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First structure-based activity prediction model of topologically diverse inhibitors of Palm I allosteric site
of HCV NS5b polymerase enzyme is reported here. The model is a workflow of structure-based
pharmacophore followed by guided docking. The pharmacophore was constructed using a novel
procedure which includes PLIF (protein ligand interaction fingerprint), Hypogen, contact-based
pharmacophore and shape constraints. The guided docking was tweaked using both a scoring function
of high correlation with activity (ChemPLP) and essential pharmacophore features. Statistically, ROC
analysis for the workflow, deploying the novel technique of virtual decoys, yielded AUC of 0.947.
Experimentally, the model was used to screen Asinex GOLD database yielding a new hit with a different
scaffold which was further confirmed by synthesis and biological evaluation.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Hepatitis C virus (HCV) is one of the major causes of cirrhosis,
hepatocellular carcinoma and liver failure that lead to trans-
plantation [1]. Since its identification in 1989 [2], it has been esti-
mated thatmore than 170million peopleworldwide are infected by
HCV. The HCV genome encodes one single poly-protein of approx-
imately 3000 amino acids, depending on the HCV genotype. This
poly-protein is then proteolytically processed by viral and cellular
proteases to produce structural proteins (core, E1, E2 and p7) and
nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [3].
The NS5B RNA-dependent RNA polymerase is recognized as a key
target for therapeutic intervention [4e7]mainly because it does not
have a mammalian counterpart and offers a wide range of possi-
bilities for the discovery of new molecular entities as anti-HCV
agents. The inhibitors of this target are either nucleoside or non-
nucleoside inhibitors. The latter is further classified into active
fax: þ202 25080728.
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site inhibitors, allosteric site inhibitors and miscellaneous [4].
Mechanistic and structural studies have revealed the existence of
multiple allosteric binding sites [8], and in particular two thumb
sites (thumb I and II) and three palm pockets (palm I, II and III) have
been identified to date. According to the target site, the different
inhibitorswill be referred to as palm site I NNIs (PSI-NNIs), palm site
II NNIs (PSII-NNIs), palm site III NNIs (PSIII-NNIs), thumb site I NNIs
(TSI-NNIs) and thumb site II NNIs (TSII-NNIs)(Fig. 1).

Palm I site allosteric site is targeted by wide variety of inhibitors
that have topologically diverse scaffolds: acrylic acids, rhodanines,
benzothiadiazines, benzothiazines, benzoisothiazole dioxides,
proline sulfonamides, acyl pyrollodines, anthranilic acids and
benzodiazepines [9]. This site has been explored structurally in
literature in order to find out the binding modemainly [10] and not
for virtual screening purpose. Virtual screening on this site was
carried out previously adopting the ligand based 3D-QSAR method
using GOLPE [11]. Generally, ligand based methods suffer from the
common problem of limited applicability domain. They can’t
retrieve with reliability any ligands having information more than
that they were trained on. This triggered us to develop for the first
time a multipurpose predictive structure-based computational
model for the inhibitors of this site (i.e. palm I). The model was
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Fig. 1. HCV NS5b different allosteric sites with schematic diagrams of protein ligand interactions of each allosteric site. In this study, we focus on Palm I site. Picture was prepared
using Accelrys Discovery Studio 3 and Biosolveit Pose view.
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designed while focusing on achieving targets: a-virtual screening
enrichment by having superior receiver operator characteristic
curves (ROCs) [12] [13]; b-predicting the activity of the inhibitors; c-
comprehensive SAR analysis of the site; d-bindingmode prediction.

We tried to construct this model using an idea that depends on
enhancing the performance of hits finding by directing the search
through all the available information related to the palm I site. This
information can be translated into the essential chemical features
required for the activity and a fit value which correlates well with
the activity of the ligands. One tool which can achieve this goal is
guided docking [14] which relies on multiple object optimization
using genetic [15] or evolutionary algorithm [16]. It uses both types
of information we mentioned: the chemical features (pharmaco-
phore restraints) and the correlating fit value which both aim at
achieving a balance between favorable interactions with the
receptor without deviating from the ideal binding pattern [14].
Moreover, we were aiming at accelerating the process of optimi-
zation during docking sampling by initially providing the docking
engine with good solutions. In order to achieve this, we preceded
docking by structure-based pharmacophore which supplies the
docking engine with hits having both good orientation and
conformation. In this way, the convergence in the docking algo-
rithm can be achieved rapidly and without losing possible hits due
to exceeding the number of iterations during docking sampling.
Besides, pharmacophores (even if not structure-based) are nor-
mally used before docking in order to rapidly filter ligands which
don’t have the essential features.

Consequently, we planned the workflow (Fig. 2) to be used as
follows: A highly refined structure-based pharmacophore of high
selectivity was to be constructed such that the hits found meet the
following criteria: 1-Satisify the essential features (those with high
probability or propensity in the diverse active inhibitors); 2-Have
accurate pose of very small RMSD, thus satisfying the essential
interactions with minor need for energy refinement in the actual
binding site.

As a second step, knowledge-based docking was to be applied
on the hits found by the pharmacophore. It should be guided by
two main criteria: 1-Fit value: a scoring function which correlates
well with the activity; 2-Soft constraints: provided by a geometrical
pharmacophore which is deduced from the above one. The
constraints should be applied in order to avoid poses generation
which are not satisfying the main features. Thus, we aimed to use
docking for refinement of the pharmacophore-provided hits based
on the actual ligandeprotein interactions. This is unlike pharma-
cophores which are not based on actual interactions adjustment
even if structure-based. In addition, docking is used for the
assessment of the hits using a scoring function that correlates with
activity and at the same time provide a more accurate binding
mode prediction.

Ideally, the docking solutions should not deviate much from that
provided by the pharmacophore (i.e. small RMSD deviation) and
this was the aim of this workflow: obtaining quick solutions from
docking by initially providing it with good seeds as parents for the
GA (genetic algorithm) and thus achieving fast convergence.
However, this gave rise to an argument of whether docking is
actually important or the structure-based pharmacophore is
enough and should be followed by just scoring. This was concluded
from the results as will be shown.

In order to follow the results sequence, we provided the flow of
the protocol illustrated in Fig. 2 and described it briefly as follows:

1 -Genertation of a highly refined hybrid structure-based phar-
macophore using the following steps:
A -Superposition of 6 PDB complexes of HCV polymerase

inhibitors of allosteric site C and generating a PLIF [17,18]
(protein ligand interaction fingerprint) to highlight



Fig. 2. Workflow used to study Palm I site diverse scaffolds. It consists of structure-based pharmacophore and guided docking modules.
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common interactions (those having high probability)
between co-crystallized ligands and the proteins.

B -Applying different weights and tolerances to the extracted
features according to their importance using activity based
pharmacophore (Hypogen) [19].

C -Applying contact-based pharmacophore [20] to extract
excluded volumes which represents the regions where the
ligand will sterically clash with.

D -Applying shape constraints and adjusting its tolerance to
accommodate all ligands.

E -Validation of the pharmacophore by using virtual decoys
[21]of high relevance as a more accurate test for ROC
analysis.

2 -Selecting a suitable scoring function which can describe the
activity well.

