
Reynolds : Some New Substituted Glucosides. 223

62. Some New Substituted Glucosides. By (Miss) Thelma M. Reynolds.

2-p-Toluenesulphonyl  $\beta$ -methylglucoside, 3:4:6-triacetyl  $\beta$ -benzylglucoside (II), 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -benzylglucoside (III), and 2-p-toluenesulphonyl  $\beta$ -benzylglucoside (IV) have been prepared, the first by the regulated hydrolysis (cf. Helferich and Klein, Annalen, 1927, **455**, 178) of 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -methylglucoside (Reynolds, J., 1931, 2626) and the remainder from 1:2-anhydro-3:4:6-triacetyl glucose (I) (Brigl, Z. physiol. Chem., 1922, **122**, 245; see also Hickinbottom, J., 1928, 3140) as shown below:



The reaction between 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -methylglucoside (the most accessible of the glucosides described) and dimethylamine has also been examined, although it was realised that a complex mixture of substances might result (cf. Freudenberg and Hess, *Annalen*, 1926, 448, 121; Ohle and Lichtenstein, *Ber.*, 1930, 63, 2905). The process was carried out in methyl-alcoholic solution at 100° and a crystalline compound having the composition and properties of a  $\beta$ -methylglycosidodimethylammonium p-toluenesulphonate (V) was isolated. This substance yielded after hydrolysis an osazone (VI), which was separated,



by fractional crystallisation, from phenylhydrazine p-toluenesulphonate and another, as yet unidentified, compound (X), both of which were precipitated with it. The direction of the mutarotation of the osazone indicated that it was not a pentosazone (Levene and La Forge, *J. Biol. Chem.*, 1915, **20**, 429), the tetrosazones are optically inactive, and the nitrogen content was much greater than that of a hexosazone. The osazone was apparently, therefore, a dimethylamino-hexosephenylosazone (VI). The compound (X), which was obtained in only very small quantity, contained nitrogen and had the appearance and solubility of a phenylhydrazone or phenylhydrazide, but it markedly depressed the melting point of formaldehydephenylhydrazone.

It appears from this evidence that the dimethylamino-group of the  $\beta$ -methylglycosidodimethylammonium p-toluenesulphonate is not in the 2-position and that the action of dimethylamine on 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -methylglucoside may be compared with that of ammonia on methylglucoside 2-chlorohydrin (Fischer, Bergmann, and Schotte, Ber., 1920, 53, 540), which yields a 3-amino-methylglycoside (Levene and Meyer, J. Biol. Chem., 1923, 55, 221; Freudenberg, Burkhard, and Braun, Ber., 1926, 59, 714). The p-toluenesulphonyl group may be removed from 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -methylglucoside under conditions which do not affect 3-p-toluenesulphonyldiacetone glucose (Freudenberg and Ivers, Ber., 1922, 55, 929).

The method of isolation of 2-p-toluenesulphonyl 3:4:6-triacetyl  $\alpha$ -glucosidyl chloride (Reynolds, *loc. cit.*) was modified in later preparations, and a substance having the composition and properties (cf. Meyer and Jacobson, "Lehrbuch der Organischen Chemie," 1920 ed., II, iii, 798; Fischer and Raske, *Ber.*, 1910, **43**, 1750) of a 2-p-toluenesulphonyl 3:4:6-triacetylglucosidopyridinium p-toluenesulphonate was isolated on one occasion in 1.5% yield from the mother-liquor.

## EXPERIMENTAL.

All solvents were pure and dry; all evaporations were carried out under diminished pressure. 2-p-Toluenesulphonyl 3:4:6-Triacetyl α-Glucosidyl Chloride.—A solution of p-toluenesulphonyl chloride (13.5 g.) and pyridine (17.5 c.c.) in CHCl<sub>3</sub> (20 c.c.) was added to a suspension of 3:4:6-triacetyl β-glucosidyl chloride (22 g.) in the same solvent (90 c.c.). After 48 hr. the

## Reynolds : Some New Substituted Glucosides.

solvent was removed as far as possible at  $35-40^{\circ}$ , and the residue cooled and poured into icecold MeOH (80 c.c.; 75%) containing AcOH (10 c.c.); 2-*p*-toluenesulphonyl 3:4:6-triacetyl  $\alpha$ -glucosidyl chloride crystallised and was collected after 1 hr. (20.4 g.; m. p. 120-121°).

