Journal of Organometallic Chemistry 717 (2012) 88-98

Contents lists available at SciVerse ScienceDirect

Journal of Organometallic Chemistry

ELSEVIER

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis of palladium(II) complexes of bidentate phosphano ligands with carbosilane substituents

Susana Vigo, Román Andrés*, Pilar Gómez-Sal, Javier de la Mata, Ernesto de Jesús*

Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain

A R T I C L E I N F O

Article history: Received 11 April 2012 Received in revised form 6 July 2012 Accepted 18 July 2012

Keywords: Palladium Phosphane ligand Amphiphilic ligand Dendrimer Heck—Mizoroki reaction

ABSTRACT

The synthesis of carbosilane dendrons with bidentate bis(diphenylphosphanomethyl)amino ligands at the focal point and terminal alkyl or dimethylamino end-groups, together with their palladium(II) complexes and a cationic ammonium-quaternized derivative, is described. All compounds were characterized by elemental analysis and NMR spectroscopy (¹H, ¹³C, ³¹P and ²⁹Si).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The development of organic reactions catalyzed by metal complexes in the aqueous phase [1] has encouraged the synthesis of water-soluble versions of the traditional hydrophobic ligands used in organometallic catalysis in the last two decades [2]. Thus, a large variety of aryl- and alkyl-substituted tertiary phosphanes have been rendered water soluble by means of ionic (sulfonate, carboxylate, phosphonate, ammonium...) or nonionic hydrophilic substituents (polyols, carbohydrates, polyethers...) [2,3]. Indeed, amphiphilic phosphanes add phase-transfer abilities to the water-soluble ligand, often resulting in improved catalytic activities and selectivities in biphasic processes [3].

Dendrimers and dendrons are versatile molecules for the construction of catalysts adapted to a particular medium [4]. Thus, functional groups can be methodically introduced into the desired positions of a single dendritic molecule during or after the stepwise construction, and voids and channels in the interior of the branched structure can host molecules in an environment of adjustable polarity, whereas interaction of the end-groups with the solvent modulates the solubility of the macromolecule as a whole [5].

Of the many dendritic structures developed over the last few decades, carbosilane dendrimers [6] have rapidly moved to the forefront as regards the application of these hyperbranched materials in catalysis because of their inertness and the stability imparted by the strong and relatively unpolarized Si-C bonds [7,8]. Krska and Seyferth reported the first examples of amphiphilic carbosilane dendrimers in 1998 and demonstrated their ability to enhance the solubility of lipophilic alkyl-substituted benzene derivatives [9]. We have become interested in the synthesis of metal-functionalized carbosilane-based dendritic catalysts over the last few years [10]. Indeed, and closely related with the topic of this report, we showed the effect of the bonding of triarylphosphane ligands to carbosilane dendrons on the solubilization of palladium catalysts in supercritical CO₂ [11]. Likewise, in a different study, we prepared mono- and bi-dentate phosphanes with ammoniumfunctionalized (non-dendritic) carbosilane substituents [12], although the metal complexes of these phosphanes were found to be poorly soluble in water. Incorporation of the ligand at the focal point, and the ammonium groups at the periphery, of a carbosilane dendron multiplies the number of solubilizing groups and therefore should increase the water solubility of the whole molecule.

The synthesis of carbosilane structures with reactive functions at both the focal point and periphery is challenging [13] as most such functions are incompatible with the sequence of reactions employed in the divergent growth of a carbosilane and have to be introduced at the focal point after construction of the dendritic structure. The usual strategies employed to solve this problem make use of an inert protector of the focal point during carbosilane synthesis that can be modified or replaced to introduce the desired functionality as the last synthetic step [14]. For instance, we have shown that a phenyl group linked to the core silicon atom of

^{*} Corresponding authors. Tel.: +34 91 885 4603; fax: +34 91 885 4683.

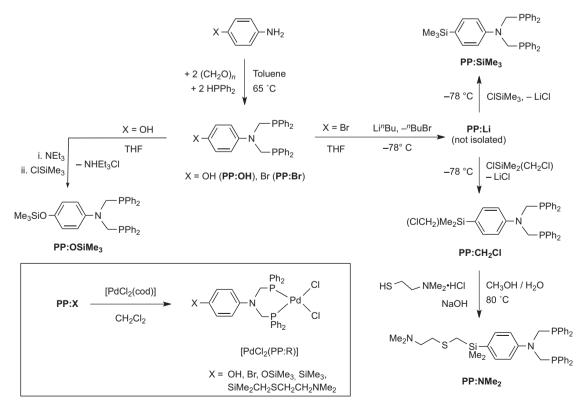
E-mail addresses: roman.andres@uah.es (R. Andrés), ernesto.dejesus@uah.es (E. de Jesús).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2012.07.032

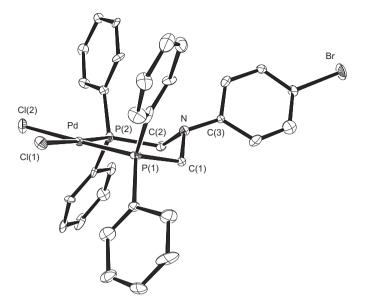
a carbosilane can be replaced by nucleophiles upon acid-induced cleavage of the silicon-phenyl bond [15,16]. This route has led to the synthesis of carbosilane dendrons doubly functionalized with Si-Cl bonds at the focal point and group 4 metallocene complexes at the periphery [17].

Herein we extend these studies to the preparation of carbosilane dendrons bearing bidentate bis(diphenylphosphanomethyl)amino ligands at the focal point and alkyl or ammonium groups at the periphery. *para*-Functionalized *N*,*N*-bis(diphenylphosphanomethyl)anilines of formula $(4-X-C_6H_4)N(CH_2PPh_2)_2$ (X = OH, Br) are accessible by simple synthetic procedures and can be grafted onto carbosilane dendrons via the hydroxyl or bromo functionalities (Scheme 1). Their palladium(II) complexes have also been prepared and tested in a model Heck cross-coupling reaction.

2. Results and discussion


2.1. Synthesis of non-dendritic phosphanes and their palladium complexes

We first explored the synthetic steps involved in the bonding of ligands and hydrophilic groups to a carbosilane structure using simple silanes as model analogs (Scheme 1). In the first step, the modified aryl-bis(diphenylphosphanomethyl)amines **PP:OH** and **PP:Br** were prepared in almost quantitative yields (>90%) by treating the corresponding *para*-bromo- or *para*-hydroxy-substituted aniline with paraformaldehyde and diphenylphosphane in hot toluene under a rigorously controlled oxygen-free atmosphere, as reported elsewhere [18]. The next step involved silylation of the aniline *para* position by treatment of chloro-trimethylsilane with phenol **PP:OH** in the presence of triethyl-amine or with the lithiated salt of the bromoaryl phosphane **PP:Br**. The phenolysis reaction afforded **PP:OSiMe**₃ in which both moieties are linked through a Si–O–Ar bond, whereas the lithiation


afforded **PP:SiMe**₃, which contains a direct Si–Ar bond. Both **PP:OSiMe**₃ and **PP:SiMe**₃ were obtained in good yields (\approx 75%) as colorless, analytically pure oils. Silicon–aryloxide bonds are, however, moisture-sensitive [19], thus meaning that the palladium dichloride complex of phosphane **PP:OSiMe**₃ (see below) undergoes partial protolysis when exposed to air. Subsequent studies therefore used direct silicon–carbon bonds only.

The last step of this exploratory work involved functionalization of the ligand with a hydrophilic functionality. Chloro(chloromethyl) dimethylsilane is an interesting synthetic building block for this due to the quite different reactivity of the silicon-chloride and carbon-chloride bonds. As illustrated in Scheme 1, the lithium derivative **PP:Li** reacts selectively with the more electrophilic silicon-chloride bond at low temperature to afford the intermediate C_6H_4 {1-N(CH₂PPh₂)₂}(4-SiMe₂CH₂Cl), which was characterized by NMR spectroscopy and subsequently used without prior purification. The carbon-chloride bond of this intermediate reacts with 2-dimethylaminoethanethiol, added as hydrochloride, at 80 °C in methanol/water in the presence of a base to afford the amphiphilic diphosphane **PP:NMe**₂ as a yellow, analytically pure oil in 69% yield. The methanol/water mixture has to be perfectly deoxygenated before use to avoid oxidation of the phosphane. This reaction was previously reported by Krska and Seyferth for the synthesis of water-soluble carbosilane dendrimers and forms sulfur linkages that are stable in water [9].

Palladium dichloride chelate complexes [PdCl₂(**PP:X**)] were obtained as yellow-orange solids in high yields (74–87%) by displacement of 1,5-cyclooctadiene (cod) from [PdCl₂(cod)] by the **PP:X** ligand. Formation of the complexes shifts the ³¹P resonance downfield from -27 ± 1 ppm in the ligands to ≈ 10 ppm in the complexes, both of which are typical values for bis(diphenylphosphanomethyl)amines and their Pd complexes, respectively [18,20,21]. Another significant change in the NMR parameters concerns the increase in the ¹/(C–P) coupling constant of the

Scheme 1. Synthesis of non-dendritic phosphanes and their palladium complexes.

Fig. 1. Molecular structure of complex $[PdCl_2(PP:Br)]$ obtained by X-ray diffraction. Selected bond lengths (Å) and angles (°): Pd-P(1) 2.240(5), Pd-P(2) 2.245(5), Pd-Cl(2) 2.340(5), Pd-Cl(1) 2.366(5), N-C(2) 1.45(2), N-C(1) 1.563(17), P(1)-C(1) 1.804(16), P(2)-C(2) 1.857(19), P(1)-Pd-P(2) 95.06(16), P(1)-Pd-Cl(2) 178.3(2), P(1)-Pd-Cl(1) 87.76(18), P(2)-Pd-Cl(2) 85.73(17), P(2)-Pd-Cl(1) 176.4(2), Cl(2)-Pd-Cl(1) 91.39(17), C(2)-N-C(1) 105.6(11), C(1)-P(1)-Pd 119.2(5), C(2)-P(2)-Pd 116.8(6), N-C(1)-P(1) 112.4(10), N-C(2)-P(2) 115.4(12).