3 -Utilizing knowledge-based docking with GA search engine
and provide it with the suitable fit value (scoring function
selected in the previous step), pharmacophore constraints
while keeping the essential structural water molecules.
Fig. 3. PLIF (protein ligand interaction fingerprint) way of binning. There are 6 types of
interactions in which a residue may participate: side chain hydrogen bonds (donor or
acceptor), backbone hydrogen bonds (donor or acceptor), ionic interactions, and
surface interactions. Each interaction is further divided into low or high.
2. Results

2.1. Pharmacophore generation

As mentioned before, the aim of the structure-based pharmaco-
phorewas to act as a fast substitute for docking by initially providing
good solutions with good pose accuracy. In addition, it performs the
normal pharmacophore function which is reducing the chemical
space and enriching the solutions with actives by acting as a pre-
filter that screens those ligands not satisfying essential features.
This dual functionality was done using a hybrid strategy as follows:

2.1.1. PLIF analysis
The Protein Ligand Interaction Fingerprints (PLIF) tool is

a method for summarizing the interactions between ligands and
proteins using a fingerprint scheme. Interactions such as hydrogen
bonds, ionic interactions and surface contacts are classified
according to the residue of origin, and built into a fingerprint
scheme. It can be used to obtain the common features shared by
group of inhibitors by analyzing the fingerprints. In order to classify
interaction fingerprints, each amino acid residue of a protein is
broken down into categories, as shown in Fig. 3 where there are 6
types of interactions in which a residue may participate: side chain
hydrogen bonds (donor or acceptor), backbone hydrogen bonds
(donor or acceptor), ionic interactions, and surface interactions. The
most potent of each of these interactions in each category, if any,
are considered. The way the fingerprint is calculated is explained in
the supplementary data in section 1.

Here in this study, the input data for the PLIF was six X-ray
crystal structures of six inhibitors which share the same binding
site (Palm I allosteric site of HCV polymerase NS5b genotype 1b)
and at the same time have diverse activities and scaffolds. These X-



Table 1
Non-nucleoside inhibitors of diverse scaffolds acting on Palm I site and their protein
data bank codes.

Scaffold type PDB codes

Acrylic acids 1YVF, 1Z4U
Rhodanines 2AWZ, 2AXO, 2AX1
Benzothiadiazines 2FVC, 2GIQ, 3HHK, 3BSA, 3BSC, 3CDE,

3BR9,3E51, 3CO9, 3CVK, 3H2L, 3H98, 3GYN, 3IGV
Benzothiazines 3CWJ, 3G86, 3H59
Benzoisothiazoles dioxide 3D28, 3D5M, 3H5U, 3H5S, 2GC8, 2JC0, 2JC1
Proline sulfonamides 2GC8
Acylpyrrolodines 2JC0,2JC1
Anthranilic acids 2QE2, 2QE5
Benzodiazepines 3GOL, 3CSO, 3GNV, 3GNW, 3HKW, 3HKY
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ray crystals (3HKY, 1YVF, 2GC8, 2GIQ, 2JC0, 2QE5) were obtained
from the protein data bank [22] and represent benzodiazepines,
acrylic acids, proline sulfonamides, benzothiadiazines, acylpyrroli-
dines and anthranilic acids respectively. These classes and the PDB
codes corresponding to them are shown in (Table 1). Benzothia-
zines and benzoisothiazoles dioxide based inhibitors are excluded
since they are bioisosteres to benzothiadiazines and are likely not
to add more information to the structural requirements. We didn’t
select all the crystal structures and preferred to pick up a complex
of each category to simplify method of extraction of common
features and avoid over-representation and redundancy as all
crystal structures in each category bear the same scaffold.

Briefly, the 6 X-ray structures were superposed and the ligand
interaction diagrams (Fig. 4) were created to extract common
interactions of high propensity (see section 2 of the supplementary
data for full 3D interactiondiagrams). According to this analysis, four
featureswere retrievedas commonbetween the scaffolds (as shown
in Table 2). These features were mapped on the bound ligands as
shown in Fig. 5. Before we give detailed analysis, we saw it is
necessary to mention the importance of prior explicit solvation-
based molecular dynamics in this case because many of the inter-
actionswerenot obvious in the bound conformer state. For example,
sigmaepi interaction ofMet414, hydrogenbondingwithGly449 and
generally the binding motifs of hydrophobic interactions were not
Fig. 4. Schematic diagrams of protein ligand interaction for each scaffold at the palm I site
pocket II while blue boxes show those responsible for hydrophobic interaction with pocket I.
acid which interacts hydrophobically with the ligand. (For interpretation of the references
obvious. Molecular dynamics was carried out previously [10] and
results focused on hydrogen bonding only so we replicated the
simulation and stressed the other binding motifs (e.g. hydrophobic)
in the interaction diagrams (see section 2 in the supplementary
data) and mentioned them in Table 2.

2.1.2. Analysis of the binding mode shared by the 6 pdbs
We took 2GIQ benzothiadiazine bound conformer (Fig. 4) as

a reference in this analysis and used the four shared features to
analyze the binding mode:

1-Hydrophobic feature 1 is represented by Ring A in 2GIQ bound
conformer. This feature is essential to bind in the hydrophobic
pocket I which consists of amino acid residues Phe415, Met414,
Asn411 and Gly410.

2-Hydrophobic feature 2 is represented by hydrophobic tail
attached to N1 of Ring B. This feature is essential for binding in the
hydrophobic pocket II which consists of amino acid residues
Pro197, Leu384 and Cys366 and Tyr415 .The latter showed specific
importance in pocket II where it forms piepi stacking as a common
hydrophobic interaction motif (2GC8 and 2JC0)(see section 2 in the
supplementary data for each bound conformer interactions).

3-Two nearby hydrogen bond acceptor features. These features
are essential for binding with polar amino acid residues
Tyr448,Gly449 and Ser556. The first feature is represented by
Oxygen atom of hydroxyl group of 4-hydroxyquinolin-2(1H)-one
which forms H-bond with Tyr448 directly and indirectly via water
bridge with Gly449. The second feature is represented by oxygen
atom of sulfonyl group which forms indirect H-bond with Ser556
via water bridge.

The other bound ligands were analyzed the same way and
summarized in Table 3 (see section 2 of the supplementary data to
visulaize the interactions mentioned).

One important result regarding this analysis is that 2GC8 bound
ligand forms hydrogen bond with Gln446 and piepi stacking with
Tyr415. These 2-amino acids are mutated in genotype 1a where
gluatamine is mutated to glutamic acid and tyrosine is mutated to
phenylalanine. This hydrogen bonding is absent in case of mutation
and this may be the reasonwhy the activity of palm I site inhibitors
. Red boxes show the features which are responsible for hydrophobic interaction with
Tyrosine448 forms hydrogen bond with all ligands. Met414 is another important amino
to color in this figure legend, the reader is referred to the web version of this article.)



Table 2
Common features of high propensity extracted using PLIF: 2 hydrophobic features and 2 hydrogen bond acceptors.

Feature Complementary site Corresponding amino acids Description Depiction

Hydrophobic feature 1 Pocket I Consists of residues Phe415, Met414, Asn411 and
Gly410, close to the surface of the enzyme.

A hydrophobic shallow and wide s
ub-pocket

Depicted by blue dotted
lines

Hydrophobic feature 2 Pocket II Consists of residues Pro197, Leu384 and Cys366 Deep and narrow hydrophobic
sub-pocket

Depicted by red dotted
lines

Hydrogen bond acceptor
feature 1

Polar amino acid
residue

Tyr448 Involved in polar interactions
with inhibitor

Depicted by purple circle

Hydrogen bond acceptor
feature 2

Polar amino acid
residue

Gly449 Involved in polar interactions
with inhibitor

Depicted by orange circle
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against genotype 1a is generally less than 1b [23]. This phenom-
enon can be extended to explain the decrease of the activity of
other scaffolds, for example benzothiadiazines. The above
mentioned hydrogen bond can be formed by the benzothiadiazines
in case the ligand is shifted slightly upwards away from the re-
ported bound conformer. This was proved by MD (molecular
dynamics) study which confirmed the feasibility of formation of
this hydrogen bond. As a result, this finding may aid in under-
standing the effect of mutation of Gln446 which decreases the
activity of the compounds acting on this allosteric site [23,24].

