Dithiadiazafulvalenes—New Strong Electron Donors. Synthesis, Isolation, Properties, and EPR Studies

Gregory V. Tormos, Martin G. Bakker,* Ping Wang, M. V. Lakshmikantham, Michael P. Cava,* and Robert M. Metzger*

Contribution from the Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336

Received April 20, 1995[®]

Abstract: Several dithiadiazafulvalenes, which are potent electron donors, were isolated as pure compounds for the first time. Solid charge-transfer complexes with TCNQ and also cation-radical and dication salts with perchlorate gegenions were obtained. Two of the TCNQ complexes are moderately conductive at room temperature (0.083 and 0.011 S/cm). A solution EPR study, combined with theoretical calculations, allowed the determination of the relative equilibrium cation-radical and anion-radical concentrations.

Introduction

The synthesis and redox properties of tetrathiafulvalene (TTF) 1, its selenium and tellurium analogs, and their derivatives constitute a most significant sector of organic metals chemistry.¹ Modification of the heterocyclic core of TTF by replacing some or all of the four sulfurs by nitrogens should be expected to give rise to new classes of organic donors. Studies aimed at the synthesis and isolation of such compounds, especially tetraazafulvalenes and dithiadiazafulvalenes, have thus far met with only limited success.

In 1989, Thummel and co-workers commented on the difficulty of preparing the TTF tetraaza analogs 2 and $3.^2$ Electrochemical studies of the dicationic oxidized salts of the desired compounds indicated extremely high donating properties for the neutral forms 2 and 3, which made their isolation impossible. Moreover, even benzofusion proved to be barely sufficient to stabilize the neutral species 4; these were extremely sensitive to oxygen but could be conclusively characterized by NMR.^{3a,b}

Recently, Arduengo et al. prepared the first remarkably stable crystalline carbenes 5.^{4a} It has been also demonstrated that such carbenes have a very minimal tendency toward dimerization.^{4b}

Bis(1,3-thiazoline-2)ylidenes (dithiadiazafulvalenes) and the related thiazolium carbenes have received considerable attention from both the chemical and biological points of view, as possible intermediates formed by the deprotonation of thiazolium salts.⁵⁻⁷ The question of the function of these species as catalysts in the benzoin condensation has been the subject of some recent interests.⁸

In the last few years, dithiadiazafulvalenes (DTDAFs) have attracted attention as electron donors possessing TTF-like twowave redox behavior,^{7,9,10} making them potential components for the synthesis of conducting charge-transfer salts.¹⁰ The first compound of this family, the air-sensitive benzannelated deriva-

(2) Thummel, R. P.; Goulle, V.; Chen, B. J. Org. Chem. 1989, 54, 3057.
(3) (a) Shi, Z.; Thummel, R. P. Tetrahedron Lett. 1994, 35, 33; (b) Shi, Z.; Thummel, R. P. Tetrahedron Lett. 1995, 36, 2741.

Chart I

tive **6**, was already reported by Metzger et al. in 1964.¹¹ Later attempts to isolate other examples lacking benzannelation led to compounds having very negative oxidation potentials; these were too sensitive to be conventionally isolated in crystalline form and characterized.⁷⁹ Robert and co-workers generated

(8) Breslow, R.; Kim, R. Tetrahedron Lett. 1994, 35, 699.

© 1995 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, August 1, 1995.

⁽¹⁾ Schukat, G.; Fanghänel, E. Sulfur Rep. 1993, 14, 245.

^{(4) (}a) Arduengo, A. J., III; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. **1992**, 114, 5530. (b) Arduengo, A. J. III; Dias, H. V. R.; Dixon, D. A.; Harlow, R. L.; Klooster, W. T.; Koetzle, T. F. J. Am. Chem. Soc. **1994**, 116, 6812. Estimated ΔG_{298} for the dimerization obtained at the MNDO/AM1 level is close to 0 kcal/mol, which would predict that such dimers might not be even capable of existance or would be extremely reactive and an unstable species.

^{(5) (}a) Hünig, S.; Scheutzow, D.; Schlaf, H.; Quast, H. Liebigs Ann. Chem. 1972, 765, 110 and references therein. (b) Lachmann, B.; Steinmaus, H.; Wanzlick, H.-W. Tetrahedron 1971, 27, 4085 and references therein.
(c) Castells, J.; López-Calahorra, F.; Bassedas, M.; Urrios, P. Synthesis 1988, 514. (d) Castells, J.; López-Calahorra, F.; Domingo, L. J. Org. Chem. 1988, 53, 4433. (e) Chen, Y.-T.; Jordan, F. J. Org. Chem. 1991, 56, 5029. (f) Vorsanger, J.-J. Bull. Soc. Chim. Fr. 1968, 3, 971 and references therein.
(g) Nojima, M.; Nagao, G.; Kakeya, N.; Takagi, M.; Tokura, N. J. Chem. Soc., Chem. Commun. 1976, 486. (h) Yamashita, Y.; Suzuki, T.; Saito, G.; Muka, T. Chemistry Lett. 1985, 1759. (i) Wheland, R. C. J. Am. Chem. Soc. 1976, 98, 3926.

⁽⁶⁾ Doughty, M. B.; Risinger, G. E. Bioorg. Chem. 1987, 15, 1. Sigmatropic rearrangement was first documented in 1977: Baldwin, J. E.; Branz, S. E.; Walker, J. A. J. Org. Chem. 1977, 42, 4142.

⁽⁷⁾ Bssaibis, M.; Robert, A.; Lemaguerés, P.; Ouahab, L.; Carlier, R.; Tallec, A. J. Chem. Soc., Chem. Commun. 1993, 601.

DTDAF 7 *in situ* and trapped it as a complex with tetracyanoquinodimethane (TCNQ).⁷ Bordwell and Satish generated several unstable alkyl-substituted bis(1,3-thiazoline-2)ylidenes *in situ* and detected their existence electrochemically. However, an attempt to isolate one of these compounds led only to oxidation products.⁹ Similar oxidation was also observed by Robert.⁷ Doughty and Risinger observed the migration of a benzyl group on attempting to prepare DTDAF **8** from the corresponding 2-unsubstituted thiazolium salt and triethylamine, leading to the formation of the rearranged product **9**.⁶ The only isolable noncondensed crystalline compound of this type reported to date, DTDAF **10**, has a first oxidation potential of 0.00 V (vs SCE), making it extremely labile to oxygen.¹⁰

We now report the synthesis and properties of the new isolable DTDAF series 11-13, in which stabilization is achieved by four electron-withdrawing substituents. These donors as well as the previously reported analog 10 have been converted into a series of conducting charge-transfer complexes by TCNQ. Experimental and calculated EPR coupling constants and g-values of these complexes are reported in solution.

Synthetic Results

The target molecules 11-13, having four electron-withdrawing groups in the 4,4' and 5,5' positions, were chosen in order to moderate the strong donating properties and high reactivity of the basic system toward oxygen.

