This article was downloaded by: [University of Saskatchewan Library] On: 21 February 2013, At: 21:58 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/lsyc20

Indium Tris(dodecyl Sulfonate) [In(DS)₃]-Catalyzed Formation of 3-(9H-Xanthen-9-yl)-1H-indole Derivatives in Water at Room Temperature

Shun-Yi Wang ^a & Shun-Jun Ji ^a

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering of Suzhou (Soochow) University, Suzhou, China Version of record first published: 28 Jan 2008.

To cite this article: Shun-Yi Wang & Shun-Jun Ji (2008): Indium Tris(dodecyl Sulfonate) [In(DS)₃]-Catalyzed Formation of 3-(9H-Xanthen-9-yl)-1H-indole Derivatives in Water at Room Temperature, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 38:3, 465-472

To link to this article: http://dx.doi.org/10.1080/00397910701578172

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthetic Communications[®], 38: 465–472, 2008 Copyright © Taylor & Francis Group, LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910701578172

Indium Tris(dodecyl Sulfonate) [In(DS)₃]–Catalyzed Formation of 3-(9*H*-Xanthen-9-yl)-1*H*-indole Derivatives in Water at Room Temperature

Shun-Yi Wang and Shun-Jun Ji

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering of Suzhou (Soochow) University, Suzhou, China

Abstract: $In(DS)_3$ catalyzes formation of 9H-xanthen-9-ol with indoles at room temperature in water to afford a class of 3-(9H-xanthen-9-yl)-1H-indole derivatives in high yields.

Keywords: indium tris(dodecyl sulfonate), indole, water, xanthen-9-ol

INTRODUCTION

In previous articles, the reactions of xanthen-9-ol with nucleophilic reagents such as thiol,^[1] imide,^[2] indoles,^[3,4] and thiophene^[5] promoted by acids or $BF_3 \cdot Et_2O^{[4]}$ have been reported. However, many of these of these procedures involved strong acidic conditions, low yields of products, and complex handling. For this reason, superior catalyst systems, which are cheap, easy to access, and in stable air, are desirable.

Recently, organic reactions that can be carried out in aqueous media have become one of the most challenging areas in organic synthesis because of the environmental benefits and favorable effects of water on chemical transformations.^[6] In particular, reactions mediated by indium in aqueous media are of

Address correspondence to Shun-Jun Ji, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, Renai Road, Suzhou, Jiangsu, China 215123. E-mail: chemjsj@suda.edu.cn

Received August 21, 2006

Figure 1. The structure of $In(Ds)_3$

Scheme 1.

current interest for their considerable applications in organic synthesis.^[7,8] Lewis acid–surfactant–combined catalysts (LASC) have been easily prepared, developed, and applied to Lewis acid–catalyzed organic reactions in water. These catalysts have been successfully used for various typical carbon–carbon bond-forming reactions such as aldol, allylation, Mannich-type reactions, and Michael addition in water.^[9] The LASCs consist of Lewis acidic metal cations such as indium(III) and amphiphilic anions such as dodecyl sulfonate and form stable colloidal dispersions in the presence of organic substrates in water. As a continuation of our work on indoles,^[10] here we report that indium tris(dodecyl sulfonate) [In(DS)₃] (Fig. 1), a new LASC, effectively catalyzes the reactions of xanthen-9-ol **1** with indoles **2** in water to give 3-(9*H*-xanthen-9-yl)-1*H*-indole derivatives in high yields (Scheme 1).

RESULTS AND DISCUSSION

First, the reaction of 9*H*-xanthen-9-ol **1** with indole **2a** was tested as a model reaction in the presence of various catalysts in water (Table 1). When $In(DS)_3$

Eastern	Catalanta	$\mathbf{T}_{\mathbf{r}}^{\mathbf{r}}$	Viald (07)	
Entry	Catalysis	Time (n)	Y leid (%)	
1	In(DS) ₃	1	96	
2	InCl ₃	1	86	
3	Fe(DS) ₃	1	96	
4	$Sm(DS)_3$	1	93	
5	Yb(DS) ₃	1	94	
6	—	1	—	

Table 1. Reaction of indole 2a with 1 catalyzed by different catalysts in water^{*a*}

^{*a*}These reactions were performed using 1 mol% catalysts. ^{*b*}Isolated yield.