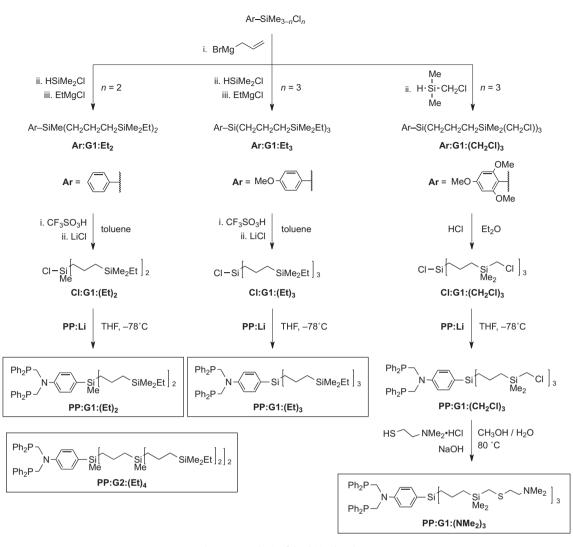
methylene resonance from 13 to 16 Hz in the ligands to 40-47 Hz in the complexes.

The structure of the palladium complex [PdCl₂(**PP:Br**)] has been confirmed by X-ray diffraction methods (Fig. 1). The asymmetric unit of the unit cell contains three molecules of the complex together with three molecules of chloroform. These molecules are very similar, with the exception of a small difference in the orientation of the 4-bromophenyl groups. The palladium complex displays a *cis*-planar PdP₂Cl₂ coordination environment and a flattened boat conformation for the six-membered PdP₂C₂N ring. The structural parameters of the Pd environment and metallocycle are similar to those found in the parent complex [PdCl₂(PPh₂CH₂)₂NC₆H₅] [22] and in other related aryl-substituted complexes [23].

2.2. Synthesis of dendritic phosphanes and their complexes

In the second part of this work, the chloro(chloromethyl) dimethylsilane synthon was replaced by carbosilane dendrons in order to prepare dendritic hydrophobic alkyl- and amphiphilic ammonium-terminated diphosphanes (Scheme 2). The synthetic strategy was based on our previous reports of the post-functionalization of the focal point of carbosilane dendrons based on the protolytic cleavage of aryl–silicon bonds [15,17].

The process starts with an arylchlorosilane core from which the carbosilane dendron can be grown up to the desired generation by successive alkenylation and hydrosilylation reactions and terminated with the required end-groups in the last preparative step [17]. The three first-generation carbosilane dendrons $Ar:G1:X_n$ in Scheme 2 were prepared initially. Two of these are alkylterminated dendrons with two ($Ar:G1:Et_2$) or three ($Ar:G1:Et_3$) branches in which the hydrosilylation step was followed by alkylation of the peripheral Si–Cl bonds with EtMgCl. The third ($Ar:G1:(CH_2CI)_3$) has three peripheral chloromethyl functionalities that allow the subsequent incorporation of hydrophilic ammonium groups. Three different aryl groups (phenyl, 4-methoxyphenyl or 2,4,6-trimethoxyphenyl) have been incorporated to the focal point of the dendrons as explained below.


The second part of the preparation is the deprotection step in which the aryl group at the focal point is removed under acidic conditions and replaced by a nucleophile (chloride in the case of dendrons **Cl:G1:X**_n on Scheme 2). Electron-donating substituents on the aryl leaving-group activate the Si–C bond and soften the conditions required for bond cleavage. The order of lability of the aryl groups used in this work is 2,4,6-trimethoxyphenyl > 4-methoxyphenyl > phenyl. Fewer methoxy substituents means harsher deprotection conditions but also means that the silicon–aryl bond is less prone to undesired leaching during dendrimer growth due to the small amounts of HCl generated by hydrolysis of chlorosilane reagents [17].

The more resistant phenyl or 4-methoxyphenyl groups were used during preparation of the alkyl-terminated dendrons **Ar:G1:Et**_n, where a chlorosilane reagent (HSiMe₂Cl) is used. When analogous preparations were tested with the trisubstituted aryl, the systematic formation of 2,4,6-trimethoxybenzene was observed in the hydrosilylation step (up to 15% by ¹H NMR spectroscopy), whereas the 4-methoxyphenyl-silicon bonds remained unaffected under the same experimental conditions. Cleavage of the silicon-aryl bonds was performed with triflic acid to afford dendrons **Cl:G1:Et**_n after addition of lithium chloride. In this case, the use of ethereal solutions of the more convenient HCl reagent resulted in only partial conversions under the conditions tested. The better leaving group (2,4,6-trimethoxyphenyl) was preferred for the preparation of Cl:G1:(CH₂Cl)₃. The absence of direct silicon-chloro bonds in the (chloromethyl)dimethylsilane avoids problems of contamination with HCl and therefore of undesired cleavage of the silicon-arvl bonds. Cleavage is in this case conveniently performed with hydrogen chloride, which directly converts the Si-aryl of Ar:G1:(CH₂Cl)₃ into a Si-Cl bond in Cl:G1:(CH₂Cl)₃ under milder conditions [24].

In the next step of the preparative route, the phosphane functionalities were introduced at the focal point of dendrons **CI:G1:X**₃ by treatment of their silicon—chloride bonds with the lithium derivative of **PP:Br** to afford compounds **PP:G1:X**₃ under similar conditions to those described in Scheme 1 for simple silanes. The chloromethylterminated phosphane **PP:G1:(CH₂CI)**₃ was then transformed into the ammonium-terminated dendron **PP:G1:(NMe**₂)₃ by treatment with 2-(dimethylamino)ethanethiol in the presence of a base in methanol/water. These phosphanes were obtained in good yields as colorless oils that readily oxidize in the presence of traces of air.

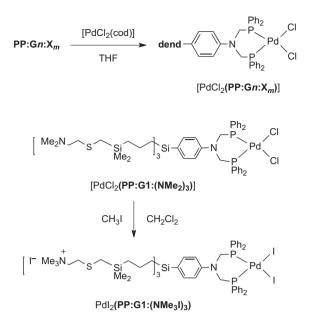
The extension of this preparative approach to the synthesis of larger dendrons is theoretically feasible, as we have demonstrated previously [15,17]. Thus, the initial alkenylation shown in Scheme 2 has to be followed by successive hydrosilylations with trichloro- or di-chloromethylsilane and alkenylations with allylmagnesium bromide to reach the desired generation before introducing the SiMe₂Cl or SiMe₂(CH₂Cl) end-groups. Preparation of the second-generation analogs of the alkyl-terminated dendrons was first attempted with a triply-branched structure. However, the synthesis of **PP:G**2:(**Et**)₆ failed in the last step when the aryl protector had to be replaced by the diphosphine ligand at the focal-point of the molecule. In contrast, the doubly-branched analog **PP:G**2:(**Et**)₄ (Scheme 2) was successfully obtained by the same procedure, thus highlighting the importance of steric effects during the focal-point functionalization of dendrons.

All carbosilane derivatives were isolated and characterized by C, H, N, S elemental analysis and ¹H, ¹³C, ²⁹Si, and, if applicable, ³¹P NMR spectroscopy, as detailed in the Experimental section. ¹H NMR spectroscopy was particularly useful for monitoring the growth and deprotection of the carbosilane dendrons. Monitoring of the reactions during the hydrosilylation step is highly recommended [14j,17]. ²⁹Si NMR chemical shifts were especially useful for identifying the different silicon environments that appear in the

Scheme 2. Synthesis of dendritic phosphanes.

expected positions [25]: the ArSiR₃-type of silicon atoms (R = alkyl) at the focal point of both **Ar:G1:X**₃ and **PP:G1:X**₃ dendrons appear at -4.5 ± 1 ppm, the SiR₄-type (SiMe₂Et and SiMe₂(CH₂Cl) end groups) are found at around 3 ppm, whereas the SiR₃Cl silicon atoms (focal-point or terminal) are located at 31 ± 1 ppm. The ³¹P nuclei of phosphanes **PP:G1:X**₃ are found in the same range of chemical shifts as those described above for the parent **PP:X** phosphanes (-27 ± 1 ppm).

The corresponding $[PdCl_2(PP:G1:X_3)]$ complexes were prepared by treatment of $[PdCl_2(cod)]$ with the appropriate phosphane in THF (see Scheme 3). They were isolated as orange solids after elimination of volatiles and characterized by elemental analysis and NMR spectroscopy, as detailed in the Experimental section.


The palladium dichloride complex of the dimethylaminoterminated dendron **PP:G1**:(**NMe**)₂ was found to be completely insoluble in water but soluble in organic solvents such as toluene, THF and CH₂Cl₂. The terminal dimethylamino groups were quaternized by treatment with an excess of iodomethane, although this quaternization was accompanied by chlorido/iodido ligand exchange at the metal centers [12]. This exchange was reflected in the ³¹P NMR resonance, which shifted from a typical value of 10 ppm found in the dichloride complexes to -10.4 ppm, a similar value to that reported for [PdI₂{(Ph₂PCH₂)₂NPh}] [22]. This cationic palladium complex was obtained as a dark-orange solid and fully characterized by elemental analysis and NMR spectroscopy. It was found to be fairly insoluble in most common organic solvents, except dimethyl sulfoxide, and was also found to be insoluble in water at room temperature.

2.3. Catalytic tests on the Heck reaction

The palladium complexes reported here, together with the reference derivative [PdCl₂{(Ph₂PCH₂)₂NPh}], were tested in the palladium-catalyzed Mizoroki–Heck reaction between 4-iodotoluene and methyl acrylate (Table 1). The reaction was carried out in acetonitrile at 80 °C, with palladium loadings of 1 mol % and triethylamine as the base. Methyl 4-methylcinnamate was the only product detected by GC analysis with all the catalysts tested. These palladium precursors are not very active under these reaction conditions, affording conversions ranging from 15% to 62% after 24 h of reaction. They also showed extensive decomposition by precipitation of black palladium with the exception of dimethylamino-substituted complex **PP:G1:(NMe**₂)₃ which is also the less active catalyst.

3. Conclusions

We have described the synthesis of carbosilane dendrons with bidentate phosphanes at the focal point and alkyl or dimethylamino groups at the periphery following a synthetic procedure

Scheme 3. Synthesis of palladium complexes.

involving bifunctionalization of dendrons using activated phenyl groups bonded to the core silicon atom as protecting groups. The versatility of this synthetic strategy allows the deprotection step to be performed at the right time during the synthesis depending on the nature of the functionalities selected for the focal point and the periphery. Palladium complexes of phosphine-functionalized carbosilane dendrons were also prepared and terminal dimethylamino groups quaternized. These complexes were tested as catalysts in the Heck reaction but they showed poor activities and stabilities, giving extensive precipitation of palladium black.