2-p-Toluenesulphonyl 3: 4:6-Triacetyl Glucosidopyridinium p-Toluenesulphonate.—3:4:6-Triacetyl  $\beta$ -glucosidyl chloride (52 g.) was treated in the manner described above. The MeOH-AcOH filtrate obtained after the removal of 2-p-toluenesulphonyl 3:4:6-triacetyl  $\alpha$ -glucosidyl chloride (42 g.) was diluted with H<sub>2</sub>O and extracted thrice with CHCl<sub>2</sub>. The combined extracts were washed with dil. HCl (5%), Na<sub>2</sub>CO<sub>3</sub> aq. (3%), and H<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The brown residue, which crystallised slowly (several days), was drained on tile; from the solid (m. p. about 118°), boiling CCl<sub>4</sub> extracted 2-p-toluenesulphonyl 3:4:6-triacetyl  $\alpha$ -glucosidyl chloride (3.5 g.). The final residue (approx. 1.5 g.) was neutral to litmus, contained S, did not reduce Fehling's solution even after boiling with H<sub>2</sub>O or hydrolysis with dil. acid, and resinified immediately when boiled with 20% NaOH aq., an alkaline vapour having an odour resembling that of NMe<sub>3</sub> being evolved. The substance yielded a ppt. of phenylhydrazine p-toluenesulphonate (see below) when shaken with cold aq. phenylhydrazine acetate; it was sol. in hot H<sub>2</sub>O, EtOH, and glycerol, almost insol. in these solvents when cold, and insol. in all other solvents, including pyridine. After four recrystns. from H<sub>2</sub>O (charcoal) it was obtained in colourless shining plates, m. p. 218-219° (after darkening; decomp. 222°) (Found: C, 53-7; H, 5·2; N, 1·9; S, 9·2. C<sub>31</sub>H<sub>35</sub>O<sub>13</sub>NS<sub>2</sub> requires C, 53·7; H, 5·1; N, 2·0; S, 9·2%). In glycerol containing 10% by vol. of  $H_2O$ ,  $[\alpha]_D^{14^*} + 29.0^\circ$  (c = 0.424). There was no mutarotation.

2-p-Toluenesulphonyl  $\beta$ -Methylglucoside.—Solutions of 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -methylglucoside (3.6 g.) in CHCl<sub>3</sub> (12.5 c.c.) and of NaOMe (9 c.c. of a solution of Na, 0.5 g., in MeOH, 25 c.c.) were mixed, and kept for 1.5 hr. at  $-15^{\circ}$  and then washed with dil. AcOH (4%); the aq. layer was extracted twice with CHCl<sub>3</sub>. The combined CHCl<sub>3</sub> solutions were washed (H<sub>2</sub>O), dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated, and the residual syrup treated with Et<sub>2</sub>O-MeOH (2:1); the white cryst. solid obtained (1.2 g.), after two recrystns. from EtOAc, had m. p. 116—117°,  $[\alpha]_{25}^{25} - 44.4^{\circ}$  in H<sub>2</sub>O (c = 2.006) and  $[\alpha]_{27}^{25} - 40.3^{\circ}$  in CHCl<sub>3</sub> (c = 1.363) (Found: C, 48.4; H, 5.7. C<sub>14</sub>H<sub>20</sub>O<sub>8</sub>S requires C, 48.3; H, 5.7%). The glucoside was insol. in Et<sub>2</sub>O and light petroleum but readily sol. in warm EtOAc, H<sub>2</sub>O, and the usual org. solvents.

3:4:6-Triacetyl  $\beta$ -Benzylglucoside (II).—A solution of 1:2-anhydro-3:4:6-triacetyl glucose (7.5 g.) in CH<sub>2</sub>Ph-OH (30 c.c.) was heated (boiling water-bath) for 12 hr., the alcohol then removed (2 mm. press.; bath temp. 100°), and the residue treated with aq. MeOH (approx. 70%). The sticky product crystallised from MeOH (80%) (charcoal) in colourless needles (4.5 g.), m. p. 113—114°. A specimen recryst. twice from MeOH (100%) had m. p. 115—116°,  $[\alpha]_{24}^{25} - 27.5°$  in CHCl<sub>3</sub> (c = 1.334) and  $[\alpha]_{24}^{25} - 15°$  in EtOH (c = 1.334) [Found : C, 57.3; H, 6.2; CO·CH<sub>3</sub>, 32.5. C<sub>13</sub>H<sub>15</sub>O<sub>6</sub>(CO·CH<sub>3</sub>)<sub>3</sub> requires C, 57.6; H, 6.1; CO·CH<sub>3</sub>, 32.6%]. The glucoside was almost insol. in Et<sub>2</sub>O, light petroleum, and cold H<sub>2</sub>O, sol. in C<sub>6</sub>H<sub>6</sub>, EtOH, and hot H<sub>2</sub>O, and very readily sol. in CHCl<sub>3</sub>, acetone, and EtOAc. Acetylation with Ac<sub>2</sub>O and pyridine yielded tetra-acetyl  $\beta$ -benzylglucoside, m. p. 95—97°, identified by comparison with a specimen prepared from acetobromoglucose (Fischer and Helferich, Annalen, 1911, 383, 68).