3-(9H-Xanthen-9-yl)-1H-indole Derivatives

was used as a catalyst, the reaction proceeded smoothly to afford the desired product 3-(9*H*-xanthen-9-yl)-1*H*-indole **3a** in 96% yield (Table 1, entry 1). As shown Table 1, this reaction can also be catalyzed by $InCl_3$ to give the desired product **3a** in good yield in water (Table 1, entry 2). Among various dodecyl sulfonates such as Fe(DS)₃, Sm(DS)₃, and Yb(DS)₃ employed in this reaction, $In(DS)_3$ and Fe(DS)₃ are more effective in terms of reaction yields than the others (Table 1, entries 3–5).

Similarly, with the optimized conditions in hand, various substituted indoles were reacted with xanthen-9-ol to afford the corresponding 3-(9*H*-xanthen-9-yl)-1*H*-indole derivatives. The results are listed in Table 2. The products were obtained in high to quantitative yields in short reaction times. The reactions were clean and complete within 1.0-1.5 h with high regieoselectivity. Not only 2b-i (Table 2, entries 2-9) but also the passivated indole derivative 2j (Table 2, entry 10) worked well to give the 3-(9*H*-xanthen-9-yl)-1*H*-indole derivatives in good to high yields. However, when 3-methyl indole was used, no desired product was found.

Mechanistically, indole attacks an pyrylium ion, which is formed from an xanthen-9-ol in situ catalyzed by $In(DS)_3$, and then generates the corresponding product **3** (Scheme 2).

In conclusion, the present protocol provides a novel and highly efficient procedure for the synthesis of a class of compounds, 3-(9H-xanthen-9-yl)-1H-indoles, using a catalytic amount of $In(DS)_3$. The procedure offers several advantages including high yields, mild solvent, short reaction times, easily obtained catalyst, and simple experimental isolation procedures, which make it a useful procedure for the synthesis of 3-(9H-xanthen-9-yl)-1H-indole derivatives. In addition, the use of $In(DS)_3$ for other catalytic reactions in water is focus of ongoing studies.

EXPERIMENTAL

General

Melting points were recorded on an Electrothermal digital melting-point apparatus and are uncorrected. ¹H NMR (400-MHz) spectra were recorded on a Varian Mercury spectrometer in CDCl₃. IR spectra were obtained on a Nicolet FT-IR500 spectrophotometer using KBr pellets. High-resolution mass spectra were obtained using a GCT-TOF instrument.

Procedure for Synthesis of Indium Tris(dodecyl Sulfonate) [In(DS)₃]^[9c]

Sodium dodecylsulfonate (2.693 g, 9.90 mmol) was dissolved in H_2O (100 mL) at 70°C. To this, a solution of InCl₃ (0.725 g, 3.30 mmol) in H_2O

Entry	Indoles		Product		Time (h)	Yield $(\%)^b$
1		2a		3a	1	96
2	N Me	2b	H C	3b	1	83
3	N Me	2c		3c	1	82
4	Me N	2d	H Me	3d	1	81
5	Me	2e		3e	1	90
6	Me	2f		3f	1.5	85
7	N Ph	2g	We	3g	1.5	98
8	OBn N H	2h		3h	1	82
9		2i		3i	1	97

Table 2. Reactions of indole 2 with 1a-j catalyzed by $In(DS)_3^a$

^{*a*}All reactions were carried out using a catalytic amount of $In(DS)_3$ (1 mol%) at room temperature.

^bIsolated yields.

(1 mL) was added at the same temperature. The mixture was cooled to room temperature, and the resulting precipitate was collected and purified by recrystallization from H₂O to give In(DS)₃ as a white solid (2.816 g, 99%). ¹H NMR (400 MHz, *d*-DMSO): δ 1.21–1.23 (m, 9H, CH₃), 1.64–1.777 (m, 48H), 1.92 (m, 6H, CH₂), 2.87 (m, 6H, CH₂), 3.54 (m, 6H, CH₂); ¹³C NMR (100 MHz,

d-DMSO): 13.8, 22.0, 26.5, 28.6, 28.9, 29.0, 31.2, 52.4. The other new LASCs were prepared in a similar way.

General Procedure for Synthesis of 3

A mixture of indole **2** (0.059 g, 0.5 mmol), **1a** (0.099 g, 0.5 mmol), $In(DS)_3$ (4.65 mg, 0.005 mmol), and water (2 mL) was stirred in a flask at room temperature until the disappearance of the starting **2** (1.0 h, checked by thin-layer chromatography, TLC). After standing for 1.0 h, the reaction mixture was filtered. Then the crude product was purified by flash chromatography to afford the pure product **3a** (0.143 g, yield: 96%).

