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Abstract—The first boron-containing 2',3’-cyclic phosphate-modified analogue, uridine 2’,3'-cyclic boranophosphate (2’,3'-cyclic-
UMPB), was synthesized. 5'-O-Protected uridine was cyclophosphorylated by diphenyl H-phosphonate to yield uridine 2’,3’-cyclic
H-phosphonate, which upon silylation followed by boronation and subsequent acid treatment gave 2’,3’-cyclic-UMPB in high yield.
The two diastereomers of 2',3'-cyclic-UMPB were separated by HPLC. An alternative method for synthesis of uridine 2',3’-cyclic
phosphorothioate (2/,3'-cyclic-UMPS) via H-phosphonate was also described. © 2001 Elsevier Science Ltd. All rights reserved.

2/,3’-Cyclic phosphate esters of nucleosides are inter-
mediates in the ribonuclease-catalyzed hydrolysis of
ribonucleic acid (RNA), and are themselves substrates
for ribonucleases.! Nucleoside 2',3’-cyclic phosphoro-
thioate analogues have been exploited to study the
mechanism of ribonuclease catalysis.> Comparison of
the configuration of reactants and products where the
phosphate reaction center has been replaced by a phos-
phorothioate gives important information on the stereo-
chemical course of ribonuclease-catalyzed reactions.>>
For example, pancreatic ribonuclease (RNase A) exhibits
a preference for the Rp (or endo) isomers of uridine
2/,3’-cyclic phosphorothioate (2/,3'-cyclic-UMPS) and
cytidine 2/,3’-cyclic phosphorothioate (2',3'-cyclic-
CMPS).? These phosphorothioate analogues have been
used to investigate the stereoselectivity of ribozyme
cleavage reactions.® Likewise, nucleoside 2’,3'-cyclic
boranophosphate, in which a non-bridging oxygen of
the cyclic phosphate is replaced by an isoelectronic
borane group (BH3),”- should provide another useful tool
for investigating the mechanisms of the ribonuclease-
catalyzed reactions.

The first synthesis of a 2',3'-cyclic phosphate-modified
analogue, 2',3'-cyclic-UMPS, was described by Eckstein
in 1968.° The Rp (or endo) isomer was isolated by frac-
tional crystallization of the triethylammonium salt® and
used as reference to determine the absolute configurations
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of other chiral phosphorothioate analogues.> This
method involved thiophosphorylation of 5'-O-acetyl*®
or 5-O-DMT!? protected nucleoside by triimidazolyl-1-
phosphine-sulfide followed by water and ammonia
treatment (9-44% yields). Another approach utilized
2-chloro-4H-1,3,2-benzodioxa-phosphorin-4-one to phos-
phorylate the 5'-O-acetyl ribonucleoside.!! Sulfurization
of the phosphorylated product followed by ammonia
treatment gave 2',3’-cyclic-NMPS in 32-45% yields. In
another method, cyclization of nucleoside 3'(2)-phos-
phorothioate derivatives in the presence of N,N'-dicyclo-
hexyl-carbodiimide (DCC) in pyridine or N-cyclohexyl-
N'-(3-trimethyl-ammonium-1-propyl)-carbodiimide led
to the formation of 2',3'-cyclic-NMPS in 86-96%
yields.!?

Here, we propose a new approach for synthesis of 2’,3'-
cyclic-UMPS, which involves sulfurization of the inter-
mediate uridine 2/,3'-cyclic H-phosphonate 4 (Scheme 1).
Intermediate 4 was obtained by condensation (cyclization)
of a mixture of uridine 3’- and 2'-H-phosphonates'? (2
and 3) by pivaloyl chloride. The condensation (cycliza-
tion) step was completed within 15 min, as suggested by
3P NMR (CDCl3) spectra of the reaction mixture in
which two signals at 6 7.2 and 6.6 (for compounds 2 and
3) were shifted to 6 21.0 and 19.0. Without purification,
the reaction mixture containing intermediate 4 was oXi-
dized with elemental sulfur in carbon disulfide to yield
5'-0-DMT-uridine 2/,3'-cyclic phosphorothioate 5. The
formation of intermediate 5 was confirmed by the
appearance of the two single peaks at 6 80.0 and 78.7 in
3Ip NMR (CDCls) spectra of the reaction mixture. The

0960-894X/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0960-894X(00)00700-9