The precursor 4,5-dicarbomethoxy-1,3-thiazoline-2-thiones 15a,b were prepared by the [3 + 2] cycloaddition of the N-substituted imino-1,3-dithiolanes 14a,b with dimethyl acetylenedicarboxylate (DMAD). Of the two reported procedures,¹² that of Vialle^{12a} was modified by us and afforded **15a,b** in 72% and 84% yields, respectively (Scheme 1). The reactivity of imines 14a,b was found to decrease considerably going from 14a to 14b. Thus, 14a reacts smoothly with DMAD in the ratio of 1:1 to give 15a as the major product, while the reaction with an excess of the acetylene derivative produced the known spiro compound 16^{12a} as the major product after refluxing for 15 h. In contrast, thione 15b was the main product obtained from 14b even after 30 h reflux with a twofold excess of DMAD. An attempt was made also to react DMAD with the Ncyanoimine 14c, but the latter proved to be inert as a 1,3-dipole, and no reaction took place.

Treatment of diester **15a** with ammonia in saturated methanol solution gave diamide **17** in 78% yield. Dehydration of **17** was

(9) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1991, 113, 985.
 (10) Tormos, G. V.; Neilands, O. J.; Cava, M. P. J. Org. Chem. 1992, 57, 1008.

(11) Metzger, J.; Larive, H.; Dennilauler, R.; Baralle, R.; Gaurat, C. Bull. Soc. Chim. Fr. **1964**, 11, 2857.

Scheme 1^a

^{*a*} (i) DMAD, xylene, reflux, 72%, **15a**, 84%, **15b**; (ii) DMAD excess, xylene, reflux; (iii) NH₃ (gas), MeOH, 2 days, 78%; (iv) POCl₃, tetramethylene sulfone, 100 °C, 5 h, 69%.

Scheme 2^a

^{*a*} (v) HC(OEt)₃, Et₂O·BF₃, CHCl₃; (vi) NaHSe, EtOH, 96%, **19a**; 95%, **19b**, 79%, **19c**; (vii) P(OEt)₃, 100 °C, 84%, **11**; 91%, **12**; 58%, **13**.

examined under a variety of conditions, i.e., with $SOCl_2$ or $POCl_3$ in anhydrous acetonitrile, with neat polyphosphoric acid, and with $SOCl_2$ or $POCl_3$ in tetramethylene sulfone. Only the dehydration with $POCl_3$ in sulfolane at 110 °C gave **15d** in good yield, while under the other conditions the reaction led to intractable mixtures.

Thiones 15a,b,d were converted to the corresponding 2-(al-kylthio)-1,3-thiazolium salts 18, treatment of which with sodium hydrogen selenide afforded selones 19a-c; the latter were coupled by treatment with triethyl phosphite to give DTDAF derivatives 11-13. (Scheme 2).

Cyclic Voltammetry

Compounds 11-13 proved to be excellent donors, and showed two quasi-reversible oxidation waves in accordance with Scheme 3.

The redox values of 11-13, as determined by cyclic voltammetry, are outlined in Table 1 in comparison with the corresponding values of DTDAF 10 as well as TTF 1, tetramethyltetrathiafulvalene (TMTTF) 20, tetracarbomethoxy TTF (TTFE₄) 21, and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, ET) 22. The first oxidation potentials correlate well with the first ionization potentials calculated by AM1.

The first oxidation potentials of 10-13 are considerably lower than those observed for major TTF systems. Tetracyanosubstituted 13 is the only compound of the DTDAF family with redox behavior comparable with the TTF family. Surprisingly,

^{(12) (}a) Gueden, C.; Vialle, J. Bull. Soc. Chim. Fr. 1973, 1, 270. (b) It should be noted that the later reported cyclization of iron pentacarbonyl derivatives with dimethyl acetylenedicarboxylate: Ngounda, M.; Le Bozec, H.; Dixneuf, P. J. Org. Chem. 1982, 47, 4000; where the authors describe the preparation of 15a (32%, mp 78-80 °C), and 15b (25%, presumably an oil), led to compounds 15a,b with considerably different melting points. However, since the reported HRMS and ¹H NMR data correspond to the expected values, we assume, that the described thiones 15a,b were not completely purified.

Table 1. Cyclic Voltammetry^a for DTDAFs 10 and 11-13 and for other Compounds of Interest^{b.c}

compd	solvent	E_1^{p} , V vs SCE	$E_1^{1/2},$ V vs SCE	E ^p ₂ , V vs SCE	$E_2^{1/2}$, V vs SCE	$\Delta E, V$	I_{calc}, eV
10	а	0.00	-0.05	0.48	0.43	0.48	6.86
	b	-0.02	-0.06	0.48	0.43	0.46	
11	а	0.10	0.06	0.45	0.41	0.35	7.36
	с	0.14	0.10	0.48	0.43	0.34	
	b	0.02	-0.02	0.26	0.23	0.24	
12	а	0.15	0.11	0.66	0.62	0.55	7.47
	с	0.18	0.14	0.66	0.61	0.48	
	b	0.13	0.09	0.61	0.57	0.48	
13	b	0.42	0.38	0.63	0.59	0.21	7.90
TTF, 1 ¹³	a ¹³	0.35		0.71		0.36	7.10
	b ¹⁴	0.32		0.70		0.38	
TMTTF, 2013	b	0.29		0.65		0.36	
BEDT-TTF, 22	а	0.58		1.00		0.42	
TTFE ₄ , 21 ¹³	b	0.83		1.10		0.27	
		$E_1^{\rm p}$	$E_{1}^{1/2}$,	E_2^p ,	$E_{2}^{1/2}$,		
compd	solvent	V vs SCE	V vs SCE	V vs SCE	V vs SCE	$\Delta E, V$	A_{\exp}, eV
TCNQ	a	0.11	0.19	-0.49	-0.42	0.60	3.314
	с	0.05	0.15	-0.54	-0.45	0.59	
	b	0.18	0.22	-0.40	-0.35	0.58	

^{*a*} First and second oxidation peak potentials E_2^p and E_2^p (V vs SCE); estimated half-wave potentials $E_1^{1/2}$ and $E_2^{1/2}$ (V vs SCE; estimated as midway between oxidation and corresponding reduction). ^{*b*} For the electron acceptor TCNQ the entries are peak and half-wave potentials for reduction, rather than oxidation. Also given are the calculated difference $\Delta E = E_2^p - E_1^p$, and the calculated first ionization potentials I_{calc} (vertical, AM1) for the electron donors, and the experimental gas-phase electron affinity A_{exp} for TCNQ. ^{*c*} Experimental conditions: concentration of 11–13 (ca. 1 × 10⁻³ M), electrolyte Bu₄N⁺PF₆⁻ (ca. 1 × 10⁻² M), scan rate 70 mV/s. Solvent code: a = 1,2-dichloroethane, b = acetonitrile, c = methylene chloride.

Scheme 3

13 was extremely unstable in solutions of MeOH, CH₃CN, or CHCl₃ and decomposed within a few minutes. As noted before for TTF systems,¹⁵ the redox potentials are moderately dependent (± 0.1 V) on the polarity of the solvent. For compound 11, the second oxidation potential E_{ox}^2 shifts by an unusually large 0.22 V between acetonitrile and methylene chloride solutions.