2.1.3. Custom feature generation
Based on the above analysis that indicates that there are two

hydrophobic features and two hydrogen bond acceptors in
common among the 6 inhibitors, we decided to generate a Hypo-
gen-based pharmacophore using these features. The main reason
beyond this was to be able to add different weights and tolerances
to the common features according to the activity of the inhibitors
and thus becoming an activity based query. Moreover, this enables
us to use the technology of Accelrys catalyst pharmacophore
functionalities like adding shape and excluded volume functional-
ities, screening using catalyst engine and finally integrates it with
gold docking engine which is supported in the Accelrys Discovery
studio environment. Some changes were needed however like the
need to modify the hydrogen bond acceptor feature. It was
customized such that it maps only oxygen type acceptors and
encompass only acceptor origin point (deleting both vector direc-
tion and projection point). The first criterion which is the mapping
oxygen type acceptors only was done to increase selectivity of the
pharmacophore where it has been shown through SAR analysis by
Tedesco et al. [25] that the amino group (NH2), as an acceptor,
showed a drastic drop in activity. The second criterion which is
decreasing the number of the mapping points and restricting it to
the originwas done to comply with Hypogenmodule as it was built
Fig. 5. Applying PLIF on 6 diverse scaffolds of Palm I site. The color-coded amino acids shown
these amino acids by the matching features (have the same color as the interacting amino
referred to the web version of this article.)
using 6 ligands onlywhich was not feasible withoutminimizing the
number of matching points in the feature used [19].

2.1.4. Hypogen
Using the information retrieved from the PLIF analysis, Hypogen

[19] was used to generate a pharmacophore using the custom-
made hydrogen bond acceptor and hydrophobic features while
allowing no conformations generation during the run. The co-
crystallized ligands were used in their bound conformation and
no conformation generation was needed. Hypogen was used as it
modifies weights and tolerances of the features such that they are
correlated with the activity trend.

Hypogen was selected as we were aiming here to study topo-
logically diverse inhibitors. It was not intended here to study
a congeneric series with same scaffold and minor change in
substituents (R-variation) which prefers methods like CoMFA and
CoMSIA.

Hypogen algorithm produces three cost values during genera-
tion of pharmacophore in order to assess its quality. The first cost
value is the fixed cost (also known as the ideal cost). It represents
the simplest model that fits the data perfectly. The null cost, also
known as no correlation cost, represents the highest cost of
a pharmacophore with no features. One should expect that signif-
icant pharmacophore should have large difference between these
two values. The total cost is calculated for each pharmacophore and
should be close to the fixed cost value.

These considerations should be taken into account if the
Hypogen model was constructed to estimate the activity. However,
in this study, it was used to be a part of hybrid structure-based
pharmacophore which aims at accurately placing the ligand in
the binding site and achieving a good ranking power. Specifically
Hypogen was selected to generate the pharmacophore instead of
HipHop(which doesn’t take activity into consideration) [19]
because it can achieve the purpose of accurately placing ligands
in the key are those amino acids interacting with the ligands. The ligands interact with
acids). (For interpretation of the references to color in this figure legend, the reader is



Table 3
Analysis of the 6 bound conformers found in the pdbs chosen to represent Palm I site. Analysis was carried out using features found of high propensity using PLIF analysis.

Scaffold Hydrophobic feature 1 Hydrophobic feature 2 Two nearby hydrogen bond acceptor features.

Acrylic acid
derivative (1YVF)

Ring A of 1YVF forms piesigma
interaction with Met414

Ring C of 1YVF O of the carbonyl directly attached to Ring
A H-bonds with Tyr448 while carboxylic
oxygen H-bonds with Gly449

Proline sulfonamide
derivative(2GC8)

Ring A (proline Ring) Ring B forms piepi interaction
with Tyr415

O of sulfonamide group H-bonds with Tyr448
while carboxylic oxygen H-bonds with Gly449
and Gln446

Acyl pyrrolidine
derivative (2JC0)

Isobutyl group attached to Ring
B of 2JC0 bound conformer

Ring C forms piepi interaction
with Tyr415

O of carbonyl group attached to Ring C H-bonds
with Tyr448 while carboxylic oxygen H-bonds
with Gly449

Anthranilic acid
derivative(2QE5)

Ring A of 2QE5 bound conformer Ring B of 2QE5 bound conformer Oxygen of carboxylic group H-bonds with
Tyr448

1,5-Benzodiazepine
derivative(3HKY)

Ring C and attached methyl group Hydrophobic tail attached to Ring D Sulfonyl oxygen forms H-bond with both
Gly448 and Tyr449 while Ring E oxygen
forms H-bond with Ser556 via water bridge.

A.H. Mahmoud et al. / European Journal of Medicinal Chemistry 57 (2012) 468e482 473
effectively. This can be explained as Hypogen was built on the
assumption that active molecules should map more features than
inactive and mapping should be perfect for most active ligands. In
another words, inactivity is attributed to the missing of important
feature or, most important in our case, improper orientation of the
feature in the space. The Hypogen model can serve this purpose by
properly placing the features in the space and assign different
weights and tolerances to them. Based on this fact, we selected the
best pharmacophore according to the pose accuracy. The best one
(we shall call it hypothesis 1 or shortly Hypo1) is shown in Table 4
where it was capable to minimize RMSD as much as possible and
was selected for further refinement (Fig. 6). It is worth noting that
the pharmacophore has 5 features and not 4 which means that
there is an extra feature assigned by Hypogen engine. This extra
feature maps to an additional hydrophobic feature found in the
most active inhibitor which is the 1,5 benzodiazpine found in 3HKY
complex.

The best hypothesis (Hypo1) was modified by changing feature
weights manually till reaching a satisfactory RMSD while keeping
the features tolerances as they are. The motive beyond the weights
selection was the binding pocket analysis. The 2 hydrophobic
features were given the largest values (both of themwere given 20)
since they act as an anchor for the ligands and represent the main
bulk of it. Tyr448 role in hydrogen bonding was shown to be more
prominent than Gly449 as it forms hydrogen bond directly with the
ligand and therefore was given a higher weight (was given aweight
of 10) while Gly449 mostly forms hydrogen bond via water bridge
(so was given a weight of 5).

Table 5 shows the new modified hypothesis (Hypo2) which
indicates a better pose accuracy as shown in Table 6.
Table 4
Hypogen unmodified hypothesis (Hypo1). First table shows 5 features of this
pharmacophore and their corresponding weights and tolerances. Second table
shows Hypogen different mappings for each bound conformer of the 6 X-ray crystal
structures. Fit represents fit value, Est. represents estimated activity and act repre-
sents actual activity. Third table shows the three cost values of the selected phar-
macophore: Null, fixed and total costs. Correlation value is also shown in the table.

Definition: Hydrophobic Hydrophobic Hydrophobic Or_1 Or_1

Weights: 1.86857 1.86857 1.86857 1.86857 2.73099
Tolerances: 1.75 1.30 1.45 1.30 1.45

Name Fit Cnf/Enan Mapping Est Act Err Uncrt

3HKY 7.84 1 þ[27 39 1 34 17] 11 10 þ1.1 3
2GIQ 7.15 1 þ[22 * 4 12 28] 54 50 þ1.1 3
1YVF 6.86 1 þ[28 23 * 4 17] 110 100 þ1.1 3
2JC0 6.34 1 þ[2 20 32 11 *] 360 300 þ1.2 3
2QE5 5.73 1 þ[* 21 8 * 3] 1400 1600 �1.1 3
2GC8 5.53 1 þ[8 * * 10 18] 2300 3100 �1.4 3

Null cost: 29.9068 Fixed cost: 50.5808 Total cost: 50.8555 Correl ¼ 0.998492
In our opinion, multiple-parameter optimization can be used to
adjust the features weights, tolerances and positions such that it
achieves best activity correlation and best pose accuracy at the
same time.

2.1.5. Contact-based pharmacophore generation
This technique was developed by Wolber and Langer as a good

technique for screening of new compounds instead of computa-
tionally expensive docking [20]. The technique was implemented
already in ligandscout software [26]. This algorithm extracts
information according to certain rules depending on nearby contact
residues. It was used here to refine Hypo2 by simply creating
excluded volume constraints based on the crystal of the largest
inhibitor present (3HKY). Thus, the pharmacophore created above
(Hypo2) was just clustered with the excluded volume. Shape
constraint was applied in addition to this pharmacophore using the
3HKY bound conformer shape since it was the biggest ligand while
decreasing tolerance from the default value 0.5 to 0.3 in order to
accommodate all the other ligands. The final form of the pharma-
cophore (Hypo3) is depicted in (Fig. 7).