4. Experimental

4.1. Reagents and general techniques

All operations were performed under argon using Schlenk or drybox techniques. Unless otherwise stated, reagents were obtained from commercial sources and used as received. Diallyl(methyl) phenylsilane [26], trichloro(2,4,6-trimethoxyphenyl)silane [24], trichloro(4-methoxyphenyl)silane, triallyl(4-methoxyphenyl)silane

[27], 4-bromo-*N*,*N*-bis(diphenylphosphanomethyl)aniline (**PP:Br**). 4-(bis(diphenylphosphanomethyl)amino)phenol (**PP:OH**) [18], $[PdCl_2(cod)]$ (cod = 1,5-cyclooctadiene) [28], and $[PdCl_2\{(P(Ph)_2 - P(Ph)_2 - P($ CH₂)₂NPh}] [22] were prepared according to reported procedures. Solvents were dried prior to use and distilled under argon, as described elsewhere [29]. ¹H, ¹³C, ³¹P, and ²⁹Si NMR spectra were recorded with Varian Gemini-200, Mercury VX-300, or UnityPlus-500 spectrometers. Chemical shifts (δ , ppm) are quoted relative to SiMe₄ (¹H, ¹³C, and ²⁹Si) or 85% H₃PO₄ (³¹P), and were measured by internal referencing to the deuterated solvent (¹³C and residual ¹H resonances), or by the substitution method (^{31}P and ^{29}Si). Coupling constants (1) are given in Hz. Elemental analyses were performed in duplicate by the Analytical Laboratories of the University of Alcalá with a LECO CHNS-932 microanalyzer. Chromatographic analysis were performed using an HP-5890 Series II gas chromatograph fitted with an Agilent DB-1-capillary column (15 m length, 0.25 mm internal diameter, 0.10 µm film thickness) under the following conditions: injector temperature, 250 °C; detector temperature, 260 °C; oven temperature program, isothermal 120 °C/5 min.

4.2. Synthesis of non-dendritic phosphanes and their complexes

4.2.1. (Ph₂PCH₂)₂N(C₆H₄O-4-SiMe₃) (**PP:OSiMe**₃)

Triethylamine (0.073 mL, 0.53 mmol) and chlorotrimethylsilane (0.067 mL, 0.53 mmol) were added to a solution of **PP:OH** (0.240 g, 0.48 mmol) in THF (15 mL). The mixture was stirred for 3 h and the volatiles then evaporated under vacuum. Diethyl ether was added to the residue and the ammonium salt filtered off. The solution was evaporated under vacuum to afford an oily off-white solid identified as diphosphine **PP:OSiMe**₃ (0.22 g, 78%). Anal. Calc. for C₃₅H₃₇NOP₂Si: C, 72.77; H, 6.46; N, 2.42. Found: C, 72.14; H, 6.12; N, 2.31%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.29 (m, 20H, PC₆H₅), 6.69 (d, ³*J*_{H,H} = 8.9, 2H, C₆H₄), 6.62 (d, ³*J*_{H,H} = 8.9, 2H, C₆H₄), 4.01 (d, ²*J*_{P,H} = 4.03, 4H, CH₂P), 0.22 ppm (s, 9H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 147.8 (C₆H₄O, C_{ipso}), 143.6 (C₆H₄N, C_{ipso}), 137.6 (d, *J*_{C,P} = 17.3, PC6H5, C_{meta}), 128.3 (d, *J*_{C,P} = 6.1, PC6H5, C_{para}) 120.2 (C₆H₄O, C_{ortho}), 117.8 (C₆H₄N, C_{ortho}), 55.5 (dd, ¹*J*_{C,P} = 13.6 and ³*J*_{C,P} = 8.1, CH₂P), 0.2 ppm (s, SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = -25.9 ppm.

4.2.2. $(Ph_2PCH_2)_2N(C_6H_4-4-SiMe_3)$ (**PP**:**SiMe**₃)

Ar _____

A 1.6 M solution of *n*-butyllithium in hexane (0.60 mL, 0.92 mmol) was slowly added to a solution of **PP:Br** (0.350 g, 0.62 mmol) at -78 °C in THF (20 mL). Stirring was continued at the

(NEt₃H)I

Table 1

Heck coupling of 4-iodotoluene and methyl acrylate in acetonitrile.^a

Arl = 4-iodotoluene

PP ligand	Conv. after 24 h [%] ^b
PhN(CH ₂ PPh ₂) ₂	44
PP:SiMe ₃	60
PP:G1:(Et) ₂	50
PP:G1:(Et) ₃	54
PP:G2:(Et) ₄	62
PP:NMe ₂	41
PP:G1:(NMe ₂) ₃	15
$PP:G1:(NMe_3I)_3$	56

^a Conditions: 0.5 mmol of 4-iodotoluene, 0.5 mmol of methyl acrylate, 0.5 mmol of triethylamine, 5 μmol (1 mol%) of Pd catalyst were reacted in 5 mL of acetonitrile at 80 °C for 24 h. See Experimental section for details.

^b Conversions determined by Gas Chromatography using naphthalene as an internal standard.

same temperature for 15 min, then chlorotrimethylsilane (0.08 mL, 0.62 mmol) was added and the reaction mixture allowed to warm to room temperature. The solvent was then removed under vacuum and the residue extracted with hexane (3 × 10 mL). Evaporation of the combined hexane solutions to dryness yielded **PP:SiMe**₃ as an oily off-white solid (0.26 g, 75%). Anal. Calc. for C₃₅H₃₇NP₂Si: C, 74.84; H, 6.64; N, 2.49. Found: C, 75.08; H, 6.77; N, 2.34%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.33 (m, 22H, PC₆H₅ overlapped with 2H signal of C₆H₄), 6.84 (d, ³*J*_{H,H} = 8.8, 2H, C₆H₄), 3.93 (d, ²*J*_{H,P} = 4.4, 4H, NCH₂P), 0.25 ppm (s, 9H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 148.1 (C₆H₄N, C_{ipso}), 137.3 (d, *J*_{C,P} = 15.3, PC₆H₅, C_{ipso}), 134.2 (C₆H₄Si, C_{ortho}), 133.2, (d, *J*_{C,P} = 18.4, PC₆H₅, C_{ortho}), 128.6 (d, *J*_{C,P} = 17.2, PC₆H₅, C_{meta}), 128.4 (d, *J*_{C,P} = 6.5, PC₆H₅, C_{para}), 126.6 (C₆H₄Si, C_{ipso}), 113.5 (C₆H₄N, C_{ortho}), 53.7 (dd, ¹*J*_{C,P} = 14.9 and ³*J*_{C,P} = 6.5, NCH₂P), -0.8 ppm (s, SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = -27.8 ppm.

4.2.3. $(Ph_2PCH_2)_2N(C_6H_4-4-SiMe_2CH_2SCH_2CH_2NMe_2)$ (**PP:NMe**₂)

A 1.6 M solution of *n*-butyllithium in hexane (1.10 mL, 1.76 mmol) was slowly added to a solution of PP:Br (1.00 g, 1.76 mmol) at -78 °C in THF (20 mL). The reaction mixture was stirred for 15 min and then an excess of chloromethyl(dimethyl) chlorosilane (0.30 mL, 2.21 mmol) in THF (5 mL) was added at -78 °C. The reaction mixture was allowed to warm slowly to room temperature and then the solvent was removed under vacuum. The residue was extracted with hexane (2 \times 10 mL) and the combined hexane solutions evaporated to dryness under vacuum to give the intermediate C₆H₄{1-N(CH₂PPh₂)₂}(4-SiMe₂CH₂Cl) as a spectroscopically pure colorless oil which was used without further puri-Spectroscopic data for C₆H₄{1-N(CH₂PPh₂)₂}(4fication. SiMe₂CH₂Cl): ¹H NMR (C₆D₆, 300 MHz): δ = 7.30 (m, 12H, PC₆H₅), 7.03 (m, 8H, PC₆ H_5), 7.27 (d, ${}^{3}J_{H,H} = 8.8$, 2H, C₆ H_4), 6.90 (d, ${}^{3}J_{H,H} = 8.8, 2H, C_{6}H_{4}$), 4.05 (d, ${}^{2}J_{H,P} = 4.5, 4H, NCH_{2}P$), 2.72 (s, 2H, SiCH₂Cl), 0.30 ppm (s, 6H, SiCH₃). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 75 MHz): $\delta = 149.5 \ (C_6H_4N, C_{ipso}), \ 138.0 \ (d, \ J_{C,P} = 16.2, \ PC_6H_5, \ C_{ipso}), \ 135.1$ (C_6H_4Si, C_{ortho}) , 133.6 (d, $J_{C,P} = 19.9$, PC_6H_5 , C_{ortho}), 128.9 (d, $J_{C,P} = 14.0, PC_6H_5, C_{meta}$, 128.7 (d, $J_{C,P} = 5.9, PC_6H_5, C_{para}$), 114.4 (C_6H_4N, C_{ortho}) , 54.0 (d, $J_{CP} = 8.8$, NCH₂P), 30.9 (SiCH₂Cl), -4.4 ppm (SiCH₃). ³¹P{¹H} NMR (C₆D₆, 202 MHz): $\delta = -27.1$ ppm. ¹H $-^{29}$ Si gHMBC (C₆D₆): $\delta = -4.4$ ppm.

Subsequently, a deoxygenated aqueous solution (5 mL) of NaOH (0.260 g, 98% purity, 6.37 mmol) and 2-(dimethylamino)ethanethiol hydrochloride (0.270 g, 1.92 mmol) was added to a solution of the above intermediate (1.09 g, 1.84 mmol) in deoxygenated ethanol (20 mL). This mixture was stirred at 80 °C overnight. The reaction mixture was then cooled to room temperature and extracted with diethyl ether (3 \times 10 mL). The combined diethyl ether solutions were dried over MgSO₄ and evaporated to dryness to give **PP:NMe**₂ as a slightly yellow oil (0.84 g, 69%). Anal. Calc. for C₃₉H₄₆N₂P₂SSi: C, 70.45; H, 6.97; N, 4.21; S, 4.82. Found: C, 70.15; H, 7.02; N, 3.96, S, 4.78%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.30$ (m, 22H, PC_6H_5 overlapped with 2H signal of C_6H_4), 6.79 (d, ${}^3J_{H,H} = 8.5$, 2H, C_6H_4), 3.87 (d, ${}^2J_{H,P} = 4.6$, 4H, NCH₂P), 2.56 (m, 4H, SCH₂CH₂NMe₂), 2.23 (s, 6H, N(CH₃)₂), 1.97 (s, 2H, SiCH₂S), 0.32 ppm (s, 6H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 148.5 (C₆H₄N, C_{ipso}), 137.3 (d, $J_{C,P} = 15.0, PC_6H_5, C_{ipso}), 134.6 (C_6H_4Si, C_{ortho}), 133.2 (d, J_{C,P} = 18.6, C_{ortho})$ PC_6H_5 , C_{ortho}), 128.7 (d, $J_{C,P} = 19.4$, PC_6H_5 , C_{meta}), 128.5 (d, $J_{C,P} = 6.2$, PC₆H₅, C_{para}), 113.4 (C₆H₄N, C_{ortho}), 58.3 (SCH₂CH₂N), 53.6 (d, $J_{C,P} = 8.5$, NCH₂P), 44.6 (N(CH₃)₂), 33.7 (SCH₂CH₂N), 18.5 (SiCH₂S), -3.1 ppm (SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): $\delta = -27.8$ ppm.