Data

3-(9*H*-Xanthen-9-yl)-1*H*-indole, **3a:** mp 143–145°C (lit.^[3a] 145°C); IR (KBr): ν 3429(NH), 3051, 2920, 2850, 1254, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.55 (s, 1H, CH), 6.90–7.36 (m, 13H), 8.02 (br, s, 1H, NH). HRMS found: m/z 297.1157 (M⁺); calcd. for C₂₁H₁₅NO: M, 297.1154.

1-Methyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3b:** mp 134–135°C; IR (KBr): ν 3426 (NH), 3040, 2929, 1250, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.72 (s, 3H, CH₃), 5.54 (s, 1H, CH), 6.88–7.41 (m, 13H). HRMS found: m/z 311.1295 (M⁺); calcd. for C₂₂H₁₇NO: M, 311.1310.

2-Methyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3c:** mp 187–189°C (lit.^[3a] 196°C); IR (KBr): ν 3406 (NH), 3038, 2914, 1251, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.36 (s, 3H, CH₃), 5.60 (s, 1H, CH), 6.85–7.27 (m, 12H); 7.82 (br, s, 1H, NH). HRMS found: m/z 311.1309 (M⁺); calcd. for C₂₂H₁₇NO: M, 311.1310.

5-Methyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3d:** mp 134–136°C; IR (KBr): ν 3469 (NH), 3031, 2914, 1250, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ

2.32 (s, 3H, CH₃), 5.52 (s, 1H, CH), 6.90–7.25 (m, 12H); 7.92 (br, s, 1H, NH). HRMS found: m/z 311.1296 (M⁺); calcd. for C₂₂H₁₇NO: M, 311.1310.

6-Methyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3e:** mp 131–133°C; IR (KBr): ν 3428 (NH), 3036, 2915, 1252, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 3H, CH₃), 5.51 (s, 1H, CH), 6.78–7.25 (m, 12H); 7.89 (br, s, 1H, NH). HRMS found: *m*/*z* 311.1303 (M⁺); calcd. for C₂₂H₁₇NO: M, 311.1310.

7-Methyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3f:** mp 186–187°C; IR (KBr): ν 3425 (NH), 3051, 2915, 2853, 1251, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.45 (s, 3H, CH₃), 5.54 (s, 1H, CH), 6.87–7.24 (m, 12H); 7.93 (br, s, 1H, NH). HRMS found: m/z 311.1311 (M⁺); calcd. for C₂₂H₁₇NO: M, 311.1310.

2-Phenyl-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3g:** mp 236–238°C (lit.^[3b] 219–221°C); IR (KBr): ν 3389 (NH), 3025, 1248, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.77 (s, 1H, CH), 6.82–7.65 (m, 17 H); 8.17 (br, s, 1H, NH), HRMS found: m/z 373.1485 (M⁺); calcd. for C₂₇H₁₉NO: M, 373.1467.

4-(Benzyloxy)-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3h**: mp 144–146°C; IR (KBr): ν 3396 (NH), 3060, 2924, 1246, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.06 (s, 2H, CH₂), 5.93 (s, 1H, CH), 6.83–7.26 (m, 17H), 7.99 (br, s, 1H, NH). HRMS found: m/z 403.1569 (M⁺); calcd. for C₂₈H₂₁NO₂: M, 403.1572.

7-Nitro-3-(9*H*-xanthen-9-yl)-1*H*-indole, **3i:** mp 181–182°C; IR (KBr): ν 3388 (NH), 1249, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.59 (s, 1H, CH), 6.71–8.36 (m, 12H), 9.92 (br, s, 1H, NH). HRMS found: *m*/*z* 342.1005 (M⁺); calcd. for C₂₁H₁₄N₂O₃:M, 342. 1004.

ACKNOWLEDGMENTS

The work was partially supported by the Key Laboratory of Organic Chemistry of Jiangsu Province (No. JSK008), the National Science Foundation of Jiangsu Province (No. BK2004038), the National Natural Science Foundation of China (Nos. 20472062 and 20672079), and a research grant from the Innovation Project for Graduate Students of Jiangsu Province.

REFERENCES

1. Hargittai, B.; Barany, G. Controlled syntheses of natural and disulfide-mispaired regioisomers of α -conotoxin SI. J. Peptide Res. **1999**, 54, 468–479.