Table 1 illustrates some interesting features. Although the $E_1^{1/2}$ values for DTDAFs 10, 11, and 12 are considerably lower than those observed for TTFs 1, 20, and 22, they are positive for 11, 12, and 13, in contrast to the negative literature values for DTDAF's 6^{11} and $7.^7$ On the other hand, for 11 and 12 the electron density balance achieved between electron donating nitrogen and four electron-withdrawing carbomethoxy groups is just perfect, while the TTF analog 21 possesses extremely high oxidation potentials ($E_1^p = 0.82$, $E_2^p = 1.10$ V vs SCE), making 21 useless for charge-transfer salt preparations.¹

It has often been stated that, to form organic metals, both the cation-radical and the dication must be stable species and that the two oxidation waves in cyclic voltammetry must be well separated. For instance (Table 1), this difference $\Delta E = E_2^p - E_1^p$, is 0.3 to 0.4 V for TTF, 1, and for BEDT-TTF, 22, both of which make exciting charge-transfer complexes and ionradical salts. For the N-phenyl substituted donors 10 and 12 $\Delta E = 0.46$ to 0.48 V, which is approximately twice the $\Delta E =$ 0.24 to 0.21 V for N-methyl substituted 11 and 13. In phenylcontaining donors the greater charge delocalization probably gives added stability to the monocation-radical.

Table 2. Approximate Estimates of the Electrochemical Cell Potentials $E_{cell}(1)$ for Reaction 1 and $E_{cell}(2)$ for Reaction 2, for the case $A = TCNQ^a$

donor (D)	solvent	$E_{\rm cell}(1)$	$E_{\rm cell}(2)$
10	a	0.11	-0.86
11	а	0.01	-0.93
12	а	-0.04	-1.19
13	b	-0.24	-1.25
TTF, 1	b	-0.14	-1.24 δ
	а	-0.25	-1.43

^a Solvent code: a = 1,2-dichloroethane, b = acetonitrile. (§) -1.24 = -0.32 - 0.70 + 0.18 - 0.40.

It is of some interest to consider the possible reactions:

$$D(soln) + A(soln) \rightleftharpoons D^+(soln) + A^-(soln)$$
 (1)

$$D(\operatorname{soln}) + A(\operatorname{soln}) \rightleftharpoons D^{++}(\operatorname{soln}) + A^{2-}(\operatorname{soln})$$
 (2)

The spontaneity of eqs 1 and 2 is controlled by the Nernst equation. Since the activity coefficients for the various solute species are unavailable, and the concentrations of the cation-radical and anion-radical are not known in the voltammetric oxidation to D^{2+} and reduction to A^{2-} , therefore only an approximate estimate can be made as to the spontaneity of the reaction. Table 2 shows approximate estimates of the cell potentials, under the concentration conditions used to get the voltammetric data of Table 1.

As discussed previously,¹⁵ the simultaneous oxidation of TTF to TTF⁺ and reduction of TCNQ to TCNQ⁻⁻ is not spontaneous in solution: the electron transfer (partial) occurs only in the solid state complex. For the electron transfer reaction

$$TTF(CH_3CN) + TCNQ(CH_3CN) \rightleftharpoons$$
$$TTF^{++}(CH_3CN) + TCNQ^{+-}(CH_3CN)$$

 $E^{\circ} = -0.20$ was estimated,¹⁵ the calculated equilibrium constant was 6.3×10^{-3} ,¹⁶ and the measured constant was 2.5×10^{-3} .¹⁷ In dioxane, however, the equilibrium lies on the right-hand

⁽¹³⁾ Khodorkovsky, V.; Edzina, A.; Neilands, O. J. Molecular Electronics 1989, 5, 33.

⁽¹⁴⁾ Jin, C.; Haufler, R. E.; Bashick, C. M.; Compton, R. N.; Puretzky, A. A.; Demyanenko, A. V.; Tuinman, A. A. Science **1994**, 263, 64.

⁽¹⁵⁾ Jaeger, C. D.; Bard, A. J. J. Am. Chem. Soc. 1979 101, 1690.

Table 3. Room Temperature Conductivities of Complexes of 10,11, and 12 with TCNQ (Measured on Compactions by the 2-ProbeMethod Using Gold Paste Contacts to Gold Wire)

donor	acceptor	ratio	conductivity σ , S cm ⁻¹
10	TCNQ	1:1	1.6×10^{-7}
11	TCNQ	1:4:2 CH ₃ CN 1·4	1.1×10^{-7} 8.3 × 10^{-2}
12	TCNQ	1:1	10^{-10}
	TCNQ	2:5	1.1×10^{-2}

side.¹⁷ In acetonitrile, the driving force for the electron transfer is the formation of a solution complex, which may be followed by crystallization: the (partial) electron transfer in the crystal lowers the crystal lattice energy.

The data in Table 2 indicate that the donor 13 should act very much like TTF in its electron donating properties in solution, while donors 10 and 11 should spontaneously form the cation and TCNQ anion-radicals.

In the search for criteria of when given electron donors and electron acceptors will form a solid with high conductivity [which necessarily involves segregated stacking and a mixed valent partial electron transfer (q)], one should use the gasphase first ionization potential I_D for the donor (D) and first electron affinity A_A of the acceptor (A). For high $I_D - A_A$, the electrically insulating, mixed-stack DADADA complex will form, with low electron transfer (ρ close to 0). If $I_D - A_A$ is very low, then the semiconducting ionic complex (ρ close to 1) with mixed stacking $D^+A^-D^+A^-$ will result: this is the organic chemical equivalent of sodium chloride. Torrance¹⁸ suggested that segregated stacking with mixed valence (D⁺- DD^+D^+DD and/or A⁻AAA⁻A⁻AA, ϱ between 0 and 1, usually $\rho = 0.5-0.7$) with resultant high conductivity, will occur for "medium" $I_D - A_A$. Since A_A values are often unavailable, Torrance also proposed that differences between first solution oxidation potentials E_1 for the donor and reduction potentials E_1 for the acceptor $(E_1(D) - E_1(A))$ can be used instead.¹⁹ Saito and Ferraris provided a numerical boundary, so that when E_1 - $(D) - E_1(A) > 0.02$, ionic insulators or semiconductors result; when $E_1(D) - E_1(A) \le -0.34$, then neutral insulators will result.²⁰ By this criterion, donors 10 and 11 will tend to form ionic semiconductors with TCNQ.

There has been speculation whether solids of high conductivity are possible when the electron transfer ρ is greater than 1, i.e., $1 < \rho < 2$. The data of Table 2 show that, compared to TTF, donors 10 and 11 may be easier to coax into this high- ρ state than TTF, but the reaction in solution is still not spontaneous.

Solid State Complexes and Salts

Donors 10, 11, and 12 form crystalline charge-transfer complexes with TCNQ which were precipitated from acetonitrile solutions at room temperature under nitrogen. Their ratios and room temperature conductivities are collected in Table 3. Crystals large enough for single-crystal conductivity measurements and X-ray analysis were not obtained. Attempted recrystallization of these complexes in all the cases resulted in the recovery of TCNQ and formation of noncrystalline black decomposition products. We assume that, upon redissolution of the complex, the equilibrium shifted to the neutral donor plus Scheme 4^a

^{*a*} (viii) PhI(OAc)₂, HClO₄, dioxane, 61%, **23a**; 59%, **23b**; (ix) **23b**, CH₂Cl₂, room temperature; (x) TCNQ, CH₃CN.

acceptor and that air oxidation of the donor occurred (Scheme 4). This is consistent with the observation that attempted recrystallization of the donors 10-13 in the presense of air led to extensive decomposition.