4.2.4. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-OH)}] ([PdCl₂(**PP:OH**)])

A solution of $[PdCl_2(cod)]$ (0.090 g, 0.31 mmol) in CH_2Cl_2 and **PP:OH** (0.160 g, 0.31 mmol) in CH_2Cl_2 (10 mL) was stirred for 3 h at

room temperature. The orange solution was then evaporated under vacuum and the residue washed with hexane (2 × 10 mL) to give [PdCl₂(**PP:OH**)] as an orange solid (0.17 g, 82%). Anal. Calc. for C₃₂H₂₉Cl₂NOP₂Pd (682.8): C, 56.28; H, 4.28; N, 2.05. Found: C, 56.24; H, 4.61; N, 1.74%. ¹H NMR ([D₆]DMSO, 300 MHz): δ = 7.85 (m, 8H, PC₆H₅), 7.51 (m, 12H, PC₆H₅), 6.49 (br., 4H, C₆H₄), 4.23 ppm (br., 4H, CH₂P). ¹³C{¹H} NMR ([D₆]DMSO, 75 MHz): δ = 153.0 (C₆H₄O, C_{ipso}), 143.9 (C₆H₄N, C_{ipso}), 133.5 (d, J_{C,P} = 10.0, PC₆H₅, C_{ortho}), 130.8 (s, PC₆H₅, C_{para}), 127.8 (d, J_{C,P} = 10.5, PC₆H₅, C_{meta}), 121.5 (C₆H₄N, C_{ortho}), 115.1 (C₆H₄O, C_{ortho}), 54.3 ppm (d, J_{C,P} = 40.9, NCH₂P). ³¹P {¹H} NMR ([D₆]DMSO, 202 MHz): δ = 10.0 ppm.

4.2.5. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-Br)}] ([PdCl₂(**PP**:**Br**)])

This complex was obtained as a slightly yellow solid (0.32 g, 75%) as described above in Section 4.2.4, starting from **PP:Br** (0.330 g, 0.58 mmol) and [PdCl₂(cod)] (0.16 g, 0.58 mmol). Anal. Calc. for $C_{32}H_{28}BrCl_2NP_2Pd$: C, 51.54; H, 3.78; N, 1.88. Found: C, 50.99; H, 3.73; N, 1.92%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.32 (m, 8H, PC₆H₅), 7.44 (m, 12H, PC₆H₅), 7.26 (d, ³*J*_{H,H} = 8.9, 2H, C₆H₄), 6.45 (d, ³*J*_{H,H} = 8.9, 2H, C₆H₄), 3.92 (br., 4H, NCH₂P). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 150.2 (*C*₆H₄O, C_{ipso}), 133.9 (d, *J*_{C,P} = 10.5, PC₆H₅, C_{ortho}), 132.7 (*C*₆H₄Br, C_{ortho}), 131.9 (s, PC₆H₅, C_{para}), 128.9 (d, *J*_{C,P} = 11.8, PC₆H₅, C_{meta}), 128.6 (*C*₆H₄Br, C_{ipso}), 127.8 (d, *J*_{C,P} = 57.6, PC₆H₅, C_{ipso}) 120.2 (*C*₆H₄N, C_{ortho}), 53.4 (dd, ¹*J*_{C,P} = 47.1, ³*J*_{C,P} = 3.6, NCH₂P). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = 10.0 ppm.

4.2.6. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-OSiMe₃)]] ([PdCl₂(**PP:OSiMe**₃)])

This complex was obtained as an orange solid (0.09 g, 87%) (0.32 g, 75%) as described in Section 4.2.4, starting from **PP:OSiMe**₃ (0.080 g, 0.14 mmol) and [PdCl₂(cod)] (0.040 g, 0.14 mmol). Anal. Calc. for C₃₅H₃₇Cl₂NOP₂PdSi: C, 55.68; H, 4.94; N, 1.86. Found: C, 55.95; H, 4.71; N, 1.99%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.85 (m, 8H, P(C₆H₅)₂), 7.41 (m, 12H, P(C₆H₅)₂), 6.68 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 3.82 (br., 4H, NCH₂P), 0.20 ppm (s, 9H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 152.4 (C₆H₄O, C_{ipso}), 146.7 (C₆H₄N, C_{ipso}), 134.0 (d, J_{C,P} = 10.5, PC₆H₅, C_{ortho}), 131.6 (s, PC₆H₅, C_{para}), 128.7 (d, J_{C,P} = 11.4, PC₆H₅, C_{meta}), 128.3 (d, J_{C,P} = 57.0, PC₆H₅, C_{ipso}), 122.5 and 121.1 (C₆H₄N, C_{ortho} and C_{meta}), 56.5 (d, J_{C,P} = 46.4, NCH₂P), 0.1 ppm (SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = 10.7 ppm.

4.2.7. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-SiMe₃)}] ([PdCl₂(**PP**:**SiMe**₃)])

This complex was obtained as a yellow solid (0.13 g, 74%) as described in Section 4.2.4, starting from **PP:SiMe**₃ (0.130 g, 0.24 mmol) and [PdCl₂(cod)] (0.070 g, 0.24 mmol). Anal. Calc. for $C_{35}H_{37}Cl_2NP_2PdSi$: C, 56.88; H, 5.05; N, 1.90. Found: C, 56.40; H, 4.96, N, 1.85%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.85 (m, 8H, PC₆H₅), 7.46 (m, 12H, PC₆H₅), 7.32 (d, ³*J*_{H,H} = 8.5, 2H, C₆H₄), 6.63 (d, ³*J*_{H,H} = 8.5, 2H, C₆H₄), 3.94 (br., 4H, NCH₂P), 0.19 ppm (s, 9H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 151.9 (*C*₆H₄N, C_{ipso}), 134.9 (C₆H₄Si, C_{ortho}), 133.9 (d, *J*_{C,P} = 9.9, PC₆H₅, C_{ortho}), 131.8 (s, PC₆H₅, C_{para}), 129.8 (C₆H₄Si C_{ipso}), 128.8 (d, *J*_{C,P} = 11.2, PC₆H₅, C_{meta}), 128.1 (d, *J*_{C,P} = 57.7, PC₆H₅, C_{ipso}), 118.2 (s, *C*₆H₄N, C_{ortho}), 53.8 (d, *J*_{C,P} = 43.4, NCH₂P), -1.2 ppm (s, SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = 9.9 ppm.

4.2.8. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-SiMe₂CH₂SCH₂CH₂NMe₂)}] ([PdCl₂(**PP:NMe**₂)])

This complex was obtained as a yellow solid (1.27 g, 86%). as described in Section 4.2.4, starting from **PP:NMe**₂ (1.16 g, 1.75 mmol) and [PdCl₂(cod)] (0.500 g, 1.75 mmol). However, in this case the reagents were mixed at -78 °C instead of room temperature and the residue was washed with pentane instead of hexane. Anal. Calc. for C₃₉H₄₆Cl₂N₂P₂PdSSi: C, 55.62; H, 5.51; N, 3.33; S, 3.81.

Found: C, 55.84; H, 5.28; N, 2.99; S, 3.96%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.84 (m, 8H, PC₆H₅), 7.43 (m, 14H, PC₆H₅ overlapped with 2H signal of C₆H₄), 6.60 (d, ³J_{H,H} = 8.5, 2H, C₆H₄), 3.95 (br., 4H, NCH₂P), 2.50 (m, 4H, SCH₂CH₂NMe₂), 2.20 (s, 6H, N(CH₃)₂), 1.93 (s, 2H, SiCH₂S), 0.29 ppm (s, 6H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 152.1 (s, C₆H₄N, C_{ipso}), 135.2 (s, C₆H₄Si, C_{ortho}), 133.9 (d, J_{C,P} = 10.7, PC₆H₅, C_{ortho}), 131.8 (s, PC₆H₅, C_{ipsa}), 128.8 (d, J_{C,P} = 11.5, PC₆H₅, C_{meta}), 127.9 (d, J_{C,P} = 57.6, PC₆H₅, C_{ipso}) 117.9 (C₆H₄N, C_{ortho}), 58.8 (s, SCH₂CH₂N), 53.3 (d, J_{C,P} = 47.6, NCH₂P), 45.3 (s, N(CH₃)₂), 34.2 (s, SCH₂CH₂N), 18.0 (s, SiCH₂S), -3.1 ppm (s, (SiCH₃)). ³¹P{¹H} NMR (CDCl₃, 202 MHz): δ = 10.0 ppm. ¹H-²⁹Si gHMBC (CDCl₃): δ = -4.2 ppm.

4.3. Synthesis of dendritic phosphanes and their complexes

4.3.1. Triallyl(2,4,6-trimethoxyphenyl)silane

A solution of trichloro(2,4,6-trimethoxyphenyl)silane (17.85 g, 59.2 mmol) in THF (100 mL) was slowly added via a dropping funnel to a 1 M diethyl ether solution of allylmagnesium bromide (180 mL, 180 mmol) in 50 mL of diethyl ether at 0 °C. The mixture was subsequently heated at reflux for 4 h, then cooled to room temperature and hydrolyzed with a saturated aqueous solution of ammonium chloride. The ethereal phase was decanted and the aqueous phase washed with diethyl ether (3 \times 20 mL). The combined ethereal solutions were dried over MgSO₄ and filtered. The solvent was then removed under vacuum to yield the title compound as a slightly brown oil (16.21 g, 86%). Anal. Calc. for C₁₈H₂₆O₃Si: C, 67.88; H, 8.23. Found: C, 67.36; H, 7.88%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 6.04$ (s, 2H, C₆H₂), 5.78 (m, 3H, Si(CH₂-CH=CH₂)₃), 4.79 (m, 6H, Si(CH₂-CH=CH₂)₃), 3.79 (s, 3H, OCH₃), 3.71 (s, 6H, OCH₃), 1.86 (m, 6H, Si(CH₂-CH=CH₂)₃). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 75 MHz): δ = 166.5 and 163.4 (C₆H₂O₃, C_{ipso}), 135.8 (CH₂CH=CH₂), 112.9 (CH₂CH=CH₂), 101.1 (C₆H₂Si, C_{ipso}), 90.1 (C₆H₂), 55.0 and 54.9 (CH₃O), 21.4 (CH₂CH=CH₂). ¹H-²⁹Si gHMBC (CDCl₃): $\delta = -7.8$ ppm.