3-(9H-Xanthen-9-yl)-1H-indole Derivatives

- For selected references, see (a) Phillips, P.; Pitt, B. M. The use of xanthydrol as a reagent for the characterization of primary amides. J. Am. Chem. Soc. 1943, 65, 1355–1357; (b) Bond, L. Studies on the chemotherapy of experimental schistosomiasis II-N-(9-Xanthenyl)amides. J. Am. Pharm. Assoc. 1954, 43, 32–33.
- For selected references, see (a) Deschner, R.; Pindur, U. Mechanistic diversity in heterocyclic substitution reactions. *J. Heterocycl. Chem.* **1984**, *21*, 1485–1488; (b) Pindur, U.; Deschner, R. Zur protonenkatalysierten xanthenylierung von tryptamin, n(·)-acetyltryptamin und gramin: ein beitrag zur konstitutionsaufklärung in der Indol-Analytik. *Arch. Pharm.* **1988**, *321*, 427–428.
- Bratton, L. D.; Roth, B. D.; Trivedi, B. K.; Unangst, P. C. Synthesis of novel 3- and substituted indole-2-carboxamides. J. Heterocycl. Chem. 2000, 37, 1103–1108.
- Ancizar-Sordo, B. Kondensationen von benzil-und anisilsäure sowie von xanthydrol mit thiophen und thionaphten. *Helv. Chim. Acta* 1931, 14, 141–153.
- For a review, see (a) Lindstrom, U. M. Stereoselective organic reactions in water. *Chem. Rev.* 2002, 102, 2751–2772; (b) Li, C. J. Organic reactions in aqueous media—with a focus on carbon-carbon bond formation. *Chem. Rev.* 1993, 93, 2023–2035; (c) Li, C. J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. *Chem. Rev.* 2005, 105, 3095–3165; (d) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; Wiley: New York, 1997; (e) Grieco, P. A. Organic Synthesis in Water; Blackie Academic & Professional: London, 1998.
- (a) Loh, T.- P.; Chua, G.- L. Discovery of indium complexes as water-tolerant Lewis acids. *Chem. Comm.* 2006, 2739–2749; (b) Pae, A. N.; Cho, Y. S. Indium-mediated organic reactions in aqueous media. *Curr. Org. Chem.* 2002, 6, 715–737; (c) Cintas, P. Synthetic organoindium chemistry: What makes indium so appealing?. *Synlett* 1995, 1087–1096.
- Selected references, see (a) Li, C. J.; Chan, T. H. Organic syntheses using indiummediated and catalyzed reactions in aqueous media. *Tetrahedron* 1999, 55, 11149–11176; (b) Li, C. J. Aqueous Barbier-Grignard type reaction: Scope, mechanism, and synthetic applications. *Tetrahedron* 1996, 52, 5643; (c) Loh, T. P.; Cao, G. Q.; Pei, J. Studies towards total synthesis of antillatoxin: Investigation of the indium-mediated allylation reactions of carbonyl compounds with β-bromocrotylbromide in water. *Tetrahedron Lett.* 1998, 39, 1453–1456.
- Selected references, see (a) Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. Organic synthesis inside particles in water: Lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J. Am. Chem. Soc. 2000, 122, 7202–7207; (b) Kobayashi, S.; Manabe, K. Development of novel lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res. 2002, 35, 209–217; (c) Manabe, K.; Mori, Y.; Kobayashi, S. Effects of Lewis acid-surfactant-combined catalysts on Aldol and Diels-Alder reactions in water. Tetrahedron 1999, 55, 11203.
- (a) Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solventfree conditions. *Tetrahedron* 2004, 60, 2051–2056; (b) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Wang, S.-Y; Loh, T.-P. Efficient synthesis of bis(indolyl)methanes catalyzed by lewis acid in ionic liquids. *Synlett* 2003, 2077–2079; (c) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Jiang, Z. Q.; Loh, T.-P. Efficient Fe(III)-catalyzed synthesis of bis(indolyl)methanes in ionic liquids. *Eur. J. Org. Chem.* 2004, 1584–1587; (d) Gu, D.-G.; Ji, S.-J.; Jiang, Z.-Q.; Zhou, M.-F.; Loh, T.-P. An

efficient synthesis of bis(indolyl)methanes catalyzed by recycled acidic ionic liquid. *Synlett* **2005**, *6*, 959–963; (e) Wang, S.-Y.; Ji, S.-J.; Loh, T.-P. The michael addition of indole to α , β -unsaturated ketones catalyzed by iodiat room temperature. *Synlett* **2003**, 2377–2379; (f) Ji, S.-J. J.; Wang, S.-Y. Ultrasound-accelerated michael addition of indole to α , β -unsaturated ketones catalyzed by ceric ammonium nitrate (CAN). *Synlett* **2003**, 2074–2076.