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Summary. Acceptur substituted 3-methoxyest~a-l,3,5(10),6-tetraene derivatives 3, 4, and $ have been l~epared and exploited in a 
synthesis of the title compounds 13 and 15 by key Michael-type addition reactions involving dimethylsulfoxonim'n methylide, a- 
Cyclopropanation was only slightly favored on the sulfone analogue 3 but strongly so on the (R)-sulfoxlde 4. On the mntrery, the 
(S)-sulfoxide $ displayed a weak preference for 13-face attack. 

A recent report from these laboratories has outlined the conversion of ketone I into vinyl sulfone 3 in con- 

junction with the utilization of this Michael acceptor to generate C(7) a-alkylated derivatives of estradiol. 2 It 

was shown that alkynyllithium reagents afford a-substituted products in good yield under excellent stereo- 

chemical control, while ordinary alkyllithium species either discriminate poorly between the two n-faces or add 

with reversed selectivity. Regrettably, other carbon-centered nucleophiles share unfavorable stereoselection 

characteristics in the latter sense. To overcome such shortcomings, we have also explored a lower oxidation state 

at sulfur, which introduces an additional stereogenic center in close proximity to the reaction site. This 

communication highlights the synthetic potential of sulfoxides 4 and 5 in a stereocontrolled approach to C(6)- 

C(7) cyclopropane annulated estradiol derivatives. These targets merit consideration because the 6a,7a-bridged 

analogue structurally resembles 7a-methylestradiol, a steroid known for remarkable biological properties. 3 

Dissolved in a three-component mixture ( C 2 H s O ~ / H 2 0 ,  20:5:1), vinyl sulfide 22 underwent smooth 

oxidation in the presence of magnesium monoperoxyphthalate (MMPP) at ambient temperature. 4 Since little 

substrate control over the sterexmhemical outcome at suffur materialized in this reaction, 4 and 5 could be 

isolated in 48% and 39% yield, respectively, following chromatographic separation on silica gel (hexane/ethyl 

acetate, 1:1). 
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The configurational issue associated with the trivalent heteroatom in sulfoxidcs 4 and 5 was resolved by CD 

spectroscopy. For the polar isomer 4, a positive primary band Cotton effect near 245 nm (A¢ +12.5; CH3OH) 

classifies the arrangement of substituents on sulfur, including the lone pair, as R. Complementary chiroptical 

properties (A¢ -8.8, 238 rim; CH3OH) point to the opposite configuration for the faster eluting derivative 5. 5 

The stage was thus set to investigate sulfur ylide-mediated three-membered ring annulations on substrates 3, 4, 

and 5. 6 Although vinyl sulfone 3 was subject to almost quantitative Michael-type methylenation (DMSO, Nail, 

(CH3)3SOI, 22°C), 7 the product ratio (6/9, 1.1:1), as determined after chromatographic separation on silica gel 

(cyclohexane/acetone, 3:2, gradient elution), fully matched earlier disenchanting observations. 2 Both adducts 

were separately transformed into the title compounds by standard procedures. Reductive removal of the phenyl 

sulfonyl group from 6 with magnesium turnings in methanol occurred with concomitant saponification of the 

acetate protecting group at C(17) and furnished methyl ether 12 in 90% yield. The remaining demethylation, 

12--'13, proceeded satisfactorily (4h; 93%) with DIBAH in toluene at reflux temperature. An entirely analogous 

three-step deblocking scheme (9--q4 (88%), 14---15 (89%)) was relied upon in the [3-bridged series. 

Our companion study at the sulfoxide level displayed high cyclopropanation efficiency (35-40°C, 4h; combined 

yield 90%) as well as excellent stereocontrol, since 4 delivered pentacycles 7 and 10 in a ratio of 12:1 (di- 

chloromethane/acetone, 9:1). For the epimeric sulfoxide 5, stereoselectivity was less pronounced but reversed 

(5---8/11, 1:3). While three-membered ring orientation on sulfone scaffolds 6 and 9 was deduced by NMR ex- 

periments, including NOE measurements, structural assignments for sulfinyl derivatives 7, 8, 10, and 11 are 

based on chemical correlations. Pertinent details concerning two oxidations and a single desulfurization 

performed on major products serve to illustrate this endeavor: (1) 7 - , 6  (93%), (2) 11-,9 (90%) (AcOH, NaBO 3- 

4H20, 22°C, 16h); (3) 7---12 (87%) (NH 3, THF, Li, -55°C; NH4C1). 

Interestingly, our findings are in agreement with a model put forth to rationalize the stereochemical course of 

various conjugate additions to c¢,[~-unsaturated sulfoxides. 8 According to this theoretical tool, vinyl sulfoxides 

adopt a reactive conformation in which the sulfur-oxygen linkage and the carbon-carbon double bond eclipse, 

thus rendering the region above/below the olefnic ~-plane either sterically or electronically biased "~y virtue of 

the third substituent and the lone pair on the adjacent sulfur atom. A non-chelating nucleophile should therefore 

approach the double bond contrasterically on a trajectory anti to the area of high electron density defined by the 

lone pair. 

In conclusion, this work has established 4 as a valuable new intermediate for the stereocontrolled synthesis of 

C(7) ¢x-substituted estradiol analogues.9 
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