BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 45, 3217-3218 (1972)

Synthesis of the New 1,4,2-Dithiazine 1,1-Dioxides¹⁾

Kazuaki Nakahashi, Syuzi Hirooka, and Kiyoshi Hasegawa Department of Industrial Chemistry, Faculty of Engineering, Toyama University, Takaoka-shi (Received January 10, 1972)

Previously, the synthesis of N-(2-phenylethene-1-sulfonyl)-N'-alkylthioureas and their intramolecular cycloadducts, 3-alkylamino-5-phenyl-1,1-dioxo-5,6-di-hydro-1,4,2-dithiazines, from 2-phenylethene-1-sulfon-amides was reported.²⁾

The present paper will describe the reaction of vinylsulfonamide (1) with isothiocyanates to give new heterocyclic compounds, 3-alkylamino-1,1-dioxo-5,6-dihydro-1,4,2-dithiazines (3) and 3-phenylimino-1,1-dioxo-2,3,5,6-tetrahydro-1,4,2-dithiazines (4), which are the intramolecular Michael cycloadducts of the probable intermediates, vinylsulfonyl thioureas (2).

The reaction of 1 with carbon disulfide and dimethyl sulfate in DMF in the presence of sodium hydroxide yielded 3-methylthio-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (5). The treatment of 5 with chlorine in chloroform gave the 3-chloro derivative (6), and the

reaction of 6 with alcohol or amines afforded 3-alkoxy (7) or 3-amino derivatives (8), respectively.

Analogous syntheses starting from 2-phenylethenel-sulfonamides were reported in a previous work,³⁾ but the ethylenic bond in vinylsulfonamide is very reactive and we failed to secure the vinylsulfonylated thioureas 2 and dithiocarbamate, which are the non-cyclic intermediates between 1 and 3, and between 1 and 5, respectively.

Experimental

3-Methylamino-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (3α). To vinylsulfonamide (2.6 g, 0.025 mol) in acetone (15 ml), we added methyl isothiocyanate (2.2 g, 0.03 mol) and anhydrous potassium carbonate (4.2 g, 0.03 mol); the reaction mixture was then refluxed for 10—15 hr with stirring and subsequently filtered. The acetone layer was concentrated in vacuo, and the crude residue was cooled to give 3.0 g of a solid. Recrystallization from methanol gave colorless crystals. IR (KBr): 3260 ($\nu_{\rm NH}$), 1550—1570 ($\nu_{\rm C=N}$), 1200—1300, 1120—1160 ($\nu_{\rm SO_2}$) cm⁻¹. NMR (DMSO- d_6): δ 2.710 (s, =NCH₃), 2.713 (d, $J_{\rm NHCH_3}$ =4.6 Hz), 3.16—3.56 (m, 4H, CH₂CH₂), 8.56 (broad, 0.53H, NH). Ms: m/e 45 (CHS), 180.061 (calculated molecular weight, 180.059).

3-Phenylimino-1,1-dioxo-2,3,5,6-tetrahydro-1,4,2-dithiazine (4c). To vinylsulfonamide (1.0 g, 0.009 mol) in acetone (10 ml), we added phenyl isothiocyanate (1.4 g, 0.010 mol) and anhydrous potassium carbonate (1.4 g, 0.010 mol); the reaction mixture was then refluxed for 10—15 hr with stirring and subsequently filtered; the potassium salt of 4c thus obtained was dissolved in water, and the resulting solution was acidified to give 2.2 g of 4c. Although crude 3c was obtained by concentrating the acetone layer in vacuo, it was converted to 4c