Donor 10 yields two solid TCNQ complexes with different stoichiometries and also the dication diperchlorate salt 23a (as fine pale yellow needles stable for several weeks). Donor 11 yields only a single solid TCNQ complex. Donor 12 yields two solid TCNQ complexes with different stoichiometries as well as the dication diperchlorate salt 23b (as fine pale yellow needles stable for several weeks), and also the cation-radical monoperchlorate salt 24, stable for several days in solution, and obtained from mixing in 1:1 ratio dichloromethane solutions of neutral 12 and of the dication perchlorate 23b. In the case of 13, neither a solid complex nor any perchlorate salt could be isolated.

The relatively high conductivity (presumably semiconductivity) of the 1:4 complex of 11 with TCNQ, and of the 2:5 complex of 12 with TCNQ seems typical for segregated-stack TCNQ complexes, where the TCNQ species are not formally mixed-valent, and the cation functions as a counterion, rather than participating in the π electron conduction. The roomtemperature compaction conductivity data are disappointing for both TCNQ complexes of 10 and the 1:1 TCNQ complex of 12. The presence of the bulky phenyl groups in the donor 12 will make it nonplanar and impede π stacking of the donors. The donor 11 is more likely to be planar.

Robert and co-workers have solved the crystal structure of the related 1:5 complex of donor 7 with TCNQ: the nonplanar donor cation-radical functions as a counterion in the lattice, surrounding a TCNQ stack that exhibits π to π overlap between the TCNQ species; there are three crystallographically distinct TCNQ species, with formal charges estimated from the bond lengths as -0.14, -0.31, and -0.36.²¹ The room-temperature single-crystal four-probe conductivity of (7)₁(TCNQ)₅ is 6 × 10⁻⁴ S cm⁻¹,⁷ which is typical for TCNQ complexes with stacking of mixtures of neutral TCNQ molecules and TCNQ⁻⁻ anion-radicals, without the benefits of mixed valence.

The solid 1:1 and 2:5 complexes of **12** with TCNQ were studied by EPR: the former showed a broader EPR signal (peak-to-peak line width $\Delta H_{pp} = 6.9$ G), while the 2:5 complex showed a sharper line ($\Delta H_{pp} = 2.3$ G) with significant *g*-factor anisotropy. The FTIR of the solid 1:1 complex showed two $\nu_{\rm CN}$ bands at 2179 and 2151 cm⁻¹, while the 2:5 complex (**12**)₂-(TCNQ)₅ had a broad band at 2196 cm⁻¹ and a small shoulder at 2167 cm⁻¹. The position of the $\nu_{\rm CN}$ can often be associated²² with the charge ϱ on TCNQ ($\nu_{\rm CN} = 2227$ cm⁻¹ for neutral

⁽¹⁶⁾ Anderson, J. R.; Jorgensen, O. J. Chem. Soc., Perkin Trans. I 1979, 3095.

⁽¹⁷⁾ Wheland, R. J. Am. Chem. Soc. 1976, 98, 3926.

⁽¹⁸⁾ Tomkiewicz, Y.; Torrance, J. B.; Scott, B. A.; Green, D. C. J. Chem. Phys. **1974**, 60, 5111.

⁽¹⁹⁾ Torrance, J. B. Acc. Chem. Res. 1979, 12, 79.

⁽²⁰⁾ Saito, G.; Ferraris, J. P. Bull. Chem. Soc. Jpn. 1980, 53, 2141.

Table 4. Experimental and Calculated EPR Coupling Constants. g-Values, and Synthesis Conditions for the Cation-Radicals from the Donors 10-13

radical cation	source	temp, K	atom	a _{expt} , mT	a _{INDO} , mT	g
10 ^{.+}	1:1 TCNQ complex CH ₂ Cl ₂	295	N H(o) H(m) H(p) S	0.3136(2)	0.3518 -0.0288 0.0244 -0.0117	2.0055(1)
11'+	I ₂ CH ₂ Cl ₂	230	N H(3)	0.319(4) 0.309(3)	0.376 0.381	2.0055(1)
12 ^{.+}	1:1 TCNQ complex CH ₂ Cl ₂	295	N H(o) H(m) H(p)	0.3188(4) 0.0230(2) 0.01107(8) 0.0353(2)	$\begin{array}{r} 0.419 \\ -0.0342 \\ 0.0276 \\ -0.0189 \end{array}$	2.0056(1)
13.+	TCNQ complex CH ₃ CN	295	N H(3) CN	0.3394(15) 0.3071 0.0381(5)	0.404 0.418 0.0105	2.0053(1)

^a Errors are given in parentheses and are 95% confidence intervals (the results are from eight replicate determinations for cation-radicals of 10, 11, and 13, and from six replicate determinations for cationradical of 12).

TCNQ ($\rho = 0$), 2183 cm⁻¹ for K⁺TCNQ ($\rho = -1$); however, crystal electric fields can lead to considerable shifts,²³ and it is unwise and probably unwarranted to associate the features at 2167 or 2151 cm^{-1} to contributions from TCNQ²⁻. In support of our caution, unpublished IR data from the group of Robert find similar shifted IR peaks for the complex $(7)_1(TCNQ)_5$,²⁴ while the crystal structure shows no bond length evidence for TCNQ²⁻ dianions.²¹

Calculations and Simulations

The molecular geometries of the neutral donors 10-13 were obtained by geometry optimization using the AM1 semiempirical Hamiltonian²⁵ of computer program MOPAC;²⁶ the ionization potentials of the neutral molecule are listed in Table 1: these ionization potentials track well the solution first half-wave oxidation potentials of Table 1. The optimized geometry was then used with a INDO semiempirical Hamiltonian²⁷ to generate spin densities and calculated hyperfine tensors for the S = 1/2cation-radicals of these donors as well as for the anion-radical of TCNO.

Preliminary AM1 calculations show that the E-isomers are more stable than the Z-isomers (typically by 40-60 kJ / mol), as expected, given the degree of steric strain inherent in the cis forms. Accordingly it is reasonable to believe that it is the *E*-isomers that have been synthesized in this study.

Electron Paramagnetic Resonance Spectroscopy

The EPR spectra were measured for solution complexes of donors 10-13 with TCNQ. For the N-phenyl donors 10 and 12 solutions containing radicals were obtained by dissolving the solid TCNQ complexes, while for the N-methyl donors 11 and 13 solution radicals were obtained by adding the neutral donor to a degassed solution containing iodine or TCNQ as the acceptor.

- (24) Robert, A. Private communication.
- (25) (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. (b) Dewar, M. J. S.; Yuan, Y.-C. Inorg. Chem. 1990, 29, 3881
- (26) Coolidge, M. B.; Stewart, J. J. P., Frank J. Seiler Research Laboratory, United States Air Force Academy, 1990
 - (27) Oloff, H.; Hüttermann, J. J. Magn. Reson. 1980, 40, 415.