The pharmacophore (Hypo3) was employed such that flexible
fitting is used and only one feature is allowed to miss. The best
mapping was set to the one with the highest fit value and not the
one with most features.

To rationalize these additional constraints (excluded volume
and shape constraint), we screened a library of highly diverse
ligands which is extracted from CAP database 2006 (chemicals
available for purchase). This library consists of 9607 diverse ligands.
The library was screened using Hypo3 with different features
configurations and the results were tabulated in Table 7.
Fig. 6. Hypogen initial unmodified pharmacophore(Hypo1). The cyan-colored features
are hydrophobic while the green-colored features represent customized H-bond
acceptor features (mainly map oxygen type acceptors). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)



Table 5
Different pharmacophore features of Hypogen and their corresponding weights
after modification (Hypo2).

Feature Weight

Hydrophobic feature A 20
Hydrophobic feature B 20
Hydrophobic feature E 1
H-bond acceptor feature C (with Tyr448) 10
H-bond acceptor feature D (with either Gly449 or Ser556) 5

Fig. 7. Structure-based 3D pharmacophore (Hypo3) as an alternative to docking. Gray
spheres represent excluded volumes, cyan spheres represent hydrophobic features,
and green spheres represent hydrogen bond acceptors of special type (restricted to
oxygen type acceptors only). Shape constraint is also shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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These results show the selectivity of the pharmacophores (the
lower the number of hits retrieved, the more selective the phar-
macophore). It is obvious that the common features shared among
the ligands of the 6 pdbs are four but these are not enough to attain
selectivity. Additionally, one can realize that each ligand has some
additional feature beside those four, especially in the most active
inhibitors. For example, as mentioned before, Hypogen assigned an
additional hydrophobic feature to the pharmacophore which is
found in the most active 1,5 benzodiazpine (3HKY). Another
example is the hydrogen bond acceptor feature found in benzo-
thiadiazines. It has been shown in the previous studies on this class
that there is an extra binding pocket (pocket III) [27]where one of
the strategies to increase both potency and the selectivity of this
class of inhibitors is achieved by substituting Ring D of the ben-
zothiadiazine with methansulfonamide which can form extra two
hydrogen bonds with both Asn291 and Asp316 (see section 3 of the
supplementary data for details).

Conclusively, the pharmacophore (Hypo3) was tested so far for
both pose accuracy and selectivity. Additionally, as we shall see the
pharmacophore has a very good enrichment capability and
powerful ability to separate actives from decoys. This was tested in
the validation section (see below) and proved to be of very good
ROC (AUC ¼ 0.884). The predictive power of the selected model
should be, however, considered with care because the number of
the ligands used to build the Hypogen model was less than 16 and
the difference between fixed and null cost is less than 40 [19]. This
was solved by following the pharmacophore with guided docking
engine supplied with a better correlating scoring function.

The success of this pharmacophore was based on selecting the
best of breed from different algorithms: (1) PLIF is considered
a method which can deal with many superposing complexes to
retrieve common features according to their propensity and
significance; (2) Hypogen can adjust weight, tolerance and position
of different features to correlate well with activity; (3) The weight
variation and setting the selection criteria to the best fit value
instead of number of features; (4) Hypothesis refinement tech-
niques using shape constraints and excluded volumes.

2.2. Guided docking

Hits found by the Hybrid structure-based pharmacophore
search described above were subjected to Knowledge-based
docking using GOLD [15].As mentioned before, using a structure-
Table 6
Pose accuracy of different inhibitors using the modified
hybrid pharmacophore (Hypo2).

Bound conformer RMSDa

2GC8 1.4
2GIQ 1.2
2JC0 1.3
1YVF 0.9
2QE5 1.1
3HKY 0.7

a RMSD ¼ Root Mean Square Distance.
based pharmacophore before docking has many advantages: (a) it
reduces chemical space; (b) it provides dockingwith good solutions
which have correct orientations and conformations, thus time
required for sampling is reduced and convergence is achieved
rapidly. Thus, guided docking was applied as a refinement tool for
initially good poses that provides a good binding prediction and at
the same time an assessment tool that rank the compounds
according to activity thus achieving an enhanced enrichment. We
didn’t suffice with the structure-based pharmacophore only as it
doesn’t take the actual interactions into consideration and thus
can’t refine pose inside binding site.

Guided docking and not normal docking was used in this
workflow although the hits were coming from the pharmacophore
and should be in good orientation. This is because of the of the
binding site nature which is wide enough to accommodate ligands
in different conformations which may not be suitable to illicit
activity. On the contrary, guided docking help to keep the good pose
in its place without altering it and restricts its function on the
energy refinement. Direct approach [14] of this docking was
employed using chemical information explicitly to actively guide
the orientation of the ligand during sampling. This was achieved
using a scoring function which correlates well with activity while
applying constraints which penalize divergence from proper
Table 7
The number of hits retrieved from CAP diverse using different configurations for the
Hypo3. The selectivity increases as the number of hits decreases.

Features used Number of compounds
retrieved from CAP diversea

5 Features(maximum omitted features ¼ 1) 2337
5 Features (maximum omitted features ¼ 1)

and excluded volume
2242

5 Features (maximum omitted features ¼ 1),
excluded volume and shape

1601

5 Features (maximum omitted features ¼ 0),
excluded volume and shape

431

a CAP diverse ¼ Diverse subset of chemical available for purchase.
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binding by adding a weighed penalizing energy term to the final
score. Thus, sampling of both ligand conformational and orienta-
tional space provides a balance between maintaining favorable
interactions with receptor without deviating from the appropriate
binding mode.

GOLD was chosen as it employs genetic optimization for these
multiple parameters at the same time.

Regarding the usage of structure-based pharmacophore before
docking despite the fact that docking employs pharmacophore
constraints, the docking uses soft constraints which penalize
deviation only and will not filter those ligands which are violating
the main binding pattern. This was observed during docking opti-
mization runs where it was observed that some ligands can achieve
high docking score while not forming many essential interactions.
The wide nature of binding site allows many possible interactions
(other than essential ones) which can increase the score to the limit
it overcomes the penalty and becomes in the top 10% of ranked
database. In addition, it was observed that the number of hits
missed by docking increases in case of not applying structure-based
pharmacophore before it (see the validation study below).
Furthermore, the most important reason is that the pharmaco-
phore reduces chemical space rapidly unlike docking which applies
pharmacophore while taking interactions into consideration in
what is known by multiple parameter optimizations which can
takes much more time.

Thus, ligand placement was guided by using:

2.2.1. Scoring function
In our studies regarding Benzothiadiazines (unpublished work);

it was found that Moldock score correlates well with activity
yielding a q2 of 0.65. The scoring function, however, was not suit-
able to guide ligand placement alone but can be used to predict the
activity of the ligandwhen it is accurately placed in the binding site.
Thus, the Moldock score applicability was extended in this study to
evaluate ligands of diverse scaffolds acting on palm I site. Molegro
[16] was used evaluate the bound conformers of the 6 pdbs to find
the correlation (Table 8). R2 was found to be 0.745 which is
significant enough to use this docking score for guiding sampling.

Moldock score is a variant of PLP [16]. Since we decided to use
GOLD so we tried to use an equivalent scoring function in the
software that is based on PLP sowe selected CHEMPLP [28] to guide
ligand placement. It was checked for its correlation with activity
and was found to be true (see validation study below). In general, it
was found that Glide score [29], CHEMPLP and Moldock scores [16]
are suitable for evaluation of ligands at this site when they are
accurately placed (using constraints).

2.2.2. Constraints
Two types of gold constraints were applied, (a) interactions

constraints, which allow to define parts of the protein which must
form an interaction with the ligand, and (ii) spatial constraints,
which allow to define regions in space where some kind of ligand
atom must be present. Constraints were applied on the shared
interactions pattern only as follows: (1) Regional constraints
Table 8
Moldock scoring of the bound conformers of different PDBs after refinement. The
activity of each complex is depicted in minus log units.

