272 Communications synthesis

A New Synthetic Route to 4-Alkyl-2*H*-1,4-thiazim-3-ones from 2-Methylthiazole

Masaru Hojo*, Ryōichi Masuda, Shinjiro Kōsaka, Kōji Nagase Department of Industrial Chemistry, Faculty of Engineering, Kobe University, 657, Kobe, Japan

Although 5-methyl^{1,2} or 5-pyridyl² derivatives of 4 have been synthesized by the reaction of N-alkylthioacetamides with chloroacetone or with α -bromoacetylpyridines, respectively, the parent compounds 4 are not accessible in this way.

In connection with some studies in this laboratory, we have found that 4-alkyl-2*H*-1,4-thiazin-3-ones **4** can be prepared easily starting from 2-methylthiazole (1).

Table. Syntheses of 4-Alkyl-2*H*-1,4-thiazin-3-ones 4

Prod- uct	Yield ^a [%]	b.p./torr	Molecular formula ^b	I.R. (film) v _{CO} [cm ¹]	¹H-N.M.R. (CDCl₃) δ [ppm]
4a	84 (75)	81°/6	C ₅ H ₇ NSO (129.2)	1650	6.26 (d, 1H, $J = 6.9$ Hz); 5.61 (d, 1H. $J = 6.9$ Hz); 3.31 (s, 2H); 3.13 (s, 3 H)
4b	100 (60)	93°/7	C ₆ H ₉ NSO (143.2)	1658	6.30 (d, 1 H, <i>J</i> = 7.2 Hz); 5.66 (d, 1 H. <i>J</i> = 7.2 Hz); 3.58 (q, 2 H, <i>J</i> = 7.6 Hz) 3.28 (s, 2 H); 1.19 (t, 3 H, <i>J</i> = 7.6 Hz)
4c	85 (47)	115°/7°	C ₇ H ₁₁ NSO (157.2)	1662	6.36 (d, 1 H, <i>J</i> = 7.7 Hz); 5.66 (d, 1 H <i>J</i> = 7.7 Hz); 4.92 (d, 1 H); 3.28 (s, 2 H) 1.17 (d, 6 H, <i>J</i> = 7.1 Hz)
4d	88 (52)	140°/7°	C ₁₁ H ₁₁ NSO (205.3)	1659	7.26 (s, 5H); 6.26 (d, 1H, <i>J</i> = 7.2 Hz) 5.63 (d, 1H, <i>J</i> = 7.2 Hz); 4.74 (s, 2H) 3.35 (s, 2H)

^a Yield based on 3; value in brackets is yield based on 1.

The key step for this synthesis is a novel skeletal rearrangement of 2-methylthiazole, which proceeds cleanly and the crude products did not show any detectable amounts of other materials as determined by ¹H-N.M.R. spectrometry. We now wish to communicate this new synthetic method for the compounds 4. Conditions for the preparation of 4a-d are mild and simple, and overall yields are 47-75%. The results are summarized in the Table.

1,2-Dimethylthiazolium Iodide (2a, R = CH₃):

Methyl iodide (182 g. 1.28 mol) is added to a solution of 2-methyl-thiazole (1; 46 g. 0.464 mol) in methanol (100 ml) and the mixture is stirred for 18 h at reflux temperature. After cooling to the

room temperature, some ether is added to complete precipitation, then filtration, successive washing with ethanol and ether, and drying in vacuo give the colorless crystalline product; yield: 99.5 g (89 %); m.p. 83-84°.

 C_5H_8JNS calc.
 C 24.91
 H 3.34
 J 52.64
 N 5.81

 (241.1)
 found
 25.11
 3.43
 52.41
 5.90

 1H -N.M.R. (CF₃COOH): δ =8.18-7.77 (m, 2H); 4.23 (s, 3H); 3.05 ppm (s, 3 H).

1-Methyl-2-iodomethylthiazolium Iodide (3a, R=CH₃):

1,2-Dimethylthiazolium iodide (2a; 7g, 29.0 mmol) is suspended in dichloromethane (120 ml) and cooled to 0° in an ice/water bath. With constant stirring, iodine (8.84 g, 34.8 mmol) is added to the suspension and a clear solution is obtained. On adding triethylamine (3.55 g, 34.8 mmol) dropwise to the solution, 1-methyl-2-iodomethylthiazolium iodide precipitates as a brownish yellow powder, which, after filtration and repeated washing with acetone, gives the crude product. Recrystallization from ethanol gives pale yellow needles; yield: 10.7 g (100%); m.p. 115-116° (dec).

C₅H₇J₂NS calc. C 16.36 H 1.92 H 69.16 N 3.82 (367.0) found 16.55 2.18 69.01 3.76 1 H-N.M.R. (CF₃COOH): δ =8.07 (s, 2 H); 5.02 (s, 2 H); 4.17 ppm

4-Methyl-2*H*-1,4-thiazin-3-one (4 a, $R = CH_3$):

A methanolic solution (40 ml) of potassium hydroxide (1.30 g. 23 mmol) is added to a suspension of 1-methyl-2-iodomethylthiazolium iodide (3a; 4.03 g, 11 mmol) in methanol (20 ml) and the mixture is stirred for 30 min at room temperature. After the solvent is removed in vacuo, some water is added to the residue and the whole is extracted with dichloromethane. The crude product (1.19 g, 84 %), a dark brown oil and essentially pure (by ¹H-N.M.R.), is distilled in vacuo to give pure material; yield: 0.92 g (65%); b.p. 81°/6 torr.

In place of potassium hydroxide in methanol, aqueous solutions of amines (for example, aramonia, *n*-butylamine, or diethylamine) can also be used.

This work was supported by a Grant-in-Aid (No. 311709), Ministry of Education, Japan.

Received: October 17, 1978

^b All products give satisfactory microanalyses: (C ± 0.2 , H ± 0.22 , N ± 0.12 , S ± 0.3).

^c Oven temperature.

 C_5H_7NSO calc. C 46.49 H 5.46 N 10.84 S 24.82 (129.2) found 46.62 5.68 10.96 24.52 M.S.: m/e = 129 (M $^{\pm}$).

G. V. Rao, K. Szabo, D. W. Grisley, Jr., Symthesis 1972, 136.
 G. Destevens, A. Halmandaris, L. Dorfman, J. Am. Chem. Soc. 80, 5198 (1958).