Tormos et al.

Figure 1. EPR spectrum of 1:1 Complex of 10/TCNQ: (A) experimental; and (B) simulated Inset shows the ³³S coupling constant.

Magnetic Field /mT

Figure 2. EPR spectrum of 13/TCNQ: (A) experimental and (B) simulated.

Table 4 gives the experimental conditions, the g-values, and the EPR coupling constants determined by experiment and calculated by INDO for the cation-radicals derived from 10-13. Figure 1 shows the EPR spectrum for the 1:1 solution complex of 10 with TCNQ, and the EPR spectrum simulated with the coupling constants given in Table 4. The EPR spectrum is made up of contributions from the cation-radical of the donor and the anion-radical form of the acceptor (TCNQ). The agreement between the experimental and fitted spectra is excellent. Figure 2 shows the EPR spectrum from donor 13 mixed with TCNQ and the simulated EPR spectrum. Again the agreement is excellent. In this case the TCNQ spectrum is not well resolved, because of broadening believed to be due to formation of the TCNQ dimer dianion.

The spectral assignments are straightforward for 10^{+} and 12^{+} , but more problematic for 11^{++} and for 13^{++} . For 11^{++} the coupling constants for the methyl protons and the ring nitrogens are almost interchangable. For 13⁺⁺ the coupling constants of the methyl protons and the ring nitrogens are very close, while

⁽²¹⁾ Bassaibis, M. Ph.D. Thesis, University of Rennes, France, 1993. (22) Chappel, J. S.; Bloch, A. N.; Bryden, W. A.; Maxfeld, M.; Poehler,

T. O.; Cowan, D. O. J. Am. Chem. Soc. 1981, 103, 2442.
 (23) Menghetti, M.; Pecile, C. J. Chem. Phys. 1986, 84, 4149.

Table 5. Observed Ratios of EPR Signal Intensities Due to Donor Cation-Radical (D^+) and to Acceptor Anion-Radical (A^-)

donor	acceptor	solvent	mixing ratio	temp, K	ratio D'+:A'- (EPR)
10	TCNQ	CH ₂ Cl ₂	1:1	295	1:1.04(2)
	TCNQ	CH_2Cl_2	1:4:2CH ₃ CN	220	5.8(2):1
11	TCNQ	CH_2Cl_2	1:4	190	anion signal only
	I_2	CH_2Cl_2	excess A	230	cation signal only
12	TCNQ	CH_2Cl_2	1:1	280	1:1.03(16)
	TCNQ	CH_2Cl_2	2:5	298	1:0.96(7)
	I ₂	CH_2Cl_2	excess A	290	cation signal only
13	TCNQ	CH ₃ CN	excess A	298	3.5(5):1
	I ₂	CH_2Cl_2	excess A	298	no signal

the coupling constant of the cyano nitrogens is very small. When the nitrogen and methyl proton coupling constants were varied independently, a substantial decrease in χ^2 resulted; two minima were found, one with the nitrogen coupling constant larger than the methyl proton coupling constant, and the other with the nitrogen coupling constant smaller. The former case gave slightly better overall χ^2 values, and gives much better reproducibility in the fitted parameters. The INDO calculations predict the opposite assignment; however, the difference between the calculated coupling constants is not large, and we feel that the balance of evidence supports the assignments given in Table 4. Satellite lines due to 33 S were observed in the EPR spectra from 10^{+} . The value of the ³³S coupling constant found is similar to those reported for TTF and various derivatives which range from 0.370 to 0.470 mT.²⁸ Similar satellite lines were observed in the spectrum of 11^+ but were not well resolved. The EPR data show only one isomer present per donor, but it is not possible to determine unambigously if the E- or Z-isomers are formed.

Table 5 summarizes the observation of EPR signals from the various complexes prepared and a number of donor/acceptor pairings and gives the experimentally determined ratio of the amount of donor cation-radical (D⁺⁺) to acceptor anion-radical (A⁻⁻). In three cases this ratio is close to 1:1, and for the complexes of **12** this is irrespective of the ratio in the isolated solid complex. In the complex of **11** with TCNQ no cation-radical signal was observed, although a very strong TCNQ⁻⁻ anion-radical signal was observed. Presumably the donor is being oxidized to the dication. The cation-radical **11⁺⁺** was prepared using I₂ as an oxidizing agent and was stable for at least one day. The cation-radical **13⁺⁺** was very unstable in solution, decaying within 3–4 h (at best), hence little significance can be attached to the observed ratio of the EPR signals for the system **13⁺⁺** TCNQ⁻⁻.

These results on the solution phase redox properties are of some interest, because they are not always consistent with the redox properties of the donors and acceptors determined by cyclic voltammetry. The data in Tables 1 and 2 suggest that, in solution, TCNQ should easily oxidize 10, 11, and 12, but not 13, and should oxidize none of them to the dication. The EPR evidence shows that TCNQ can oxidize 10, 12, and even 13 to the cation-radical, but, surprisingly, not 11. Maybe TCNQ oxidizes 11 to the diamagnetic dication, or the cation-radicals of 11, which are expected to be fairly planar, form a diamagnetic $\pi - \pi$ solution dimer $(11^{++})_2$, similar to what is known to occur in aqueous solutions of TCNQ^{-,29}

The observation of 1:1 cation: anion ratios from both the 1:1 and 2:5 complexes of **12** with TCNQ implies that the equilibria

in solution are between D and D⁺ and do not involve D²⁺. One wonders why the cation-radical of **13** is unstable. The oxygen concentration in the EPR experiment is very low, so a reaction with O₂ is probably not the primary mode of decomposition of **13⁺⁺**. It is possible that the decomposition pathway for this donor may in fact be through dimerization of the cation-radicals. In contrast to the results with donor **12**, the EPR cation:anion ratios for donor **10** are at variance with the stoichiometric ratios of donor and acceptor in the corresponding solid complexes.

Iodine oxidizes both 11 and 12: this is understandable, since iodine, in the gas phase,³⁰ is as potent an electron acceptor as TCNQ.¹⁴ However, iodine did not oxidize 13.

The discrepancies between the voltammetric data of Tables 1 and 2 and the EPR data of Table 5 may be due to substantial shifts in redox potentials resulting from the differences in concentration, solvent, and the absence of supporting electrolyte in going from the conditions at which the redox potentials were measured to the conditions under which the EPR spectra were run.

There is no simple correlation between the ionicity ϱ in the solid state and the formal charges for the predominant species in the solution phase. The equilibria in solution are affected by temperature, the dielectric constant of the solvent, and the presence of supporting electrolyte. The various long-range and short-range contributions to the crystal cohesive energy (Madelung energy, dispersion energy, polarization energy) involve, and therefore affect, the ionicity ϱ in the crystal;³¹ these contributions are not at play in solution.

In solution one should consider the existence of neutral molecules, anion-radicals and cation-radicals, and the EPR-silent dianions and dications; in addition, TCNQ anion-radical can also form diamagnetic solution $\pi - \pi$ "dimers".²⁹ Equilibria will limit the number of independent solute species that can be present simultaneously in large concentration. It should not matter whether the solution equilibria are approached from dissolving the solid (ionic) complexes or from dissolving the neutral solid donors and acceptors and then mixing the solutions.