Bound conformer Activity in minus log units Moldock score

2GC8 �3.49136 �93
2GIQ �1.69897 �109
2JC0 �2.47712 �122
1YVF �2 �124
2QE5 �3.21484 �82
3HKY �1 �170
(hydrophobic spatial constraints) were applied both on pocket I and
pocket II; (2) Interaction constraints were applied on Tyr448 and
Gly449 using NH of the backbone as H-bond donor feature. Docking
was applied using the 3HKY crystal structure while keeping
essential water molecules and removing those which clash with
other ligands. This was done by aligning all the crystal structures
and analyzing bound ligands interactions. In general, it was found
that there were some water molecules which clash with Ring D of
benzothiadiazine which has no complementary substructures in
the other bound conformers. These water molecules are displace-
able (not fixed) as proved by experimental data.

Docking was validated by re docking study which confirms
capability of GOLD in retrieval of the bound pose. In order to check
the reliability of the docking protocol, we performed docking
studies on the 6 NS5b polymerase complexes. The docking results
were evaluated by the comparison of the predicted docking poses
of the ligands and the experimental ones. RMSD between positions
of heavy atoms of the ligand in the experimental and calculated
structures are taken as a measure of reliability. The best docked
conformation was chosen by selecting the conformer with best
Chemscore. Random conformer of each bound ligand was docked
to prevent bias. Results are shown in Table 9.

In general, the RMSD is very good even when using random
conformations because the ligand is guided by pharmacophore
which imposes bias in ligand placement. In addition, CHEMPLP
proved to be a good evaluator for activity having r2 of 0.6 which is
sufficient for ranking. To confirm that, spearman rank coefficient
was measured and was found to be 0.82.

2.3. Virtual decoys and zinc decoys

Virtual decoy [21] dataset was generated in order to evaluate the
ability of the pharmacophore model, guided docking and combined
workflow to separate active ligands from the decoys. The decoys
normally are selected from the zinc database [30e32] such that they
are physically similar yet chemically dissimilar to the active ligands.
Here in this study, we used in addition the virtual decoys as a more
accurate test because they have high TPSA (topological polar surface
area) similarity to the active ligand (additional criteria not found in
zinc decoys). The virtual DUD of this dataset was created using the
strategy adopted byWallach [21]. A virtual decoy set was generated
using Tripos MUSE [33]. This software deploys multiple-parameter
optimization technique to generate new ligands. It can generate set
of decoys for an active ligand. This method is highly practical and
reproducible. It is based on Knime [34] workflow and Evolutionary
algorithm which is applied in Tripos Muse [33]. Muse is a de-novo
building process which is dependent on Evolutionary Algorithm
Inventor (EAI) which was developed by Pearlman group [35]. It is
used to generate new chemical entities form a seed set or previous
generations. It can be used in conjunctionwith a single or composite
external scoring function. Evolutionary algorithm evolves improved
populations of structures by performing modifications on the
Evaluation of GOLD by docking of the bound ligands in the 6 PDBs (using random
conformation) in 3HKY. RMSD is given with respect to the reference and GOLD PLP
score is given.

Bound conformer Activity Gold.PLPa RMSDb

2GC8 �3.49136 �46.0287 1.2
2GIQ �1.69897 �48.3316 0.43
2JC0 �2.47712 �59.9144 0.34
1YVF �2 �60.7761 0.6
2QE5 �3.21484 �47.5208 1.4
3HKY �1 �80.856 0.34

a GOLD.PLP ¼ Gold piecewise linear potential scoring function.
b RMSD ¼ Root Mean Square Distance.



Fig. 8. Workflow for generating virtual decoys. Ligands are generated using evolutionary algorithm in Tripos muse such that they comply with specified MWT, number of hydrogen
bond acceptors, number of hydrogen bond donors, number of rotatable bonds and TPSA. The compliance is achieved by applying demerits to any deviation. In order to avoid
chemical similarity to the reference, a filter (N) was added which keeps molecules with Tanimoto coefficient less than 0.9.

Table 10
Comparison of AUC of ROC analysis using pharmacophore alone (Hypo3), guided
docking alone and the combined workflow. This was done using either virtual or
zinc decoys.

Type of decoys Pharmacophore
alone (Hypo3)

Docking with
restraints alone

Combined
workflow

Virtual decoys 0.884 0.810 0.947
Zinc decoys 0.851 0.916 0.922
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members of the previous generations (mutations) and swapping
successful substructures among different molecules (cross-overs).
In this process, molecules evolve via (survival of the fittest) so as to
optimize the scoring function. The main advantages of using this
protocol described here are: (1) Using the integrated environment
of Knime which has many chemistry components from different
vendors. In this article, for instance, we used Tripos chemistry
nodes; (2) Multiple-parameter optimization uses EA where penal-
izing the outranged values can be done by Gaussian demerits; (3)
Dissimilarity is evaluated in this workflow using the desired
fingerprints. Original MACCS can be easily deployed using MOE
(Molecular operating environment software) chemistry nodes
where Quasar module has fingerprint MACCS node; (4) A fast
algorithm which converges quickly. The workflow is depicted in
Fig. 8 where it is explained in details the experimental part.

The 6 ligands were used to generate virtual compounds such
that they comply with following criteria (i) molecular weight of
�40 Da; (ii) same number of rotational bonds, HBDs (hydrogen
bond donors), and HBAs (hydrogen bond acceptors); (iii) cLogP of
�1.0 and (iv) TPSA �15. The decoys were generated such that each
ligand has 36 decoys [31].In addition, zinc decoys (1000 ligands)
were used as standard decoys for other screening methods
comparison (retrieved from Sybyl folder). Both the virtual decoys
and the zinc decoys are supplied as structural data files in the
supplementary data.

2.4. Validation

In order to assess workflow performance in screening, it was
carried out using the following scenarios: (1) Using GOLD with
constraints alone; (2) Using structure-based pharmacophore alone;
(3) Using combined workflow by docking hits retrieved by the
pharmacophore.

Assessment was done using ROC analysis. ROC curve is a plot of
true positives (sensitivity) against false positives (1-selectivity)
where selectivity is the rate of false negatives. Therefore, ROC
analysis describes sensitivity (Se) as a function of (1� Sp) where Sp
is the specificity [12,13,32].

Se ¼ ðnumber of selected activesÞ=ðtotal number of activesÞ
¼ TP=ðTPþ FNÞ

Sp ¼ðnumber of discarded inactivesÞ
=ðtotal number of inactivesÞ ¼ TN=ðTNþ FPÞ

TP is the number of true positives, FN is the false negatives, TN is
the true negatives, while FP is the false positives.

Virtual screening protocol is said to have a good discrimination
power when most of the active molecules are scored higher than
inactive molecules. Actually, an overlap always takes place where
some of the actives are scored lower than the decoys. This overlap
will lead to the prediction of false positives and false negatives
[12,13]. Ratio between actives and decoys will vary according to the
score taken as a threshold. That is whywe use ROC analysis because
it considers all Se and Sp pairs for each score threshold. The
protocol is very simple. The ROC curve sets each active score as
a threshold, counting the number of decoys within the cutoff and
calculating corresponding pair of Se and Sp.

An ideal ROC curve continues as a horizontal straight line to the
upper-right corner where all actives and all decoys are retrieved,



Fig. 9. ROC analysis carried out using virtual decoys. (A) Comparison of ROC curve using pharmacophore (Hypo3) alone (fit value) and combined workflow (Gold.PLP Fitness) using
the virtual decoy as dataset. (B) ROC curve using GOLD with constraints only.
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which corresponds to Se ¼ 1 and 1 � Sp ¼ 0. In contrast to that, the
ROC curve for a set of actives and decoys with randomly distributed
scores tends toward the Se ¼ 1 � Sp line asymptotically with
increasing number of actives and decoys.