4.3.2. $(C_6H_5)SiMe(CH_2CH_2CH_2SiMe_2Et)_2$ (**Ar**:**G**1:(**Et**)₂)

A 5.6 \times 10⁻³ M solution of tetrabutylammonium hexachloroplatinate(IV) in dichloromethane (1.0 mL, 5.6 mmol) and an excess of chloro(dimethyl)silane (1.8 mL, 16.9 mmol) were added via a syringe to diallyl(methyl)phenylsilane (1.140 g, 5.65 mmol) in a 25 mL ampoule fitted with a PTFE stopcock. The solution was stirred at room temperature until the reaction was complete (ca. 6 h, ¹H NMR monitoring), then the excess of silane and other volatiles were removed under vacuum. The crude product was dissolved in THF (20 mL) and added dropwise (15 min) to an icecooled 2.0 M THF solution of ethylmagnesium chloride (8.5 mL, 17.0 mmol) diluted in THF (20 mL). After the addition had finished, the reaction mixture was allowed to reach room temperature and stirring was continued overnight. The excess ethylmagnesium chloride was hydrolyzed with a concentrated aqueous solution of ammonium chloride (50 mL). The organic phase was separated by decantation, and the aqueous solution washed with diethyl ether $(3 \times 15 \text{ mL})$. The combined organic extracts were dried with anhydrous MgSO₄, filtered off, and evaporated in vacuo to yield **Ar:G**1:(**Et**)₂ as a colorless oil (1.65 g, 77%). Anal. Calc. for C₂₁H₄₂Si₃: C, 66.58; H, 11.18. Found: C, 66.11; H, 10.96%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.45$ (m, 2H, C₆H₅), 7.33 (m, 3H, C₆H₅), 1.35 (m, 4H, SiCH₂CH₂CH₂Si), 0.85 (t, ${}^{3}J_{H,H} =$ 7.9, 6H, CH₂CH₃), 0.81 (m, 4H, PhSiCH₂CH₂CH₂Si), 0.55 (m, 4H, SiCH₂CH₂CH₂SiEt), 0.44 (q, ${}^{3}J_{H,H} =$ 7.9, 4H, CH₂CH₃), 0.23 (s, 3H, PhSiCH₃), -0.09 ppm (s, 12 H, Si(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 139.0$ (C₆H₅Si, C_{ipso}), 133.8 (C₆H₅Si, C_{ortho}), 128.6 (C₆H₅Si, C_{para}), 127.6 (C₆H₅Si, C_{meta}), 19.6, 18.9 and 18.4 (SiCH₂CH₂CH₂Si), 7.4 and 7.0 (CH₂CH₃), -3.8 $(Si(CH_3)_2)$, -4.9 ppm $(C_6H_5SiCH_3)$. ¹H-²⁹Si gHMBC $(CDCl_3)$: $\delta = 3.2$ (*Si*(CH₃)₂), -3.6 ppm (*Si*C₆H₅).

4.3.3. (C₆H₄-4-OMe)(CH₂CH₂CH₂SiMe₂Et)₃ (Ar:G1:(Et)₃)

This compound was synthesized as described above for Ar:G1:(Et)₂, starting from triallyl(4-methoxyphenyl)silane (1.50 g, 5.8 mmol) and chloro(dimethyl)silane (2.50 mL, 22.7 mmol) for the hydrosilylation step, and subsequent treatment with ethylmagnesium chloride (11.40 mL, 22.8 mmol). Ar:G1:(Et)₃ was isolated as a colorless oil (2.61 g, 86%). Anal. Calc. for C₂₈H₅₈OSi₄: C, 64.29; H, 11.18. Found: C, 64.12; H, 11.18. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.37$ (d, ${}^{3}J_{H,H} = 7.7, 2H, C_{6}H_{4}$), 6.88 (d, ${}^{3}J_{H,H} = 7.7, 2H, C_{6}H_{4}$), 3.80 (s, 3H, CH₃O), 1.35 (m, 6H, SiCH₂CH₂CH₂Si), 0.89 (t, ${}^{3}J_{H,H} = 8.0, 9H$, SiCH₂CH₃), 0.81 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.56 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.43 (q, ${}^{3}J_{H,H} = 8.0, 6H, SiCH_{2}CH_{3}$), -0.09 ppm (s, 18H, Si(CH_3)₂). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 160.0$ (C_6 H₄O, C_{ipso}), 128.9 (C₆H₄Si, C_{ipso}), 135.4 (C₆H₄Si, C_{ortho}), 113.4 (C₆H₄O, C_{or-} tho), 54.9 (CH₃O), 19.8, 18.4 and 17.6 (SiCH₂CH₂CH₂Si), 7.3 and 7.0 (SiCH₂CH₃), -3.8 ppm (Si(CH₃)₂). ¹H⁻²⁹Si gHMBC (CDCl₃): $\delta = 2.8$ (SiCH₂CH₃), -4.5 ppm (SiC₆H₄).

4.3.4. (C₆H₄-2,4,6-(OMe)₃)Si(CH₂CH₂CH₂SiMe₂(CH₂Cl))₃ (**Ar:G**1:(**CH**₂**Cl**)₃)

Triallyl(2,4,6-trimethoxyphenyl)silane (0.440 g, 1.40 mmol) was combined with chloromethyl(dimethyl)silane (0.52 mL, 4.26 mmol) in a 25 mL ampoule fitted with a PTFE stopcock. Three drops of the Karstedt catalyst (3-3.5% based on Pt of a platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution) were added. After stirring overnight, all volatiles were removed under reduced pressure to leave a slightly yellow oil that was identified as Ar:G1:(CH₂Cl)₃ (0.90 g, 98%). Anal. Calc. for C₂₈H₅₅Cl₃O₃Si₄: C. 51.08: H. 8.42. Found: C. 51.10: H. 8.21%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 6.04$ (s, 2H, C₆H₂), 3.80 (s, 3H, OCH₃), 3.70 (s, 6H, OCH₃), 2.72 (s, 6H, SiCH₂Cl), 1.33 (m, 6H, SiCH₂CH₂CH₂Si), 0.85 (m, 6H, C₆H₂SiCH₂CH₂CH₂Si), 0.67 (m, 6H, C₆H₂-SiCH₂CH₂CH₂Si), 0.05 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 166.5$ and 163.1 ($C_6H_2(OCH_3)_3$, C_{ipso}), 92.9 (C₆H₂Si, C_{ipso}), 90.1 (C₆H₂Si, C_{meta}), 55.1 and 55.0 (OCH₃), 30.6 (SiCH₂Cl), 19.2, 18.6 and 18.5 (SiCH₂CH₂CH₂Si), -4.5 ppm $(Si(CH_3)_2)$. ¹H ^{29}Si gHMBC (CDCl₃): $\delta = 3.2$ (SiCH₂Cl), -4.2 ppm (SiC_6H_2) .

4.3.5. ClSiMe(CH₂CH₂CH₂SiEtMe₂)₂ (Cl:G1:(Et)₂)

Compound Ar:G1:(Et)₂ (1.64 g, 4.33 mmol) was dissolved in toluene (5 mL). Trifluoromethanesulfonic acid (0.38 mL, 4.33 mmol) was then added dropwise from a syringe to the above solution previously cooled to 0 °C. Stirring was continued for 15 min at room temperature, and an excess of lithium chloride (0.730 g, 17.3 mmol) was then added. After stirring the reaction mixture for 1 h, the volatiles were removed in vacuo and the residue extracted with hexane (10 mL). The mixture was then filtered and the solvent evaporated to yield Cl:G1:(Et)₂ as a colorless oil (1.43 g, 98%). Anal. Calc. for C₁₅H₃₇ClSi₃: C, 53.43; H, 11.06. Found: C, 53.64; H, 11.23%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.41$ (m, 4H, SiCH₂CH₂CH₂Si), 0.87 (t, ${}^{3}J_{H,H} = 8.0$, 6H, CH₂CH₃), 0.82 (m, 4H, ClSiCH₂CH₂CH₂Si), 0.56 (m, 4H, ClSiCH₂CH₂CH₂Si), 0.46 (q, ${}^{3}J_{\text{H.H}} = 8.0, 4\text{H}, CH_{2}CH_{3}$), 0.34 (s, 3H, SiCH₃), -0.07 ppm (s, 12 H, Si(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 22.3$, 19.1 and 17.6 (SiCH₂CH₂CH₂Si), 7.4 and 6.9 (CH₂CH₃), 0.2 (SiCH₃), -3.9 ppm $(Si(CH_3)_2)$. ¹H $-^{29}Si$ gHMBC (CDCl₃): $\delta = 31.4$ (SiCl), 3.2 ppm $(Si(CH_3)_2).$

4.3.6. ClSi(CH₂CH₂CH₂SiEtMe₂)₃ (Cl:G1:(Et)₃)

This compound was synthesized as a pale-brown oil (0.44 g, 99%) following the procedure described above for **Cl:G1**:(**Et**)₂, starting from **Ar:G1**:(**Et**)₃ (0.500 g, 0.98 mmol), tri-fluoromethanesulfonic acid (0.10 mL, 1.17 mmol), and lithium chloride (0.130 g, 3 mmol). Anal. Calc. for $C_{21}H_{51}ClSi_4$: C, 55.87; H,

11.39. Found: C, 55.87; H, 11.86%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.41$ (m, 6H, SiCH₂CH₂CH₂Si), 0.90 (t, ³*J*_{H,H} = 8.1, 9H, CH₂CH₃), 0.84 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.57 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.45 (q, ³*J*_{H,H} = 8.1, 6H, CH₂CH₃), -0.07 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 21.0$, 19.2 and 17.7 (SiCH₂CH₂CH₂Si), 7.3 and 6.9 (CH₂CH₃), -3.9 ppm (SiCH₃). ¹H-²⁹Si gHMBC (CDCl₃): $\delta = 29.8$ (SiCl), 2.8 ppm (SiCH₃).