616 K. He, B. R. Shaw | Bioorg. Med. Chem. Lett. 11 (2001) 615617

DMTO U DMTO DMTO
Pyrldlne

P H 2 = —H 3 /,\
! H
OH OH 0
4
DMTO 0 U HO 0 U
Sg/ CS, 3% DCA/DCM
B — ——eee -
O\P/O O\p/O
o’ Ng- O// Ng-
5 6

Scheme 1.

final deprotection of the 5-O-DMT group with 3%
dichloroacetic acid in dichloromethane gave the desired
2/ 3’-cyclic-UMPS 6 (40% overall, 2/3—6).'* The Sp
(exo)- and Rp (endo)-diastereomers of 2',3'-cyclic-
UMPS 6 were separated by HPLC (Fig. 1A).1°

Synthesis of the uridine 2’,3'-cyclic boranophosphate
analogue 9 (Scheme 2) was not as straightforward as
that of the phosphorothioate analogue 2',3'-cyclic-
UMPS 6. The boronation requires the intermediate
formation of a cyclic phosphite triester 7 by silylation of
H-phosphonate 4 using N,O-bis(trimethylsilyl)acetamide
(BSA).!~18 However, the silylation of intermediate 4
(prepared by cyclization of compound 2 and 3, Scheme
1) did not give the phosphite triester intermediate 7,
presumably because intermediate 7 could react with the
excess pivaloyl chloride and water formed in the con-
densation step (Scheme 1, 2/3—4). Attempts to purify
intermediate 4 using an extraction work up (ethyl acetate or
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Scheme 2.

dichloromethane with water) failed because of its
instability and reactivity. Therefore, we developed an
alternative way to prepare intermediate 4 as shown in
Scheme 2.

We found that the reaction of diphenyl H-phosphonate
with 5'-O-DMT-uridine 1 for 20 min gave the desired
intermediate 4 (*'P NMR (CDCl;) § 27.8 and 23.9).
Without purification, silylation of intermediate 4 with
BSA (5min) yielded the phosphite triester 7, as indi-
cated by two signals at & 140.1 and 136.6 in 3'P NMR
(CDCl3) spectra of the reaction mixture. Subsequent
boronation of the phosphite triester 7 and simultaneous
removal of the trimethylsilyl group were achieved by
addition of borane-N,N-diisopropylethyl-amine com-
plex.'* 18 After 4 h, two broad peaks centered at § 127.6
and 123.9 appeared in 3'P NMR (CDCls) spectra of the
reaction mixture, confirming the formation of 5'-O-
DMT-uridine 2',3’-cyclic boranophosphate 8. After
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Figure 1. Isocratic separation of the two diastereomers of (A) 2',3'-cyclic-UMPS 6 and (B) 2',3'-cyclic-UMPB 9 by HPLC. Elution was carried out
on a Waters Delta Pak C18 column (15, 300 A, 7.8x300 mm) with 6% (for 6) or 5% (for 9) methanol in 100 mM triethylammonium acetate

(TEAA, pH 6.8) at a flow rate of 3.0 mL/min.
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deprotection of the 5-O-DMT group by acid treatment
and ion-exchange chromatography purification, the
desired 2/,3'-cyclic UMPB 9 was obtained in good yield
(70% overall, 1—9)." The two diastereomers of 2',3'-
cyclic UMPB 9, arbitrarily named as isomer I and II,
were separated by HPLC (Fig. 1B).?°

During the preparation of this manuscript, a new effi-
cient method utilizing the same intermediate 2’,3'-cyclic
H-phosphonate 4 to synthesize 2’,3'-cyclic-NMPS 6 has
been reported.?! The reaction of 5-O-DMT protected
nucleosides with diphenyl H-phosphonate in pyridine led
to the formation of intermediate 4, which upon sulfuriza-
tion and the subsequent removal of 5-DMT, gave 2',3'-
cyclic-NMPS in 78-93% yields.?!

In summary, the first 2’,3'-cyclic boranophosphate ana-
logue, 2/,3'-cyclic-UMPB, has been synthesized by an
H-phosphonate approach, which involves the silylation
of a 2/,3'-cyclic H-phosphonate intermediate followed
by boronation.!®~!8 The availability of the two diastereo-
mers of 2',3'-cyclic-UMPB should be useful for deter-
mining the absolute configurations of other borano-
phosphate analogues.?>~2® The potential of cyclic
boranophosphates as substrates or inhibitors for ribo-
nucleases should also provide valuable information
about the mechanisms of such ribonuclease-catalyzed
reactions.
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