Area under the ROC curve (AUC)is normally evaluated [13]. In an
optimal ROC curve an AUC value of 1 is obtained; however, random
distributions cause an AUC value of 0.5. Virtual screening that
performs better than a random discrimination of actives and
decoys retrieve an AUC value between 0.5 and 1, whereas an AUC
value lower than 0.5 represents the unfavorable case of a virtual
screening method that has a higher probability to assign the best
scores to decoys than to actives [12,13,32].

ROC analysis was carried out using Accelrys Discovery Studio 3
and results are shown in Table 10. ROC curve of the refined phar-
macophore (hypo3) using both zinc and virtual decoys shows that
the pharmacophore has a good discrimination power. The AUC
against virtual decoys was 0.884 and that against zinc was
0.851.This is shown in Fig. 9A and Fig. 10A respectively and repre-
sented by fit value. The combined workflow shows an excellent
ROC curve with AUC of 0.947 using virtual decoys and 0.922 using
zinc (Figs. 9and 10A respectively and represented by GOLD.
PLP.Fitness). This was considered excellent for us as the model was
built using inhibitors of highly variable activities and was not
restricted on highly active ones. Thus, its capability to separate
decoys even frommoderately active ligands with that superior ROC
Fig. 10. ROC analysis carried out using Zinc decoys. (A) Comparison of ROC curve using ph
using the virtual decoy as dataset. (B) ROC curve using GOLD with constraints only. Schem
was a very good result. The superiority of the workflow ROC relies
on the fact that it doesn’t allow missing of ideal solutions before
maximum no of iterations of GA are exceeded. This is done by
supplying the GA engine with initial good solutions. The ideality of
these solutions is guaranteed by utilizing the structure-based
pharmacophore which should succeed in obtaining hits in a good
binding pose. The GA function in that case will be restricted on
refining the hit according to a correlated fit value.

It was observed that GOLD with constrains performs well when
used alone (AUC of 0.916) in case when it was screened against zinc
database (Fig. 10B) so further analysis of the results was carried out
to assess the performance of using it alone without structure-based
pharmacophore.

Using Hypo3 to screen Zinc decoys, 429 hits were found. They
were all successfully docked after that using GOLD. On the other
hand, docking zinc decoys using gold alone retrieved only 391
ligands. This means that GOLD failed to dock some ligands which it
successfully did using pharmacophore as a pre-filter. The common
ligands which were retrieved by gold alone and the combined
workflow were 229 ligands. This means that GOLD missed to dock
200 ligands, which it has already succeeded to do using the
workflow. This proposes that GOLD may fail to dock ligands when
applying pharmacophore constraints if the ligands were not in
a good conformation. This may lead to the loss of ligands which
may show good binding. The problem can be solved by increasing
armacophore (Hypo3) alone (fit value) and the combined workflow (Gold.PLP Fitness)
es captions.



Scheme 1. Reagents and conditions: (a) o-fluorobenzyl bromide,NaH,DMF, 24 h; (b) (i) Diethyl malonate,NaH,DMA, 1 h; (ii) DMA, 120 �C, 17 h; (c) (i)150 �C, 15 min; (ii)KOH,reflux,
3 h; (iii) HCl, pH ¼ 4.

Table 11
Biological evaluation of III and IX using both EC50 and CC50.

Compound CC50a EC50b

Modified hit (III) >50 mg/ml 23.7 mg/ml
Optimized hit (IX) >50 mg/ml 2.6 mg/ml

a CC50 ¼ 50% cytotoxicity concentration.
b EC50 ¼ 50% effective concentration.

A.H. Mahmoud et al. / European Journal of Medicinal Chemistry 57 (2012) 468e482478
number of iterations of the GA engine but this will increase the
time, taking into consideration that we selected the max default
value for iteration number which should be slow.

2.5. Virtual screening

Asinex GOLD [36]was screened using the combined workflow.
The top 10% of the ranked database was kept. Ligands retrieved
were not purchased but assessed chemically using Sylvia score [37].
Ligands with score below 5 (Sylvia score is up to 10 where low
scores represent good synthetic feasibility) were further selected
and retro synthetically dissected to assess availability of the start-
ing materials. Based on the visual inspection, synthetic feasibility,
and non-reported activity, (BAS 00525932) was selected. The IUPAC
name of this compound is: 2-(1-Butyl-4-hydroxy-2-oxo-1,2-
dihydro-quinolin-3-yl)-1H-quinazolin-4-one. One thing which is
Scheme 2. Reagents and conditions : (a) Thionyl chloride, CH3OH,reflux; (b)Methansulfony
(d) i-Thionyl chloride,ii-NH4OH; (e)Fe/NH4Cl,CH3OH, H20; (f) i-150 �C, 15 min; ii-KOH,reflu
worth to mention is the presence of the privileged substructure of
substituted quinolinone in this hit as it is found in many inhibitors
of benzothiadiazine class. This encouraged us to further assess it
biologically. Additionally, the ligand found by virtual screening may
support the latest discovery of quinoline derivatives lacking
sulfonamide moiety at Ring C [38].

2.6. Synthesis and biological evaluation

The hit found via virtual screening of Asinex database was sub-
jected to modification to decrease number of steps required for its
synthesis. We preferred N-arylation of the quinolinone to that of N-
alkylation. This is because of the synthetic feasibility as will be
shown. Regarding the N-alkyl derivative, ethyl esters of 1-alkyl-2-
oxo-4 hydroxyquinoline-3-carboxylic acids are synthesized via
multistep reaction as reported by Ukraintes et al. [39]. First, ethyl
ester of anthranilic acid is alkylated by alkyl halide. Second, N-alkyl
ethyl anthranilatewas acylatedusingethoxymalonyl chloride. Third,
the anilide is treated with aqueous KOH. Fourth, potassium salt is
treatedwith acid. N-aryl derivatives, however, canbeprepared using
readily available diethyl malonate (compared to the expensive
lachrymatory ethyl malonyl chloride) and isatioic anhydride in two
steps reaction (see supplementary data section 5 for details). The
final compound (III) can be prepared readily by fusion of Ethyl 1-(2-
fluorobenzyl)-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-
l chloride, pyridine; (c) i-Lithium hydroxide, THF, CH3OH, H20, 65 �C, overnight; ii-HCl;
x,3h; iii-HCl, pH ¼ 4.
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carboxylate (II)with anthranilamide [40].Thegeneral scheme for the
compound preparation is depicted in Scheme 1 where (II) was
synthesized from alkylated isatoic anhydride (I) after fusion with
diethyl malonate.

Biological evaluation of the compound was performed on
genotype 1b using replicon system [41] and the result is shown in
Table 11. It was used as a lead compound for further optimization.
One suggestionwhich was carried out to optimize this ligand is the
substitution of 5-position with polar group like meth-
ansulfonamide which is known to form H-bond network in Palm I
pocket III of benzothiadiazines (Asn291 and Asp318) (see section 3
in supplementary data). This was done according to Scheme 2. It
depends on the fusion of 2-amino-5-(methylsulfonamido) benza-
mide (VIII) with Ethyl1-(2-fluorobenzyl)-4-hydroxy-2-oxo-1,2-
dihydroquinoline-3-carboxylate (II). The first was prepared
according to the literature method [42]starting with 5-amino-2-
nitrobenzoic acid. The synthesis of this starting material (VIII)
was based on protecting 5-amino-2-nitrobenzoic acid carboxylic
acid by esterification to yield methyl 5-amino-2-nitrobenzoate (IV).
The ester was alkylated by methansulfonyl chloride to give methyl
5-(methylsulfonamido)-2-nitrobenzoate (V) which was further
deprotected to give 5-(methylsulfonamido)-2-nitrobenzoic acid
(VI). The carboxylic acid is then converted to amide 5-(methyl-
sulfonamido)-2-nitrobenzamide (VII) and reduced to give 2-
amino-5-(methylsulfonamido)benzamide (VIII). The final
compound (IX) potency increased 10 folds where it showed an EC50
of 2.6 uM/mL.

3. Conclusion

In this study, we presented a highly selective workflow of
structure-based pharmacophore and guided docking that can be
used for virtual screening of HCV NS5b polymerase inhibitors of
palm I allosteric site.