Conclusions

A new family of powerful donors has been prepared and characterized. A variety of complexes with TCNQ have been prepared; some show appreciable conductivity. Solution-phase EPR studies of the complexes and the donors have determined the coupling constants of the cation-radicals of the four donors. The oxidation state of the donor was found to be only moderately well correlated with the redox potentials of the donor and acceptor.

Experimental Section

Melting points were determined on a MEL-TEMT II, Laboratory Devices, apparatus. NMR, mass, UV-vis, and IR spectra were obtained using Bruker AM 360, VG Autospec, Perkin-Elmer Lambda 4B, and Perkin-Elmer 781 infrared spectrophotometer, respectively. Elemental analyses were performed by the Atlanta Microlab, Inc., Atlanta, GA. 2-(Phenylimino)-1,3-dithiolane (14b), was prepared by the literature procedure.³² 2-(Methylimino)-1,3-dithiolane (14a) was synthesized according to Addor.³³ Potassium cyanodithioimididocar-

^{(28) (}a) Bock, H.; Brahler, G.; Henkel, U.; Schlecker, R.; Seebach, D. *Chem. Ber.* **1980**, *113*, 289. (b) Cavara, L.; Gerson, R.; Cowan, D. O.; Lerstrup, K. *Helv. Chim. Acta* **1986**, 69, 141. (c) Terahara, A.; Ohya-Nishiguchi, H.; Hirota, N.; Awaji, H.; Kawase, T.; Yoneda, S.; Sugimoto, T.; Yoshida, Z. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 1760. (e) Hibbert, D. B.; Hamedeliel, A. E.; Succliffe, L. H. *Magn. Res. Chem.* **1987**, *25*, 648.

⁽²⁹⁾ Boyd, R. H.; Phillips, W. D. J. Chem. Phys. 1965, 43, 2927.

^{(30) (}a) Hotop, H.; Lineberger, W. C. J. Phys. Chem. Ref. Data 1975, 4, 539. (b) Chen, E. C. M.; Wentworth, W. E. J. Chem. Phys. 1977, 66, 4325. (c) Topol, L. E. Inorg. Chem. 1971, 10, 736.

⁽³¹⁾ Metzger, R. M. In *Crystal Cohesion and Conformational Energies*; Springer Topics in Current Physics Vol. 26, Metzger, R. M., Ed.; Springer: Berlin, 1981; pp 80-107.

⁽³²⁾ Mayer, R.; Schäfer, K. J. Prakt. Chem. 1964, 26, 279.

⁽³³⁾ Addor, R. W. J. Agr. Food Chem. 1965, 13, 207.

bonate was obtained by a modified Hantzsch procedure,³⁴ and was alkylated with dibromoethane to yield 2-(cyanoimino)-1,3-dithiolane (14c),³⁵

4,5-Dicarbomethoxy-3-methyl-1,3-thiazoline-2-thione (15a). Dimethyl acetylenedicarboxylate (3.45 g, 24.28 mmol) was added to a solution of 2-(methylimino)-1,3-dithiolane (**14a**) (3.23 g, 24.24 mmol) in xylene (60 mL). After being stirred and refluxed for 15 h under nitrogen, the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the resulting solid was recrystallized from methanol to give 4.30 g (72%) of colorless needles: mp 118 °C (lit.^{12a} 118 °C); ¹H NMR (CDCl₃) δ 3.64 (s, 3H, Me), 3.85 (s, 3H, OMe), 4.02 (s, 3H, OMe).

4,5-Dicarbomethoxy-3-phenyl-1,3-thiazoline-2-thione (15b). A solution of 2-(phenylimino)-1,3-dithiolane (14b) (2.47 g, 12.65 mmol) and dimethyl acetylenedicarboxylate (1.80 g, 12.65 mmol) in xylene (32 mL) was warmed at 120 °C (bath temperature) for 25 h. Another portion of dimethyl acetylenedicarboxylate (1.80 g, 12.65 mmol) was added to the solution. After refluxing for an additional 5 h the reaction mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residual oil was chromatographed on a short silica column (eluent benzene) to give 3.29 g (84%) of pale yellow crystalline material. Recrystallization from methanol afforded 2.97 g (76%) of colorless plates: mp 136 °C (lit.^{12a} 134 °C); ¹H NMR (CDCl₃) δ 3.66 (s, 3 H, OMe), 3.87 (s, 3H, OMe), 7.31–7.34 (m, 2H, m-H_{Ph}), 7.51–7.53 (m, 3H, o- and p-H_{Ph}).

4,5-Dicarbamido-3-methyl-1,3-thiazoline-2-thione (17). Dicarbomethoxy derivative **15a** (1.61 g, 6.51 mmol) was dissolved in hot methanol (450 mL). The solution was cooled down to room temperature and immediately saturated with ammonia gas. The reaction mixture was stirred for 48 h and repeatedly saturated with NH₃. Methanol was removed under reduced pressure, and the residual yellow crystalline material was recrystallized from MeOH to give 1.1 g (78%) of white crystals: mp 257 °C (dec); ¹H NMR (DMSO-*d*₆) δ 3.54 (s, 3H, Me), 7.49 (s, 1H, NH₂), 7.72 (s, 1H, NH₂), 8.28 (s, 1H, NH₂), 8.41 (s, 1H, NH₂); HRMS calcd for C₆H₇N₃O₂S₂ 216.9980, found 216.9973.

4,5-Dicyano-3-methyl-1,3-thiazoline-2-thione (15d). To a warm solution of diamide **17** (0.50 g, 2.30 mmol) in tetramethylene sulfone (9 mL) was added an excess of phosphorus oxychloride (0.71 g, 4.60 mmol). After stirring the reaction mixture at 110 °C (bath temperature) for 4 h, it was poured into ice water (ca. 80 mL). The yellow precipitate was filtered off, washed with water, and dried. It was purified by chromatography (silica gel, benzene) to yield 0.34 g (81%) of yellow crystalline material. Recrystallization from hexane afforded 0.2 g (69%) of tiny tan needles: mp 151 °C; ¹H NMR (CDCl₃) δ 3.77 (s, NMe). Anal. Calcd for C₆H₃N₃S₂: C, 39.76; H, 1.67; N, 23.19; S, 35.38. Found: C, 39.68; H, 1.65; N, 23.29; S, 35.30.