4.3.7. ClSi(CH₂CH₂CH₂SiMe₂(CH₂Cl))₃ (Cl:G1:(CH₂Cl)₃)

Compound **Ar**:**G**1:(**CH**₂**CI**)₃ (0.680 g, 1.04 mmol) was dissolved in 20 mL of diethyl ether and an excess of hydrogen chloride in the form of a 1 M diethyl ether solution (1.20 mL, 1.2 mmol) was added via a syringe. The solution was stirred at room temperature for 30 min and then evaporated under vacuum. 1,3,5-Trimethoxybenzene was removed by sublimation at 120 °C and 1 mbar of pressure to leave a brown oil that was subsequently identified as **Cl**:**G**1:(**CH**₂**Cl**)₃ (0.52 g, 96%). Anal. Calc. for C₁₉H₄₄Cl₄Si₄: C, 43.33; H, 8.42. Found: C, 43.03; H, 8.20%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.76$ (s, 6H, SiCH₂Cl), 1.46 (m, 6H, SiCH₂CH₂CH₂Si), 0.86 (m, 6H, ClSiCH₂CH₂CH₂Si), 0.72 (m, 6H, ClSiCH₂CH₂CH₂Si), 0.10 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 30.3$ (SiCH₂Cl), 20.7, 17.9 and 17.5 (SiCH₂CH₂CH₂Si), -4.5 ppm (SiCH₃). ¹H-²⁹Si gHMBC (CDCl₃): $\delta = 30.3$ (SiCl), 3.3 ppm (SiCH₂Cl).

4.3.8. (*Ph*₂PCH₂)₂N(*C*₆H₄-4-SiMe(CH₂CH₂CH₂SiEtMe₂)₂) (**PP:G**1:(**Et**)₂)

A 1.6 M solution of *n*-butyllithium in hexane (0.98 mL). 1.56 mmol) was slowly added to a solution of 4-bromo-N.N-bis(diphenylphosphanomethyl)aniline (0.890 g, 1.56 mmol) at -78 °C in THF (15 mL). Stirring was continued at the same temperature for 15 min, then a solution of Cl:G1:(Et)₂ (0.08 mL, 0.62 mmol) was added and the reaction mixture allowed to warm to room temperature. The solvent was then removed under vacuum and the residue extracted with hexane (3 \times 10 mL). Evaporation of the hexane solution to dryness yielded **PP:G1:(Et)**₂ as a slightly yellow oil (0.99 g, 81%). Anal. Calc. for C₄₇H₆₅NP₂Si₃: C, 71.44; H, 8.29; N, 1.77. Found: C, 70.98, H, 8.34; N, 1.79%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.30$ (m, 20H, PC₆H₅), 7.27 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 6.77 (d, ${}^{3}J_{\rm H,H}$ = 8.6, 2H, C₆H₄), 3.89 (br., 4H, NCH₂P), 1.33 (m, 4H, $SiCH_2CH_2CH_2Si$), 0.89 (t, ${}^{3}J_{H,H} = 8.0$, 6H, CH_2CH_3), 0.75 (m, 4H, SiCH₂CH₂CH₂SiEt), 0.55 (m, 4H, SiCH₂CH₂CH₂SiEt), 0.45 (q, ${}^{3}J_{\text{H,H}} = 8.0, 4\text{H}, CH_{2}CH_{3}), 0.16 (s, 3\text{H}, C_{6}H_{4}SiCH_{3}), -0.08 (s, 12 \text{ H}, 12 \text{ H})$ Si(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 148.1$ (C₆H₄N, C_{ipso}), 137.5 (d, $J_{C,P} = 15.3$, PC_6H_5 , C_{ipso}), 134.7 (C_6H_4Si , C_{ortho}), 133.2 (d, $J_{C,P} = 19.1, PC_6H_5, C_{ortho}), 128.8 (d, J_{C,P} = 16.9, PC_6H_5, C_{meta}), 128.4 (d, J_{C,P} = 16.9, PC_6H_5, C_{meta})$ $J_{C,P} = 6.2$, PC₆H₅, C_{para}), 125.2 (C₆H₄Si, C_{ipso}), 113.4 (C₆H₄N, C_{ortho}), 53.6 (dd, ${}^{1}J_{C,P} = 18.4$ and ${}^{3}J_{C,P} = 8.4$, NCH₂P), 19.7, 19.3 and 18.5 (SiCH₂CH₂CH₂Si), 7.5 and 7.1 (CH₂CH₃), -3.7 (Si(CH₃)₂), -4.6 ppm $(C_6H_4SiCH_3)$. ³¹P $\{^1H\}$ NMR (CDCl₃, 202 MHz): $\delta = -26.6$ ppm. $^{1}\text{H}-^{29}\text{Si}$ gHMBC (CDCl₃): $\delta = 2.9$ (SiCH₂CH₃), -4.8 ppm (SiC₆H₄).

4.3.9. $(Ph_2PCH_2)_2N(C_6H_4-4-Si(CH_2CH_2CH_2SiMe_2Et)_3)$ (**PP:G**1:(**Et**)₃)

This compound was obtained as a slightly yellow oil (1.16 g, 92%) following the procedure described above for **PP:G1**:(**Et**)₂, starting from 4-bromo-*N*,*N*-bis(diphenylphosphanomethyl)aniline (0.790 g, 1.39 mmol), *n*-butyllithium (0.90 mL, 1.39 mmol) and **CI:G1**:(**Et**)₃ (0.630 g, 1.39 mmol). Anal. Calc. for C₅₃H₇₉NP₂Si₄: C, 70.38; H, 8.80; N, 1.55. Found: C, 70.29; H, 8.83; N, 1.52%. ¹H NMR (C₆D₆, 300 MHz): δ = 7.30 (m, 20H, PC₆H₅), 7.23 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 6.75 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 6.90 (d, ²J_{H,P} = 4.4, 4H, NCH₂P), 1.35 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.89 (t, ³J_{H,H} = 7.9, 9H, CH₂CH₃), 0.77 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.56 (m, 6H, SiCH₂CH₂CH₂SiEt), 0.44 (q, ³J_{H,H} = 7.9, 6H, CH₂CH₃), -0.08 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (C₆D₆, 75 MHz): δ = 148.1 (C₆H₄N, C_{ipso}), 137.4 (d, J_{C,P} = 14.2, PC₆H₅,

C_{ipso}), 134.9 (*C*₆H₄Si, C_{ortho}), 133.3 (d, *J*_{C,P} = 18.6, PC₆H₅, C_{ortho}), 128.6 (d, *J*_{C,P} = 21.7, PC₆H₅, C_{meta}), 128.4 (s, PC₆H₅, C_{para}), 124.4 (C₆H₄Si, C_{ipso}), 113.4 (C₆H₄N, C_{ortho}), 53.6 (d, *J*_{C,P} = 8.0, NCH₂P), 19.9, 18.5 and 17.8 (SiCH₂CH₂CH₂Si), 7.4 and 7.1 (CH₂CH₃), -3.7 ppm (SiCH₃). ³¹P {¹H} NMR (C₆D₆, 202 MHz): $\delta = -26.2$ ppm. ¹H $-^{29}$ Si gHMBC (C₆D₆): $\delta = 2.8$ (SiCH₃), -4.8 ppm (SiC₆H₄).

4.3.10. (*Ph*₂PCH₂)₂N(*C*₆H₄-4-SiMe((CH₂)₃SiMe(CH₂)₃SiEtMe₂)₂) **PP:G**₂:(**E**t)₄

This compound was obtained as a slightly yellow oil (0.76 g, 92%) following the procedure described above for **PP:G1:(Et)**₂, starting from 4-bromo-N,N-bis(diphenylphosphanomethyl)aniline (0.39 g, 0.68 mmol), n-butyllithium (0.43 mL, 0.68 mmol) and the second generation dendron **Cl:G2:(Et)**₄ (0.52 g, 0.68 mmol), which was prepared following similar procedure to those reported previously [14,16]. This compound was obtained with small amounts of Cl:G2:(Et)₆ and PhN(CH₂PPh₂)₂ but was used without prior purification. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.29$ (m, 22H, PC₆H₅ overlapped with 2H signal of C6H4), 6.77 (d, ³J_{H,H} = 8.3, 2H, C₆H₄), 3.88 (br., 4H, NCH₂P), 1.30 (m, 12H, SiCH2CH₂CH2Si), 0.89 (t, ${}^{3}J_{H,H} = 7.9$, 12H, SiCH₂CH₃), 0.75 (m, 4H, C₆H₄SiCH₂CH₂CH₂Si), 0.53 (m, 20H, SiCH₂CH₂CH₂Si), 0.44 (q, ${}^{3}J_{\text{H,H}} = 7.9, 8\text{H}, \text{SiCH}_{2}\text{CH}_{3}$), 0.16 (s, 3H, C₆H₄SiCH₃), 0.08 (s, 24H, Si(CH₃)₂), -0.10 ppm (s, 6H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 148.2 (C₆H₄N, C_{ipso}), 137.3 (d, J_{C,P} = 15.3, PC₆H₅, C_{ipso}), 134.7 (C_6H_4Si , C_{ortho}), 133.2 (d, $J_{C,P} = 21.2$, PC_6H_5 , C_{ortho}), 128.5 (d, $J_{C,P} = 23.6$, PC_6H_5 , C_{meta}), 128.4 (s, PC_6H_5 , C_{para}), 113.5 (s, C_6H_4N , C_{ortho}), 53.8 (dd, ${}^{1}J_{C,P} = 24.8$, ${}^{3}J_{C,P} = 7.4$, NCH₂P), 19.7, 18.5 17.9 (SiCH₂CH₂CH₂SiEt), 19.5. 18.7 and and 17.7 (C₆H₄SiCH₂CH₂CH₂Si), 7.4 and 7.0 (SiCH₂CH₃), -3.8(Si(CH₃)₂), -4.9 ppm (C₆H₄SiCH₃ and SiCH₃ overlapped). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 202 MHz): $\delta = -27.5$ ppm. ¹H $-^{29}$ Si gHMBC (CDCl₃): $\delta = 3.2$ (SiEt), 1.3 (SiMe), -4.5 ppm (SiC₆H₄).