Table 1.
$$CH_2$$
 $C-NHR$ 3 or CH_2 $C=NR$ 4 SO_2NH

Commid	R	Yield (%)	Ratio ^{a)} (%)	Mp (°C)	Found (%)					Solvent of			
Compd					$\widehat{\mathbf{c}}$	H	N	$\overline{\mathbf{s}}$	$\widetilde{\mathbf{c}}$	Н	N	\overline{s}	recrystn
3a C	$\mathrm{H_3}$	68{	100 0	146—147	26.69	4.52	15.31	35.01	26.65	4.47	15.54	35.57	methanol
3b } C 4b } C	$_{6}\mathrm{H}_{11}$	73 {	94 6 ^{b)}	186—187	43.24	6.66	11.15	25.62	43.52	6.49	11.28	25.82	methanol
$\left. egin{array}{c} \mathbf{3c} \\ \mathbf{4c} \end{array} \right\} \; \mathbf{C}$	$_6$ H $_5$	91 {	45°) 55	161—163	44.31	4.14	11.48	26.30	44.61	4.16	11.56	26.48	methanol
3d) p-	$\cdot \mathrm{CH_3C_6H_4}$	9 0 {	0 100	170—171	47.15	4.81	11.05	24.87	46.85	4.72	10.93	25.01	methanol
3e 4e} <i>p</i> -	ClC_6H_4	7 9{	100 0	233—235	39.16	3.23	10.17	22.96	39.0 6	3.28	10.12	23.17	ethanol

a) Ratio of 3 vs. 4 before recrystallization. b) 4b could not be recrystallized. c) 4c was given by recrystallization from methanol.

¹⁾ Presented at the 25th Annual Meeting of the Chemical Society of Japan, Tokyo, October, 1971.

²⁾ K. Hasegawa and S. Hirooka, This Bulletin, 45, 525 (1972),
3) K. Hasegawa and S. Hirooka, *ibid.*, 45, 1567 (1972).

Table 2.
$$CH_2$$
 $C-X$ SO_2-N

Compd	x	Yield (%)	Mp (°C)	Found (%)					Calcd (%)					
				$\widehat{\mathbf{C}}$	Н	N	S	Cl	$\widehat{\mathbf{C}}$	Н	N	S	Cl	
5	SCH ₃	84	126—127	24.30	3.62	7.08	48.43		24.35	3.58	7.10	48.75		
6	Cl	80	131—132	19.24	2.29	7.44	34.28	19.64	19.41	2.17	7.55	34.54	19.10	
7	OCH_3	51ª)	139-140	26.47	3.84	7.81	35.07		26.51	3.89	7.73	35.38		
8a	$N(CH_3)_2$	68a)	171—172	30.8 9	4.98	14.38	32.60		30.91	5.19	14.42	33.01		
8b	NH_2	97	196—197	21.96	3.64	16.64			21.68	3.64	16.86	38.58		

a) Yield after recrystallization.

when recrystallized from methanol.

IR (KBr): 3240 (ν_{NH}) , 1590 (ν_{phenyl}) , 1540 $(\nu_{\text{C=N}})$, 1300—1310, 1260—1270 $(\nu_{\text{S0}2})$ cm⁻¹. NMR (acetone- d_6): δ 3.17—3.80 (m, 4H, CH₂CH₂), 7.00—7.73 (m, 5H, phenyl CH), 9.25 (broad, 0.63H, NH). Ms: m/e 46 (CH₂S), 242 (M).

The 5, 6, 7, 8a, and 8b compounds were prepared and confirmed in an analogous manner, 3 starting from vinyl-sulfonamide.

3-Methylthio-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (5). IR (KBr): 1505 ($\nu_{\rm C=N}$), 1260—1310 and 1110—1170 ($\nu_{\rm SO_2}$) cm⁻¹. NMR (CDCl₃): δ 2.52 (s, 3H, SCH₃). Ms: m/e 197 (M).

3-Chloro-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (6). IR

(KBr): 1570 and 1550 $(v_{C=N})$, 1270—1325 and 1140—1180 (v_{SO_2}) cm⁻¹. Ms: m/e 185 (M).

3-Methoxy-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (7). IR (KBr): 1560 ($\nu_{C=N}$), 1250—1320 and 1110—1170 (ν_{SO_2}) cm⁻¹. Ms: m/e 181 (M). NMR (CDCl₃): δ 3.95 (s, 3H, OCH₃).

3-Dimethylamino-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (8a). IR (KBr): 1545 ($\nu_{\rm C=N}$), 1310, 1270, and 1110—1140 ($\nu_{\rm SO_2}$) cm⁻¹. NMR (CDCl₃): δ 3.12 (s, 6H, N(CH₃)₂). Ms: m/e 194 (M).

3-Amino-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (8b). IR (KBr): 3330, 3250, and 3160 (v_{NH}) , 1610 (v_{NH}) , 1515 $(v_{C=N})$, 1140, 1110, and 1100 (v_{SO_2}) cm⁻¹.