4,5-Dicarbomethoxy-3-methyl-1,3-thiazoline-2-selone (19a). To a hot solution of thione 15a (0.20 g, 0.81 mmol) in chloroform (10 mL) were added HC(OEt)₃ (0.4 mL) and Et₂O·BF₃ (0.4 mL). The reaction mixture was refluxed for 10 min and left at room temperature overnight. The resulting 2-(ethylthio)-1,3-thiazolium fluoroborate 18a was precipitated with ether (70 mL), filtered off, washed with ether (4 \times 2 mL), dried, and dissolved in acetonitrile (30 mL). The resulting solution was transferred into a syringe and injected dropwise into a freshly prepared solution of sodium hydroselenide, prepared from powdered selenium (0.13 g, 1.62 mmol) and sodium borohydride (0.07 g, 1.78 mmol) in absolute ethanol (70 mL) under nitrogen. After stirring for 20 min, the reaction mixture was poured into 50 mL of 2% AcOH in water. The precipitate was filtered off, washed with water (4×2) mL), and dried. The resulting yellow solid was dissolved in benzene, (25 mL), and the solution was dried over CaCl₂ and filtered through silica gel, eluting with benzene. The solvent was removed under reduced pressure to give 0.25 g (96%) of yellow crystals of selone 19a, mp 110 °C. An analytically pure sample was prepared by recrystallization from hexane: UV, λ_{max} (log 10 ϵ), 316 (3.77), 373 (4.15)

nm; ¹H NMR (CDCl₃) δ 3.74 (s, 3H, Me), 3.86 (s, 3H, OMe), 4.03 (s, 3H, OMe). Anal. Calcd for C₈H₉NO₄SSe: N, 4.76; S 10.90. Found: N, 4.68; S, 10.98.

4,5-Dicarbomethoxy-3-phenyl-1,3-thiazoline-2-selone (19b). This was prepared from thione **15b** (1.00 g, 3.23 mmol) by the procedure described for **19a**: yield 1.00 g (95%) of yellow crystalline selone. Recrystallization from methanol afforded yellow prisms: mp 124 °C; UV, λ_{max} (log₁₀ ϵ), CH₂Cl₂ 323 (3.80), 379 (4.31); ¹H NMR (CDCl₃) δ 3.67 (s, 3H, OMe), 3.88 (s, 3H, OMe), 7.36–7.37 (m, 2H, Ph), 7.53–7.55 (m, 3H, Ph). Anal. Calcd for C₁₃H₁₁NO₄SSe: C, 43.83; H, 3.11; N, 3.93; S, 9.00. Found: C, 43.96; H, 3.05; N, 3.81; S, 8.87.

4,5-Dicyano-3-methyl-1,3-thiazoline-2-selone (19c). A solution of thione 15d (0.15 g, 0.83 mmol), HC(OEt)₃ (0.3 mL), and Et₂O BF₃ (0.3 mL) in 10 mL of chloroform was refluxed for 5 h. The reaction mixture was cooled to room temperature, and the product was precipitated with ether (50 mL), filtered off, washed with ether (4 \times 2 mL), dried, and dissolved in 3 mL of dry acetonitrile. The resulting solution was injected in one portion with vigorous stirring under nitrogen into a solution of NaHSe, obtained from selenium (72 mg, 0.91 mmol), and sodium borohydride (38 mg, 1.00 mmol) in 5 mL of absolute ethanol. An immediate color change from colorless to orange was observed. After 1 min, 1 mL of AcOH was injected via the septum to neutralize the excess of base. The reaction mixture was diluted with 50 mL of 2% aqueous AcOH, and the product was extracted into benzene $(4 \times 10 \text{ mL})$. The combined organic layers were washed with water (4 \times 10 mL) and dried over CaCl₂. The solvent was removed under reduced pressure, and the residual yellow solid was purified by chromatography on silica (benzene) to give 0.15 g (79%) of fine yellow needles: mp 148 °C. Recrystallization from hexane afforded an analytically pure sample of **19c**: UV, λ_{max} (log₁₀ ϵ), CH₂Cl₂ 329 (4.9), 405 (3.65) nm; ¹H NMR (CDCl₃) δ 3.85 (s, NMe). Anal. Calcd for C₆H₃N₃SSe: C, 31.59; H, 1.33; S, 18.42; N, 14.06. Found: C, 31.70; H, 1.39; N, 18.56; S, 13.85.

Bis(4,5-dicarbomethoxy-3-methyl-1,3-thiazoline-2-ylidene) (11). A suspension of selone **19a** (1.00 g, 3.40 mmol) in freshly distilled triethyl phosphite (1.75 mL, 10.20 mmol) was warmed to 100 °C in 5 min. The mixture was cooled down to room temperature, and 10 mL of methanol was added. The precipitate was filtered off, washed with methanol, and dried: yield 0.61 g (84%) of deep violet fine needles; mp 181 °C dec; MS m/e 415 (M-Me, 20) 399 (10), 247 (14), 231(12), 216 (40), 200 (25), 185 (14), 170 (29), 157 (20), 149 (42), 145 (100), 144 (96), 131 (36). Anal. Calcd for $C_{16}H_{18}N_2O_8S_2$: C, 44.64; H, 4.25; N, 6.51; S, 14.90. Found: C, 44.90; H, 4.32; N, 6.32; S, 14.71.

12: yield 91%; dark brown crystals; mp 235 °C; UV, $\lambda_{max} (\log_{10} \epsilon)$, CH₂Cl₂ 259 (4.28), 351 (3.86), 494 (3.86) nm; ¹H NMR (acetone- d_6) δ 3.64 (s, 12 H, OMe), 7.20–7.55 (m, 10 H, Ph); MS m/e 554 (M⁺, 59), 477 (90), 419 (7), 308 (9), 293 (14), 278 (70), 262 (42), 246 (2), 218 (21), 77 (100). Anal. Calcd for C₂₆H₂₂N₂O₈S₂: C, 56.30; H, 4.00; N, 5.05; S, 11.56. Found: C, 56.33; H, 4.09; N, 5.03; S, 11.84.

13: yield 58%, black crystals; mp 91 °C dec. Solutions of 13 decomposed at a moderate rate, which did not allow obtaining ¹H NMR and UV spectra: MS m/e 298 (M⁺, 12), 283 (100), 268 (17), 178 (8), 150 (26), 108 (35); HRMS calcd for C₁₂H₆N₆S₂: 298.0095, found 298.0100. The compound was not sufficiently stable for an elemental analysis.

Bis(1,3-thiazole)diperchlorates (23a,b). A solution of the donor **10** or **12** (9.02×10^{-2} mmol) in 3 mL of dioxane was mixed with a solution of phenyliodoso diacetate (9.02×10^{-2} mmol) in 2 mL of dioxane. Aqueous 70% HClO₄ (0.15 mL) was added, and the reaction mixture was warmed to boiling and then left at room temperature for 3 h. The dication salt was precipitated by ether (20 mL), filtered off, washed with ether and hexane, and dried.

23a: yield 61%. Anal. Calcd for $C_{24}H_{22}N_2O_{12}S_4Cl_2$: C, 39.51; H, 3.04; N, 3.84; S, 17.58. Found: C, 39.41; H, 2.81; N, 3.66; S, 18.02.

23b: yield 59% UV, λ_{max} (log₁₀ ϵ), CH₂Cl₂ 356 (3.87) nm. Anal. Calcd for C₂₆H₂₂N₂O₁₆S₂Cl₂: C, 41.44; H, 2.94; N, 3.72; S, 8.51. Found: C, 41.99; H, 2.34; N, 3.62; S, 8.41.

