followed by coupling of the resultant amine with acid 

3 gave amide 8 the ester of which was hydrolysed (NaOH). The 

resultant free acid 9 was coupled with 4-aminomethyl-

benzenesulfonamide to furnish the capture compound, 1. 

Reaction of 8 with chloro sulphonamide 10 using potassium 10 

carbonate in DMF produced the other capture compound 2 

(Scheme 1).9 The fluorescent tag 3 was prepared from 1-

bromopyrene via a 3-step protocol (see ESI). 
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Scheme 1: Synthesis of capture compounds 1 and 2. Reagents and 

conditions: a) p-Azidobenzoic acid, BOP-reagent, diisopropylethylamine 
(DIPEA), CH2Cl2 reflux, 24 h; b) NaOH, MeOH, 50 °C, 3 h; c) 

MonoBOC protected ethylenediamine, BOP-reagent, DIPEA, CH2Cl2, 40 35 

°C, 48 h; d) (i) CF3CO2H, CH2Cl2, 0 °C - rt, 20 min; (ii) Acid 3, BOP-
reagent, DIPEA, CH2Cl2:DMF (5:1), rt, 20 h; e) NaOH, MeOH, 50 °C, 6 

h; f) 4-Aminomethyl-benzenesulfonamide, BOP-reagent, DIPEA, 

CH2Cl2:DMF (5:1), 40 °C, 48 h; g) K2CO3, 2-Chloro-N-(4-
sulfamoylphenyl)acetamide 10, dry DMF, rt, 20 h. 40 

 We then investigated the inhibition of HCA II by 1 and 2. Both 

were found to be reversible (competitive) inhibitors with 

compound 2 showing stronger inhibition (IC50: 1 16.7 µM, 2 = 

1.2 µM, for kinetic plots see ESI). The issue of suitability of the 

template for the proposed capture compounds and the efficacy of 45 

the fluorescence based technique for visualising protein capture 

was then addressed. Thus, 1 and 2 were incubated with HCA II at 

various concentrations (15 min), irradiated (UV λ ≥ 300 nm, 7 

min) and then directly subjected to polyacrylamide gel 

electrophoresis (PAGE).10 Exposure of the gel to UV-50 

transillumination showed clear fluorescence bands at the 

expected region, which was further confirmed by Coomassie blue 

staining (Figure 3). 

        10  9  8  7  6     5  4   3 2  1                             10   9   8   7  6      5   4   3   2   1 

 55 

 

 

 
      

Figure 3: Result of gel electrophoresis analysis of capture of HCA II by 1 60 

and 2 at different protein concentrations, as visualised by UV (left) and 

Coomassie blue (right). Lanes 1-5 represent incubation with 1 (100 µM), 

lanes 6-10 represent incubation with 2 (100 µM). The final concentration 

of protein in lanes 1-5 was 4, 6, 8, 20 and 40 µM, respectively. HEPES 

buffer (pH 7.2) was used. 65 

 

 The results validate compounds 1 and 2 as fluorescent capture 

compounds for HCA II. Capture is visible by in gel analysis 

under a UV- transilluminator down to HCA II concentrations of 4 

µM, with the concentration of the capture compounds at 50 µM. 70 

 We then investigated the selectivity of the probes. The process 

of incubation and photolysis was carried with a mixture of 

proteins i.e. HCA II, bovine serum albumin (BSA) and 

Lysozyme. Under UV-transillumination, only the fluorescence 

band corresponding to HCA II was visible, whereas Coomassie 75 

blue staining of the same gel showed bands corresponding to the 

three proteins (Figure 4).                      

            4        3    2    1                                           4        3   2   1 

                                                                    

                                                                             116 kDa                                 80 

       66.2 kDa                                       BSA 

                                                    45 kDa                                                                   

                                                    35 kDa                                        HCA II  
                                                
         25 kDa                                 85 

                                                
       18.4 kDa                                                                 
                                                     14 kDa                                      Lysozyme 
      

Figure 4: Results of gel electrophoresis analysis of capture of HCA II in a 90 

mixture by 1 and 2 visualised using UV (left) and Coomassie blue (right). 

Lane 1: mixture of BSA, HCA II and Lysozyme (all at 21 µM), lane 2: 

protein mixture (21 µM) + 1 (50 µM) with irradiation, lane 3: protein 

mixture (21 µM) + 2 (50 µM) with irradiation, lane 4: molecular weight 

marker. HEPES buffer (pH 7.2) was used.                                       95 

 The experiment was repeated with cell lysates of E. coli where 

the selective capturing of HCA II was clearly apparent by PAGE 

(Figure 5). Thus, both 1 and 2 showed high selectivity towards 

HCA II demonstrating the suitability of our 1,3,5-trisubstituted 

benzene template for capture and subsequent fluorescence-based 100 

visualisation. 
        1            2          3                                           1           2          3 

 

 

 105 

 

 

 

Figure 5: Gel electrophoresis of capture of HCA II from a cell lysate by 1 

and 2 visualised using UV (left) and Coomassie blue (right). Lanes 1: 0.5 110 

mg cell + 1 (10 µl, 1 mM) + 90 µL buffer (HEPES); 2: 0.5 mg cell + 2 

(10 µl, 1mM) + 90 µL buffer; 3: 0.5 mg cell + 100 µL buffer. 

  

 The capture of HCA II by both compounds 1 and 2 was 

validated by MALDI mass spectrometric analyses. Thus, the 115 

incubated photo-reacted mixture was directly analysed using a 

MALDI-TOF mass spectrometer which revealed a new peak at 

m/z 29919.24 (1) or 29964.05 (2) corresponding to [M+ (HCA II) 

+ (1 or 2) –N2 + H+)] (see ESI). The mass spectrum of the 

incubated photo reacted mixture containing three proteins showed 120 

the peak corresponding to capture of HCA II only (Figure 5 for 

capture by 2; see ESI for 1).11  
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d e 

 In conclusion, we have described two readily accessible small 

molecule probes, 1 and 2, for selective capture of HCA II via 

photo-irradiation allowing fluorescent visualization. The ability 

of 5-amino dimethyl isophthalate to act as a tripodal template for 

capture molecule design was demonstrated. We believe that 5 

1,3,5-trisubstituted benzene based photo-reactive probes  coupled 

with fluorescence based visualisation offers a simple and 

effective method for protein capture, which should be of utility in 

evaluating drug toxicity by studying their off-target interactions, 

inhibitor design and early disease diagnosis. 10 

 

                                                               
                                                               N 

                                 (I)                         (II) 

               M             N 15 

                             M=Lysozyme 

              N=HCAII                                                                                                                                  

                                O=HCAII + 2 –N2 + H
+   

                                                                              

                                20 

 

                                        O                                                        

                                                                                      

 

                                                                                                                                                                                              25 

 

Figure 5: MALDI spectra: (I) Mixture of HCA II, BSA and Lysozyme + 

2, incubated and photo-reacted; (II) expanded spectrum. 
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