2-p-Toluenesulphonyl 3:4:6-Triacetyl  $\beta$ -Benzylglucoside (III).—(1) Solutions of 3:4:6-triacetyl  $\beta$ -benzylglucoside (2·2 g.) in CHCl<sub>3</sub> (7 c.c.) and of *p*-toluenesulphonyl chloride (1·1 g.) and pyridine (1·5 c.c.) in CHCl<sub>3</sub> (4 c.c.) were mixed and, after 48 hr., washed successively with dil. H<sub>2</sub>SO<sub>4</sub> (5%), KHCO<sub>3</sub> aq. (3%), and H<sub>2</sub>O, and dried over Na<sub>2</sub>SO<sub>4</sub>; the CHCl<sub>3</sub> was removed, and the residue treated with Et<sub>2</sub>O and light petroleum, yielding a white solid which crystallised from MeOH in fine needles (1·5 g.), m. p. 104°.

(2) 3:4:6-Triacetyl  $\beta$ -benzylglucoside (1 g.) was warmed with p-toluenesulphonyl chloride (0.46 g.) and pyridine (0.25 c.c.). The jelly-like product slowly solidified and, after 20 hr., was ground with H<sub>2</sub>O, dried, and recrystallised as above. Yield, 0.8 g.

A specimen recryst. twice from MeOH had m. p.  $105-106^{\circ}$  and  $[\alpha]_{2}^{24^{\circ}} - 7.0$  in CHCl<sub>3</sub> (c = 1.564) (Found : C, 56.7; H, 5.7.  $C_{26}H_{30}O_{11}S$  requires C, 56.7; H, 5.5%). The substance was practically insol. in light petroleum and  $H_{2}O$ , difficultly sol. in Et<sub>2</sub>O and cold EtOH, and readily sol. in hot EtOH and other org. solvents.

2-p-Toluenesulphonyl  $\beta$ -Benzylglucoside (IV).—Solutions of 2-p-toluenesulphonyl 3:4:6-triacetyl  $\beta$ -benzylglucoside (1·2 g.) in CHCl<sub>3</sub> (3 c.c.) and of NaOMe (3 c.c. of a solution of Na, 0·5 g., in MeOH, 25 c.c.) were mixed at  $-15^{\circ}$  and, after 1·5 hr., washed with a little dil. AcOH (3%) and with H<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated : the residue (0·8 g.) crystallised; m. p. 125—127°. After two recrystns. from EtOH the glucoside formed colourless platelets, m. p. 127—128°,  $[\alpha]_{22}^{24'} - 34\cdot3^{\circ}$  in CHCl<sub>3</sub> ( $c = 1\cdot252$ ) (Found : C, 56·4; H, 5·7. C<sub>20</sub>H<sub>24</sub>O<sub>8</sub>S

requires C, 56.6; H, 5.7%). It was insol. in light petroleum, slightly sol. in  $C_6H_6$ ,  $Et_2O$ ,  $H_2O$ , and cold EtOH, and readily sol. in hot EtOH and other solvents.

Methylglycosidodimethylammonium p-Toluenesulphonate (V).—2-p-Toluenesulphonyl 3:4:6triacetyl  $\beta$ -methylglucoside (8 g.), suspended in MeOH (20 c.c.) containing NHMe<sub>2</sub> (approx. 10 g.), was heated at 100° for 18 hr.; the solvent was then evaporated, and the acetodimethylamide removed (2 mm. press.; bath temp. up to 90°). The residual brown syrup was dissolved in MeOH, and the solution partly decolorised with charcoal and evaporated to a syrup, which crystallised after some weeks in the first prepn. but after 2-3 days when seeded. The semicryst. product was drained on tile, and the colourless needles obtained were recrystallised from acetone. Yield,  $2 \cdot 2$  g.; m. p.  $80 - 81^{\circ}$ . The substance reduced Fehling's solution after hydrolysis with dil. HCl and was readily sol. in all solvents excepting Et<sub>2</sub>O, light petroleum, C<sub>6</sub>H<sub>6</sub>, and cold acetone. Successive recrystns. from acetone gave material, m. p. 78-81°, 70-72° (after drying in vac.), 73-77° (after 3 hr. in vac.), 68-70° (after 24 hr. in vac.), and 68-69° after softening at 67° (after 48 hr. in vac.). The last value was const. for specimens which had been dried in vac. over P<sub>2</sub>O<sub>5</sub>, but the m. p.'s of air-dried specimens or of specimens which were left in the air after drying in vac. were higher. The specimen analysed was dried as above and had m. p. 68—69° and  $[\alpha]_D^{18°} - 105 \cdot 7°$  in MeOH (c = 1.372) (Found : C, 46.5; H, 7.0; N, 3.4; H<sub>2</sub>O, 4.5. C<sub>16</sub>H<sub>27</sub>O<sub>8</sub>NS, H<sub>2</sub>O requires C, 46.7; H, 7.1; N, 3.4; H<sub>2</sub>O, 4.4%). The last mol. of  $H_2O$  was removed at 130°.