Cation-Radical 24. A CH₂Cl₂ solution of **24** (10^{-4} M) was obtained under nitrogen by mixing equivalent amounts of the donor **12** in CH₂-Cl₂ (10^{-4} M) and the appropriate solution of dication salt **23b** (10^{-4} M). Cation-radical **24** was stable in the solution and no change in its UV spectrum was observed after 60 days: UV, λ_{max} ($\log_{10} \epsilon$), CH₂Cl₂

⁽³⁴⁾ Hantzsch, A.; Wolverkamp, M. Liebigs Ann. Chem. 1904, 331, 265.
(35) D'Amico, J. J.; Campbell, R. H. J. Org. Chem. 1967, 32, 2567.
(36) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.

Numerical Recipes, Cambridge University Press: New York, 1989. (37) (a) Segal, B. G.; Kaplan, M.; Fraenkel, G. K. J. Chem. Phys. 1965,

^{43, 4191. (}b) Allendorfer, R. D. J. Chem. Phys. 1971, 55, 3615.

Dithiadiazafulvalenes

436 (4.01) (sh), 465 (4.21), 641 (3.28) nm. Slow evaporation of the solvent resulted in a green gum.

Charge-Transfer Complexes. TCNQ Complexes of 10. A degassed, hot solution of donor 10 (0.3 g, 0.57 mmol) in dry acetonitrile (50 mL) under nitrogen was treated with a hot solution of TCNQ (0.3 g, 1.47 mmol) in dry acetonitrile. The resulting green solution was cooled to room temperature under nitrogen. The dark precipitated crystals were filtered off, washed with acetonitrile, and dried under nitrogen to give 0.17 g of dark blue-black complex. The filtrate was concentrated under nitrogen to give a second crop of the above complex (0.02 g): total yield 0.19 g (46%). Anal. Calcd for (10) (TCNQ), C₃₆H₂₆N₆O₄S₄: C, 58.83; H, 3.57; N, 11.44; S, 17.45. Found: C, 58.62; H, 3.59; N, 11.48; S, 17.39. The filtrate from the second crop was concentrated in vacuo to the crystallization point and filtered, and the needles which crystallized were collected separately, washed with hexane, and dried to give 0.19 g of dark green-black complex. Anal. $Calcd \ for \ (10) \ (TCNQ)_4 (CH_3 CN)_2, \ C_{76}H_{44}N_{20}O_4S_4; \ C, \ 63.85; \ H, \ 3.10,$ N, 19.60; S, 8.97. Found: C, 63.56; H, 3.15; N, 20.30; S, 8.83.

TCNQ Complex of Donor 11. A degassed solution of donor 11 (30 mg, 0.07 mmol) in dry acetonitrile (4 mL) under nitrogen was treated with a hot solution of TCNQ (28.46 mg, 0.14 mmol) in dry acetonitrile (6 mL). The resulting dark green solution was concentrated under nitrogen to 2 mL, sealed under nitrogen and cooled in the refrigerator. The precipitated black crystals were filtered off, washed with acetonitrile, and dried to yield 40.73 mg of the complex. Anal. Calcd for (11) (TCNQ)₄, $C_{64}H_{34}N_{18}O_8S_2$: C, 61.63; H, 2.75; N, 20.22; S, 5.14. Found: C, 61.60; H, 2.91; N, 20.10; S, 4.81.

TCNQ Complexes of Donor 12. A degassed solution of donor **12** (81.49 mg, 0.14 mmol) in dry acetonitrile (7 mL) under nitrogen was treated with a solution of TCNQ (15.00 mg, 0.07 mmol) in dry acetonitrile (4 mL). The yellow precipitate was filtered off, and the filtrate was concentrated to 5 mL. The precipitate of complex was filtered off and washed with acetonitrile to give 17.18 mg (31%) of dark navy-blue crystals. Anal. Calcd for (**12**) (TCNQ), $C_{38}H_{26}N_6O_8$ -S₂: C, 60.15; H, 3.45; N, 11.08; S, 8.45. Found: C, 60.20; H, 3.45; N, 11.05; S, 8.39.

A solution of **12** (30 mg, 0.054 mmol) in dry acetonitrile (5 mL) was mixed with a solution of TCNQ (22.09 mg, 0.108 mmol) in dry acetonitrile (7 mL) under nitrogen and left overnight. The precipitate was filtered off, washed with acetonitrile, and dried: yield 40 mg (69%) of dark green-black crystals. Anal. Calcd for (**12**)₂ (TCNQ)₅, C₁₁₂-H₆₄N₂₄O₁₆S₄: C, 63.15; H, 3.03; N, 15.78; S, 6.02. Found: C, 63.17; H, 3.07; N, 15.76; S, 6.10.

EPR. The EPR samples were prepared in custom-made 7 mm \times 0.5 mm flat cells, which were connected to a vacuum line. The solvent

 (CH_2Cl_2, CH_3CN) was degassed to $< 10^{-3}$ Torr in a side arm of the sample cell and then mixed with the complex. For those samples for which iodine or bromine was used as oxidant, a small amount of Br₂ or I2 was added to the solvent, which was then degassed as above. For donor (13), the donor was mixed with the TCNQ as a solid, and the solvent (CH₂Cl₂) was degassed and then mixed with the donor and acceptor, as above. The EPR spectra were recorded on a hybrid system consisting of a Varian E-109 bridge, IBM ER 10 inch magnet with a Bruker BH-15 magnetic field controller, controlled by a MacIntosh Hcx computer. Spectra were fitted using the Simplex algorithm.³⁶ Data points of 1000 were used in the fitting procedure, except for donors 11 and 12, where 2000 points were used. Low-temperature spectra were collected using a single walled 9 mm i.d. insert in the cavity, through which cooled nitrogen gas was passed. The g-values were determined against the perylene cation-radical,³⁷ using a Hewlett-Packard Model 5352B frequency counter to correct for changes in the frequency of the two samples.

Calculations. Alchemy III was used to generate and minimize a molecular mechanics of the starting structure of the donor cations, using a MacIntosh IIci microcomputer. The structure was then further refined on a Cray Y/MP supercomputer using AM125 semiempirical Hamiltonian, as implemented in the MOPAC Version 5.00 computer package.26 The AM1 runs were done using UHF for the neutral molecules and for the cation-radicals. In preliminary calculations, with no symmetry imposed on the molecules and the cation-radicals, it was found that the INDO program,²⁷ run on the Cray Y/MP supercomputer, would not provide correct convergence: the two halves of the molecule would have very different electron densities. To overcome this, a symmetry constraint was imposed. It was found that the minimum energy in both 10⁺⁺ and 11⁺⁺ required inversion symmetry, rather than C_2 symmetry. Accordingly, inversion symmetry was imposed on the AM1 calculations used to generate the geometries for the INDO calculations. AM1 calculations run without the symmetry constraints confirmed that the geometries and energies found corresponded to a minimum. The INDO data given in Table 5 were obtained for cationradicals with inversion symmetry.

Acknowledgment. The partial support of this research by the National Science Foundation (CHE-92-24899), the Air Force Office of Scientific Research (F49620-92-J-0529), and the Research Grants Committee of the University of Alabama (M.G.B.) is gratefully acknowledged. We also thank Ms. Sara Shirley for the preparation of the manuscript.

JA9512539