Regarding the pharmacophore, we presented a novel protocol to
generate a highly refined pharmacophore using a combination of
different techniques: PLIF, Hypogen, shape constraints and contact-
based pharmacophore. The generated pharmacophore was able to
define the essential features required for selective activity which
are the 2 hydrogen bond acceptors and the three hydrophobic
features. It was used as a pre-filter to knowledge-based docking
providing it with good solutions as a starting point. In addition, it
proved to have very good capability in screening as an alternative to
docking. The encompassed PLIF analysis which was based on the
refined complexes explained the effect of mutation of Tyr415 and
Gln446 on activity of inhibitors of this site.

Regarding docking, PLP proved to be a good scoring function that
correlates well with activity of the Palm I site. However, this can be
achieved when the pose evaluated is an accurate one. In order to
guarantee this accuracy of the ligand placement, the docking engine
was guided by pharmacophore during sampling process.

Allover, the workflow of structure-based pharmacophore fol-
lowed by knowledge-based docking (guided by both a correlating
scoring function and pharmacophore constraints) proved to be
superior in many aspects: the ROC analysis was excellent, the
number of hits missed was decreased, the convergence was very
quick and the accuracy of the predicted poses was very high.

The model was validated both statistically and experimentally.
Statistically, virtual decoys were employed and proved to be very
effective in ROC analysis study. Virtual decoys were generated using
a novel knime workflow based on Tripos muse which was given in
details. Experimentally, the model was used for screening of the
Asinex GOLD database, followed by synthesis of a modified hit and
its biological evaluation. Further knowledge-based optimization of
the hit based yielded a more potent inhibitor.
4. Experimental data

4.1. PLIF

6 Co-crystallized HCV NS5b Palm I inhibitors were loaded and
prepared in MOE (Molecular operating environment software). The
complexes were superposed using the Biopolymer protein panel.
The ligX algorithmwas applied to refine interactions and 2D ligand
interaction diagrams were computed for the 6 complexes. A data-
base was created to include the complexes and PLIF was used to
compute the interactions and generate fingerprints. After that,
a pharmacophore was constructed using query generation panel
according to the propensity of the features.

4.2. Custom features

Accelrys Discovery Studio 3 was used to build up a catalyst type
query. Acceptor feature was customized to have oxygen atom as the
only type of acceptors. In addition, vector and project were deleted.
Map atom tool was used so as tomap oxygen atom. The feature was
added to catalyst dictionary in order to be used for screening.

4.3. Hypogen

Accelrys Discovery Studio 3 3D-QSAR pharmacophore genera-
tion tool was used. Only two features were allowed: H-bond
acceptor (custom one) and hydrophobic feature. The variable
weight and tolerance options were set to true.

4.4. Contact-based pharmacophore

Accelrys Discovery Studio 3 was used to generate a receptor-
ligand pharmacophore. 3HKY was used as a crystal structure.
Number of pharmacophores was set to 10 such that minimum
features were 4 and maximum features were 6. The excluded
volume was extracted from the pharmacophore and clustered with
the Hypogen pharmacophore after adjusting its position in the
binding site. This was carried out as following: the pharmacophore
was mapped to 3HKY bound ligand in the binding site; similar
pharmacophore (will call it template pharmacophore) was con-
structed manually in the binding site using the ligand as
a template; pharmacophore comparison was performed using
template pharmacophore as a reference and Hypogen pharmaco-
phore as input. Finally, shape constraint was added using shape
query and minimum similarity tolerance was set to 0.3.

4.5. Gold

Gold 5withinAccelrysDiscovery Studio 3was deployed. Docking
was in 3HKYafter removing clashingwaters. CHEMPLPwas selected
as a scoring function. GA settings were adjusted to 100,000 opera-
tions. 2 regional hydrophobic features were used as constraints. 2
hydrogen bond acceptor features constraints were applied.

4.6. Muse

Tripos Muse 2 was used to generate 36 ligands as virtual decoy
set for each active ligand. The workflow in Fig. 8 is described. The
workflow starts by Node-A “MolstoScore” which represents those
molecules generated by Tripos muse according to EA. They are read
by SLN reader. They are designated by moltoscore to indicate that
they will be scored according to the specified criteria. Standardi-
zation of structures by filling valances and normalizing aromaticity
is done by Node-B. This is done by adding new column having
standardized molecules; therefore non-standard molecules are



A.H. Mahmoud et al. / European Journal of Medicinal Chemistry 57 (2012) 468e482480
filtered using Node-C. The standardized molecules are evaluated by
calculating their molecular weight, number of hydrogen bond
acceptors and donors for the generated ligands using Node D,
number of rotatable bonds which is a substructure feature using
Node E and finally AlogP, total polar surface area and number of
Lipinski violations using ADME/TOX properties calculation in node
F. The last parameter (number of Lipinski violations) is calculated in
order to control ligands which are de-novo generated where those
violating the Lipinski rules can be filtered using Lipinski filter in
node G. Regarding the reference ligand (active ligand for which we
want to create decoys), its properties should be entered usingMuse
GUI where one can specify whether to allow decoys to strictly
comply with the ranges mentioned before (e.g. MWT of �40 Da) or
expand ranges if no solution can be provided. Controlling the
generated ligands to meet criteria of the decoys of the reference
ligand can be achieved using this workflow. The chemical dissim-
ilarity of the decoys (which can guarantee that they are not highly
similar to the actual reference ligand) is achieved by filtering
compounds having Tanimoto coefficients of less than 0.9. This is
carried out by standardizing the reference ligand just like the
generated ligands were standardized in Nodes (H, I, J). After that,
Nodes (KeL) are used to calculate unity fingerprint for both refer-
ence and the generated ligands where Tanimoto similarity can be
calculated between them using Node M and allowing only ligands
with Tanimoto coefficients less than 0.9 to be kept using node N.
Regarding the scoring of the generated ligands, it depends on the
input we provide in muse which is divided into a range and toler-
ance of each property to be controlled. This is enough to calculate
the score for each molecule using Gaussian normalizer for each
number and summing up all normalized scores at the end. For
instance, if we set the number of hydrogen bond donors to have
range 3e4 with tolerance 1 and weight 0.5, the number will be
utilized in the scoring function as follows: If the generated mole-
cule has number of hydrogen bond donors between 3 and 4, the
score will be zero (zero is the ideal score here) On the other hand, if
the number of hydrogen bond donors is less than 3 or greater than
4,score will be assigned according to the Gaussian bell curve which
has spread (S) of 1 (specified by tolerance) and asymptotically
approach value �1 (which is the lowest value that can be given for
this criterion)(see supplementary data section 4.1 for the curve).
This can also be done using Tripos score with avoidance in Tripos
muse and this is given in details in section 4.2 supplementary data.

4.7. ROC analysis

ROC analysis was carried out in Discovery Studio. Scores were
set to fit value in pharmacophore search while GOLD. PLP fitness
was used in docking search and in theworkflow. Pose grouping was
adjusted to name in docking analysis. Actives were given a control
value of 1. Because pharmacophore always filters the ligands, the
number of total records was used to avoid false results.

4.8. Virtual screening

Asinex GOLD was converted into catalyst database using fast
conformation method. Database was screened using ligand phar-
macophore mapping tool and not search 3d database because the
first allows adjusting number of missing features. The missing
features were allowed to be one while choosing the best hit as the
one which fits most features.

4.9. Synthesis

General Methods. Starting materials were either commercially
available or prepared as reported previously in the literature, unless
otherwise noted. Solvents and reagents were used without further
purification. Reactions were monitored by TLC, performed on silica
gel glass plates containing F-254 indicator (Merck). Visualization on
TLC was achieved by UV. Proton and carbon NMR spectra were
recorded on a Bruker ARX-300. Chemical shifts (ä) are reported in
ppm downfield from internal TMS standard or from solvent refer-
ences. Mass spectra were recorded on API-SCIEX 2000. HRMS were
recorded using an Agilent MSD-TOF (G1969A) connected to an
Agilent 1100 HPLC system. Melting points were determined on
a Stuart melting point apparatus (Stuart Scientific, Redhill, UK) and
are uncorrected.