4.3.11. (Ph₂PCH₂)₂N(C₆H₄-4-Si(CH₂CH₂CH₂SiMe₂(CH₂Cl))₃) (**PP:G**1:(**CH**₂**Cl**)₃)

This compound was isolated as a pale-yellow oil (1.89 g, 94%) following the procedure described above for **PP:G1:(Et)**₂, starting from 4-bromo-N,N-bis(diphenylphosphanomethyl)aniline (1.16 g, 2.05 mmol), n-butyllithium (0.82 mL, 2.05 mmol) and Cl:G1:(CH₂Cl)₃ (1.19 g, 2.27 mmol). Anal. Calc. for C₅₁H₇₂Cl₃NP₂Si₄: C, 62.52; H, 7.41; N, 1.43. Found: C, 62.49; C, 7.38; N, 1.45%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.30$ (m, 20H, PC₆H₅), 7.21 (d, ³J_{H,H} = 8.6, 2H, C_6H_4), 6.76 (d, ${}^{3}J_{H,H} = 8.6$, 2H, C_6H_4), 3.89 (d, ${}^{2}J_{H,P} = 3.6$, 4H, NCH₂P), 2.75 (s, 6H, SiCH₂Cl), 1.34 (m, 6H, SiCH₂CH₂CH₂Si), 0.79 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.70 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.08 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 148.1$ (C₆H₄N, C_{ipso}), 137.3 (d, J_{C,P} = 15.3, PC₆H₅, C_{ipso}), 134.9 (C₆H₄Si, C_{ortho}), 133.2 (d, *J*_{C,P} = 18.4, PC₆H₅, C_{ortho}), 128.6 (d, *J*_{C,P} = 17.7, PC₆H₅, C_{meta}), 128.4 (d, $J_{C,P} = 6.1$, PC₆H₅, C_{para}), 123.2 (C₆H₄Si, C_{ipso}), 113.4 (s, C₆H₄N, Cortho), 53.5 (d, *J*_{CP} = 8.4, NCH₂P), 30.6 (CH₂Cl), 18.6, 18.3 and 17.5 $(SiCH_2CH_2CH_2Si)$, -4.4 ppm $(SiCH_3)$. ³¹P{¹H} NMR (CDCl₃, 202 MHz): $\delta = -27.5$ ppm. ¹H $^{-29}$ Si gHMBC (CDCl₃): $\delta = 3.4$ (SiCH₂Cl), -4.8 ppm (SiC₆H₄).

4.3.12. (Ph₂PCH₂)₂N(C₆H₄-4-Si(CH₂CH₂CH₂SiMe₂(CH₂S(CH₂)₂ NMe₂))₃) (**PP:G**1:(**NMe**₂)₃)

This compound was isolated as a slightly yellow oil (1.48 g, 86%) following the procedure described above for **PP:NMe**₂, starting from **PP:G1:(CH₂Cl)**₃ (1.40 g, 1.45 mmol), 2-(dimethylamino)ethanethiol hydrochloride (0.640 g, 4.49 mmol) and NaOH (0.890 g, 21.8 mmol). Anal. Calc. for C₆₃H₁₀₂N₄P₂S₃Si₄: C, 63.80; H, 8.67; N, 4.62; S, 8.11. Found: C, 63.85; H, 8.75, N, 4.71; S, 8.09%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.29 (m, 20H, PC₆H₅), 7.22 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 6.75 (d, ³J_{H,H} = 8.6, 2H, C₆H₄), 3.89 (d, ²J_{H,P} = 4.0, 4H, NCH₂P),

2.61 (m, 6H, SCH₂CH₂N), 2.53 (m, 6H, SCH₂CH₂N), 2.26 (s, 18H, N(CH₃)₂), 1.78 (s, 6H, SiCH₂S), 1.36 (m, 6H, SiCH₂CH₂CH₂Si), 0.78 (m, 6H, C₆H₄SiCH₂CH₂CH₂CH₂Si), 0.66 (m, 6H, C₆H₄SiCH₂CH₂CH₂CH₂Si), 0.05 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 148.1 (C₆H₄N, C_{ipso}), 137.1 (d, J_{C,P} = 14.7, PC₆H₅, C_{ipso}), 134.7 (C₆H₄Si, C_{ortho}), 133.0 (d, J_{C,P} = 19.1, PC₆H₅, C_{ortho}), 123.5 (C₆H₄Si, C_{ipso}), 128.4 (d, J_{C,P} = 29.5, PC₆H₅, C_{meta}), 128.3 (d, J_{C,P} = 5.9, PC₆H₅, C_{para}), 113.3 (C₆H₄N, C_{ortho}), 58.7 (SCH₂CH₂N), 53.3 (br., NCH₂P), 45.2 (NCH₃), 33.9 (SCH₂CH₂N), 18.2 (SiCH₂S), 19.7, 17.6 and 17.4 (SiCH₂CH₂CH₂Si), -3.4 ppm (SiCH₃). ³¹P{¹H} NMR (CDCl₃): δ = 1.6 (SiCH₃), -5.0 ppm (SiC₆H₄).

4.3.13. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-SiMe(CH₂CH₂CH₂SiEtMe₂)₂)}] ([PdCl₂(**PP:G**1:(**Et**)₂)])

A solution of [PdCl₂(cod)] (0.220 g, 0.76 mmol) in CH₂Cl₂ (10 mL) was added to a solution of $PP:G1:(Et)_2$ (0.600 g, 0.76 mmol) in CH₂Cl₂ (15 mL). After stirring for 3 h at room temperature, the orange solution was evaporated under vacuum and the residue extracted with hexane (2 \times 10 mL). Volatiles were removed under vacuum to leave [PdCl₂(**PP:G1:(Et**)₂)] as a yellow solid (0.17 g, 82%). Anal. Calc. for C₄₇H₆₅Cl₂NP₂PdSi₃: C, 58.34; H, 6.77; N, 1.45. Found: C, 58.34; H, 6.28; N, 1.63%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.85$ (m, 8H, PC₆ H_5), 7.44 (m, 12H, PC₆ H_5), 7.28 (d, ${}^{3}J_{H,H} = 8.2, 2H, C_{6}H_{4}$), 6.62 (d, ${}^{3}J_{H,H} = 8.2$, 2H, C₆H₄), 3.95 (br., 4H, NCH₂P), 1.27 (m, 4H, SiCH₂CH₂CH₂Si), 0.85 (t, ${}^{3}J_{H,H} =$ 7.9, 6H, CH₂CH₃), 0.73 (m, 4H, C₆H₄SiCH₂CH₂CH₂Si), 0.50 (m, 4H, C₆H₄SiCH₂CH₂CH₂Si), 0.39 (q, ${}^{3}J_{\text{H,H}} = 7.9, 4\text{H}, CH_2CH_3$, 0.16 (s, 3H, C₆H₄SiCH₃), -0.12 ppm (s, 12 H, Si(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 151.7$ (C₆H₄N, C_{ipso}), 135.3 (C_6H_4Si , C_{ortho}), 133.8 (d, $J_{C,P} = 9.9$, PC_6H_5 , C_{ortho}), 131.8 (s, PC_6H_5 , C_{para}), 128.8 (d, $J_{C,P} = 12.8$, PC_6H_5 , C_{meta}), 127.9 (d, $J_{C,P} = 57.1$, PC6H5, Cipso), 129.8 (C6H4Si, Cipso), 118.9 (s, C6H4N, Cortho), 53.7 (d, J_{CP} = 47.7, NCH₂P), 19.5, 18.9 and 18.3 (SiCH₂CH₂CH₂Si), 7.3 and 7.0 (CH₂CH₃), -3.8 (Si(CH₃)₂), -4.9 ppm (C₆H₄SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): $\delta = 10.9$ ppm. ¹H $^{-29}$ Si gHMBC (CDCl₃): $\delta = 3.6$ $(SiCH_2CH_3)$, -3.5 ppm (SiC_6H_4) .

4.3.14. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-Si(CH₂CH₂CH₂SiEtMe₂)₃)}] ([PdCl₂(**PP:G**1:(**Et**)₃)])

This compound was isolated as an orange solid (0.54 g, 72%) following the procedure described above for (**PP:G1:(Et**)₂)PdCl₂, starting from **PP:G1:(Et)**₃ (0.630 g, 0.70 mmol) and [PdCl₂(cod)] (0.200 g, 0.70 mmol). Anal. Calc. for C₅₃H₇₉Cl₂NP₂PdSi₄: C, 58.84; H, 7.36; N, 1.29. Found: C, 58.77; H, 6.83; N, 1.45%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.83$ (m, 8H, PC₆H₅), 7.40 (m, 12H, PC₆H₅), 7.26 (d, ${}^{3}J_{H,H} = 8.2, 2H, C_{6}H_{4}$), 6.60 (d, ${}^{3}J_{H,H} = 8.2, 2H, C_{6}H_{4}$), 3.96 (br., 4H, NCH₂P), 1.28 (m, 6H, SiCH₂CH₂CH₂Si), 0.86 (t, ³J_{H,H} = 8.0, 9H, CH₂CH₃), 0.75 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.52 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.41 (q, ${}^{3}J_{H,H} = 8.0, 6H, CH_{2}CH_{3}$), -0.12 ppm (s, 18H, SiCH_{3}). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75 MHz): $\delta = 151.6$ (C₆H₄N, C_{ipso}), 135.5 (C₆H₄Si, C_{ortho}), 133.9 (d, $J_{C,P} = 10.3$, PC₆H₅, C_{ortho}), 131.8 (s, PC₆H₅, C_{para}), 129.8 $(C_{6}H_{4}Si, C_{ipso}), 128.8 (d, J_{C,P} = 11.1, PC_{6}H_{5}, C_{meta}), 127.9 (d, J_{C,P} = 57.6, P_{12})$ PC₆H₅, C_{ipso}), 118.0 (C₆H₄N, C_{ortho}), 53.6 (d, J_{C,P} = 47.0, NCH₂P), 19.7, 18.4 and 17.3 (SiCH₂CH₂CH₂Si), 7.4 and 7.0 (CH₂CH₃), -3.8 ppm (SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): $\delta = 10.9$ ppm. ¹H $-^{29}$ Si gHMBC (CDCl₃): $\delta = 2.9$ (SiCH₃), -4.1 ppm (SiC₆H₄).