Dimethylaminohexosephenylosazone (VI).—(1) Methylglycosidodimethylammonium p-toluenesulphonate (0.44 g.) was dissolved in 0.5N-HCl (10 c.c.) and heated (boiling water-bath) for 4 hr. The initial rotation was  $\alpha_{\rm D} - 4.12^{\circ}$  (l = 0.5); after 3 hr. the rotation was  $\alpha_{\rm D} - 1.44^{\circ}$ , and after 4 hr.  $\alpha_{\rm D} - 1.38^{\circ}$ .

(2) A solution of methylglycosidodimethylammonium p-toluenesulphonate (0.85 g.) in 0.5N-HCl (15 c.c.) was heated (boiling water-bath) for 3 hr., cooled, and mixed with NaOAc (0.8 g.) and NHPh·NH<sub>2</sub> (0.25 c.c.). The ppt. of phenylhydrazine p-toluenesulphonate (m. p. 168-170°. Found: N, 10.1. Calc. for C<sub>13</sub>H<sub>16</sub>O<sub>3</sub>N<sub>2</sub>S: N, 10.0%) was removed after 0.5 hr., and NHPh·NH<sub>2</sub> (2 c.c.) and AcOH (1.5 c.c.) were added to the filtrate, which was heated (boiling water-bath) for 1 hr. A light orange ppt. formed, and further material separated when the solution was cooled and diluted with H<sub>2</sub>O (3 vols.). The product was dissolved in hot EtOH; addition of hot H<sub>2</sub>O (2 vols.) caused separation of tar, so a little charcoal was added before filtration. An orange solid (A) [m. p. about 147° (indef.)] separated from the filtrate. After addition of  $H_2O$  (3 vols.), yellow needles formed, m. p. 115–117° (B). The material on the filter was extracted with hot EtOH, and H<sub>2</sub>O (1 vol.) was added to the solution, giving slightly coloured plates, m. p. 161° (C). (A) was fractionated as above, giving plates, m. p. 162° (D), a yellow solid, m. p. 145° (approx.) (E), and another yellow solid, m. p. 117-119° (F). (C) and (D) were combined and recrystallised from EtOH and  $H_2O(1:1)$ , yielding almost colourless plates (X), m. p. 163-164° (decomp. 205°) (Found: N, 22·4. C<sub>7</sub>H<sub>8</sub>N<sub>2</sub> requires N, 23·3%); mixed m. p. with formaldehydephenylhydrazone, 145-150°. (B) and (F) were combined and dissolved in EtOH; hot H<sub>2</sub>O (2 vols.) was added, producing a slight cloudiness, which was removed by filtration; the light orange-yellow needles which crystallised from the filtrate contracted at 120°, melted at 130–132°, and decomposed at 188° (Found : N, 18.5.  $C_{20}H_{27}O_3N_5$  requires N, 18.2%). 3.88 Mg. were dissolved in pyridine-EtOH (2:3) (0.65 c.c.). This solution gave  $\alpha_{\rm D}$  (initial)  $-0.09^{\circ} \longrightarrow \alpha_{\rm D}$  (final)  $+0.02^{\circ}$  (l = 0.5), corresponding to  $\alpha_{\rm D} - 0.31^{\circ} \longrightarrow \alpha_{\rm D}$ + 0.07° for 0.1 g. dissolved in 5 c.c. of pyridine–EtOH. A specimen of glucosephenylosazone which had  $\alpha_p = 0.23^\circ \longrightarrow \alpha_p = 0.11^\circ$  for the concn. used above, corresponding to  $\alpha_p = 0.79^\circ$  $\rightarrow \alpha_{\rm D} - 0.32^{\circ}$  for 0.1 g. in 5 c.c. of solvent, had  $\alpha_{\rm D} - 0.69^{\circ} \rightarrow \alpha_{\rm D} - 0.31^{\circ}$  for 0.1 g. in 5 c.c. (Levene and La Forge, J. Biol. Chem., 1915, 20, 429, give  $\alpha_D - 0.62^\circ \longrightarrow \alpha_D - 0.35^\circ$ ).

The author gratefully acknowledges her indebtedness to Professor J. C. Earl for his interest in the work.

UNIVERSITY OF SYDNEY.

[Received, November 24th, 1932.]