4.9.1. 1-(2-Fluoro-benzyl)-1H-benzo[d] [1,3]oxazine-2,4-dione (I)
It was prepared according to the literature [43]. To a solution of

isatoic anhydride (16.3 g, 10 mmol) in 200 ml of DMF, sodium
hydride (4.6 g, 110 mmol, 57% in mineral oil, washed with hexane)
was slowly added and the mixture was stirred for 1 h at room
temperature. 2-fluorobenzyl bromide (20.79 g, 110 mmol) was
added and the reaction was allowed to stir for 18 h at room
temperature. About two thirds of the solvent were then evaporated
in vacuo and the residue poured into 250 mL of ice/water. A
precipitate formed which was filtered off, washed with water and
dried. It was recrystallized fromDCM. Yield: 60%; mp 151e154 �C as
reported [43].

4.9.2. Ethyl 1-(2-fluorobenzyl)-4-hydroxy-2-oxo-1,2-dihydroquino-
line -3- carboxylate (II)

Neat diethyl malonate (1.2 mL, 8.0 mmol) was added slowly to
a suspension of sodium hydride (60 percent in mineral oil, 352 mg,
8.8 mmol) in dimethylacetamide. The mixture was stirred at room
temperature until the evolution of hydrogen gas ceased, then the
mixture was heated to 90 �C for 30 min and cooled to room
temperature. A solution of compound 1-(2-fluoro-benzyl)-1H-
benzo[d] [1,3]oxazine-2,4-dione (8.8 mmol) in dimethylacetamide
was added slowly and heated overnight at 110 �C. The mixture was
cooled to room temperature, poured into ice water, and acidified by
cold 10 percent HCl. The solids formed were filtered, washed
several times by water, and dried at room temperature under
vacuum. Yield: 80%; 1H NMR (300 MHz, DMSO) d¼ 8.11 (dd, J¼ 7.3,
1.4, 1H), 7.70e7.09 (m, 6H), 5.43 (s, 2H), 4.39 (q, J ¼ 7.5, 2H), 1.31 (t,
J ¼ 7, 3H). HRMS-FAB m/z [Mþ] calcd for C19H16FNO4: 341.1063;
found: 341.1060.

4.9.3. 2-[1-(2-Fluorobenzyl)-4-hydroxy-2-oxo-1,2-dihydroquinolin-
3-yl] quinazolin-4(1H)-one (III)

Synthesis was carried out using general procedure by
Ukrainets [40].

The mixture of 0.01 mol of the ethyl 1-(2-fluorobenzyl)-4-
hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate and 1.36 g
(0.01mol) of anthranilamide is maintained at 150 �C for 10e15min.
The mixture is cooled prior to the addition of 20 ml of alcohol and
the careful trituration. The residue of the 2-carbamylanilide is
filtered off, washed with alcohol, and dried. It is recrystallized
from DMF.

2-Carbamylanilide (0.01 mol) was mixed with 30 ml of the 10%
aqueous solution of KOH and boiled using a reflux condenser for
2.5e3 h. The mixture is cooled and acidified with HC1 to the pH 4.
The residue of the quinazolone (I), which was separated out, is
filtered off, washed with water, dried, and recrystallized from
DMF.Yield:90%.1H NMR (300 MHz, d6 DMSO) d ¼ 8.13 (dd, 7.6, 1.6,
2H), 7.64e7.08 (m, 10H), 5.45 (s, 2H). 13C NMR (75 MHz, d6 DMSO)
d ¼ 165.34, 164.1, 163.12, 159.76, 158.22, 150.88, 138.28, 136.43,
133.50, 131.68, 129.46, 126.94e125.92 (m), 124.84, 123.19, 118.24,
117.21, 115.86, 115.52, 113.52, 104.48, 47.67. HRMS-FAB m/z [Mþ]
calcd for C24H16FN3O3: 413.1176; found: 413.1171.
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4.9.4. 2-Amino-5-(methylsulfonamido) benzamide (VIII)
It was synthesized according to Chin et al. [42].

4.9.5. N-(2-(1-(2-fluorobenzyl)-4-hydroxy-2-oxo-1,2-
dihydroquinolin-3-yl)-4-oxo-1,4-dihydroquinazolin-6-yl)
methansulfonamide (IX)

Synthesis was carried out using the general procedure applied
by Ukrainets [40] just as the previous compound. Yield: 45%,
HRMS-FABm/z [Mþ] calcd for C25H19FN4O5S: 506.1060, found: 506,
1054. 1H NMR (300 MHz, DMSO-d6) d ¼ 8.11 (dd, J ¼ 7.4, 1.6, 1H),
7.70e7.57 (m, 2H), 7.56e7.44 (m, 2H), 7.38 (m, 2H), 7.23 (m, 1H),
7.15e6.99 (m, 3H), 6.44 (s, 1H), 5.77 (s, 1H), 5.31 (s, 1H). 13C NMR
(75 MHz, DMSO-d6) d ¼ 165.43, 163.81, 163.02, 159.69, 158.25,
150.76, 140.48, 136.45, 134.65, 131.69, 129.41, 126.94e126.40 (m),
124.83, 123.17, 119.45, 118.35, 117.27, 115.86, 115.52, 115.14, 113.54,
104.47, 47.67, 42.90.

4.10. Biology

One day before addition of test compounds, human hepatoma
cells (Huh5.2) containing the hepatitis C virus genotype 1b I389luc-
ubi-neo/NS3-30/5.1 replicon sub-cultured in Dulbecco’s modified
eagle’s medium [DMEM (Cat. N�41965039) supplemented with 10%
fetal calf serum (FCS), 1% non-essential amino acids (11140035), 1%
penicillin/streptomycin (15140148) and 2% Geneticin (10131027);
Invitrogen]. Cell lines were grown for 3e4 days in 75 cm2 tissue
culture flasks (Techno Plastic Products), were harvested and seeded
in assay medium (DMEM,10% FCS,1% non-essential amino acids, 1%
penicillin/streptomycin) at a density of 6500 cells/well (100ml/well)
in 96-well tissue culture microtiter plates (Falcon, Beckton Dick-
inson for evaluation of anti-metabolic effect and CulturPlate, Perkin
Elmer for evaluation of antiviral effect). The microtiter plates were
incubated overnight (37 �C, 5% CO2, 95e99% relative humidity),
yielding a non-confluent cell monolayer. The evaluation of the anti-
metabolic as well as the antiviral effect of each compound is per-
formed in parallel. Four-step, 1-to-5 test compound dilution series
are prepared. Following assay setup, the microtiter plates are
incubated for 72 h (37 �C, 5% CO2, 95e99% relative humidity).

4.10.1. Assay protocols

(i) Luciferase assay

For the evaluation of antiviral effects, Viral RNA replication was
determined using Renilla luciferase assays (the reporter gene
luciferase from the firefly (Photinus pyralis) and the coding
sequence for ubiquitin were inserted upstream of the neo gene by
using standard recombinant DNA technologies). Assay medium is
aspirated and the cell monolayers are washed with PBS. The wash
buffer is aspirated, 25 ml of Glo Lysis Buffer (Cat. N�. E2661, Prom-
ega) is added after which lysis is allowed to proceed for 5 min at
room temperature. Subsequently, 50 ml of Luciferase Assay System
(Cat. N�. E1501, Promega) is added and the luciferase luminescence
signal is quantified immediately (1000 ms integration time/well,
Safire2, Tecan). Relative luminescence units are converted to
percentage of untreated controls.

ii) Viability assay

For the evaluation of anti-metabolic effects, the assay medium is
aspirated, replaced with 75 ml of a 5% MTS (Promega) solution in
phenol red-free medium and incubated for 1.5 h (37 �C, 5% CO2,
95e99% relative humidity). Absorbance is measured at a wave-
length of 498 nm (Safire2, Tecan) and optical densities (OD values)
are converted to percentage of untreated controls.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejmech.2012.04.016.
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