4.3.15. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-SiMe((CH₂)₃SiMe(CH₂)₃ SiEtMe₂)₂)] ([PdCl₂(**PP:G**₂:(Et)₄)])

Compound [PdCl₂(**PP:G**2:(**Et**)₄)] was isolated as a yellow solid (0.70 g, 74%) following the procedure described above for [PdCl₂(**PP:G**1:(**Et**)₂)], starting from **PP:G**2:(**Et**)₄ (0.83 g, 0.68 mmol) and [PdCl₂(cod)] (0.19 g, 0.68 mmol). Anal. Calc. for C₆₉H₁₁₇Cl₂NP₂PdSi₇: C, 59.34; H, 8.44; N, 1.00. Found: C, 58.88; H, 8.98; N, 1.21%. ¹H NMR (CDCl₃, 300 MHz): δ = 7.84 (m, 8H, PC₆H₅),

7.45 (m, 12H, PC₆H₅), 7.26 (d, ${}^{3}J_{H,H} = 8.8$, 2H, C₆H₄), 6.63 (d, ${}^{3}J_{H,H} = 8.8$, 2H, C₆H₄), 3.94 (br., 4H, NCH₂P), 1.26 (m, 12H, SiCH₂CH₂CH₂Si), 0.87 (t, ${}^{3}J_{H,H} = 8.0$, 12H, CH₂CH₃), 0.72 (m, 4H, C₆H₄SiCH₂CH₂CH₂Si), 0.49 (m, 20H, SiCH₂CH₂CH₂SiCH₂CH₂CH₂Si), 0.49 (m, 20H, SiCH₂CH₂CH₂SiCH₂CH₂CH₂CH₂Si), 0.42 (q, ${}^{3}J_{H,H} = 8.0$, 8H, CH₂CH₃), 0.16 (s, 3H, C₆H₄SiCH₃), -0.11 (s, 24 H, Si(CH₃)₂), -0.15 ppm (s, 6H, SiCH₃). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 75 MHz): $\delta = 151.8$ (C₆H₄N, C_{ipso}), 135.3 (C₆H₄Si, C_{ortho}), 133.9 (d, J_{C,P} = 9.9, PC₆H₅, C_{ortho}), 131.8 (s, PC₆H₅, C_{para}), 128.8 (d, J_{C,P} = 11.2, PC₆H₅, C_{meta}), 127.9 (d, J_{C,P} = 57.6, PC₆H₅, C_{ipso}), 118.1 (C₆H₄N, C_{ortho}), 53.7 (d, J_{C,P} = 47.1, NCH₂P), 19.7, 18.7 and 18.4 (SiCH₂CH₂CH₂Si), 19.1, 18.9 and 18.4 (C₆H₄SiCH₂CH₂CH₂Si), 7.4 and 7.0 (CH₂CH₃), -3.8 (Si(CH₃)₂), -4.9 ppm (C₆H₄SiCH₃ and SiCH₃ overlapped). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 202 MHz): $\delta = 10.0$ ppm. ${}^{1}H{}^{-29}Si$ gHMBC (CDCl₃): $\delta = 2.9$ (*Si*Et), 1.0 (*Si*Me), -3.8 ppm (*Si*C₆H₄).

4.3.16. [PdCl₂{(Ph₂PCH₂)₂N(C₆H₄-4-Si(CH₂CH₂CH₂SiMe₂(CH₂SCH₂-CH₂NMe₂))₃]] ([PdCl₂(**PP:G**1:(**NMe**₂)₃)])

A solution of [PdCl₂(cod)] (0.100 g, 0.36 mmol) in CH₂Cl₂ (5 mL) was added to a solution of phosphane **PP:G1**:(**NMe**₂)₃ (0.420 g, 0.36 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred overnight at room temperature and then the solvent was evaporated under vacuum to afford [PdCl₂(**PP:G**1:(**NMe**₂)₃)] as a yellow solid (0.47 g, 96%) after washing with hexane (3 \times 10 mL). Anal. Calc. for C₆₃H₁₀₂Cl₂N₄P₂PdS₃Si₄: C, 55.50; H, 7.54; N, 4.11; S, 7.06. Found: C, 55.46; H, 7.62; N, 4.07; S, 6.97%. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.85$ (m, 8H, PC₆H₅), 7.45 (m, 12H, PC₆H₅), 7.25 (d, ${}^{3}J_{H,H} = 8.1, 2H, C_{6}H_{4}), 6.61$ (d, ${}^{3}J_{H,H} = 8.1, 2H, C_{6}H_{4}), 3.99$ (br., 4H, NCH2P), 2.58 (m, 6H, SCH2CH2N), 2.49 (m, 6H, SCH2CH2N), 2.30 (s, 18H, N(CH₃)₂), 1.76 (s, 6H, SiCH₂S), 1.30 (m, 6H, SiCH₂CH₂CH₂Si), 0.76 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.63 (m, 6H, C₆H₄-SiCH₂CH₂CH₂Si), 0.01 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 152.0 (C₆H₄N, C_{ipso}), 135.5 (C₆H₄Si, C_{ortho}), 133.8 (d, $J_{C,P} = 10.3$, PC_6H_5 , C_{ortho}), 131.7 (s, PC_6H_5 , C_{para}), 128.7 (d, $J_{C,P} = 11.2$, PC₆H₅, C_{meta}), 127.9 (d, J_{C,P} = 55.3, PC₆H₅, C_{ipso}), 117.9 (C₆H₄N, C_{ortho}), 129.7 (C_6H_4Si , C_{ipso}), 58.8 (SCH₂CH₂N), 53.6 (dd, ${}^1J_{C,P}$ = 42.2, ${}^{3}J_{C,P} = 3.4$, NCH₂P), 45.3 (N(CH₃)₂), 34.0 (SCH₂CH₂N), 18.3 (SiCH₂S), 19.8, 17.8 and 17.2 (SiCH₂CH₂CH₂Si), -3.2 ppm (SiCH₃). ³¹P{¹H} NMR (CDCl₃, 202 MHz): $\delta = 10.8$ ppm. ¹H $-^{29}$ Si gHMBC (CDCl₃): $\delta = 1.7$ $(SiCH_2S)$, -4.1 ppm (SiC_6H_4) .

4.3.17. [Pdl₂{(Ph₂PCH₂)₂N(C₆H₄-4-Si(CH₂CH₂CH₂SiMe₂(CH₂SCH₂CH₂-NMe₃))₃)]I₃ (PdI₂(**PP:G**1:(**NMe₃I**)₃))

Methyl iodide (0.34 mL, 0.69 mmol) was added to a solution of [PdCl₂(**PP:G1:(NMe**₂)₃)] (0.150 g, 0.12 mmol) in CH₂Cl₂ (15 mL) with a syringe. The reaction mixture was stirred overnight at room temperature and the solvent then removed under vacuum. The residue thus obtained was washed with diethyl ether $(3 \times 10 \text{ mL})$ and dried in vacuo to yield PdI₂(**PP:G1:(N-**Me₃I)₃) as an orange solid (0.17 g, 80%). Anal. Calc. for $C_{66}H_{111}I_5N_4P_2PdS_3Si_4{:}$ C, 40.20; H, 5.67; N, 2.84; S, 4.88. Found: C, 40.04; H, 5.63; N, 2.84; S, 4.95%. ¹H NMR ([D₆]DMSO, 300 MHz): $\delta = 7.98$ (m, 8H, PC₆H₅), 7.51 (m, 12H, PC₆H₅), 6.83 (d, ${}^{3}J_{H,H} = 8.2, 2H, C_{6}H_{4}), 6.33 (d, {}^{3}J_{H,H} = 8.2, 2H, C_{6}H_{4}), 4.72 (br., 4H, J_{1})$ NCH₂P), 3.50 (m, 6H, SCH₂CH₂N), 3.05 (s, 27H, N(CH₃)₃), 2.83 (m, 6H, SCH₂CH₂N), 1.87 (s, 6H, SiCH₂S), 1.23 (m, 6H, SiCH₂CH₂CH₂Si), 0.65 (m, 6H, C₆H₄SiCH₂CH₂CH₂Si), 0.58 (m, 6H, C₆H₄Si- $CH_2CH_2CH_2Si$, -0.08 ppm (s, 18H, SiCH₃). ¹³C{¹H} NMR ([D₆] DMSO, 75 MHz): $\delta = 145.2$ (C₆H₄N, C_{ipso}), 134.0 (d, J_{CP} = 9.3, PC₆H₅, C_{ortho}), 133.6 (C₆H₄Si, C_{ortho}), 130.7 (s, PC₆H₅, C_{para}), 127.6 (d, J_{C,P} = 7.3, PC₆H₅, C_{meta}), 114.0 (C₆H₄N, C_{ortho}), 63.5 (SCH₂CH₂N), 51.7 (N(CH₃)₃, overlapped with NCH2P), 26.7 (SCH_2CH_2N) , 17.3 $(SiCH_2S)$, 18.5, 16.2 and 15.8 $(SiCH_2-CH_2CH_2Si)$, -3.9 ppm $(SiCH_3)$. ³¹P{¹H} NMR $([D_6]DMSO$, 202 MHz): $\delta = -10.4$ ppm. ¹H-²⁹Si gHMBC $([D_6]DMSO)$: $\delta = 1.8$ (SiCH₂S), -4.7 ppm (SiC₆H₄).

Table 2

Selected crystallographic data and structure refinement details for [PdCl₂(PP:Br)].

	, ,,
Empirical formula	C ₃₂ H ₁₈ BrCl ₂ NP ₂ Pd · CHCl ₃
Formula weight	2595.22
Color	Yellow
Temperature (K)	200(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P21
a (Å)	17.281(4)
b (Å)	17.358(4)
<i>c</i> (Å)	18.260(5)
α (°)	90
β(°)	102.73(2)
γ (°)	90
Volume (Å ³)	5343(2)
Ζ	6
Calculated density (g/cm ³)	1.613
Absorption coefficient (mm ⁻¹)	2.132
F(000)	2580
Crystal size (mm)	0.5 imes 0.4 imes 0.3
θ range (°)	3.05 to 27.57
Limiting indices	$-22 \le h \le 21, -22 \le k \le 22, 0 \le l \le 23$
Reflections collected/unique	24,508/24,147 [R(int) = 0.0419]
Completeness to θ_{max}	99.5%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.444 and 0.376
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	24147/1/1117
Goodness of fit on F^2	0.952
Final R^a indices $[I > 2\sigma(I)]$	R1 = 0.0540, wR2 = 0.0998
R indices (all data)	R1 = 0.1838, wR2 = 0.1216
Largest diff. peak and hole (e/Å ³)	0.969 and -0.676
$a R1 - \Sigma F_1 - F_1 / \Sigma F_2 \cdot wR2 - \{$	$[\Sigma_{(k)}(F^2 - F^2)]/[\Sigma_{(k)}(F^2)^2]^{1/2}$

^a $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR2 = \{ [\Sigma \omega (F_0^2 - F_c^2)] / [\Sigma \omega (F_0^2)^2] \}^{1/2}$.

4.4. X-ray crystallographic studies

Suitable monocrystals of [PdCl₂(**PP:Br**)] were obtained by slow diffusion of hexane into a chloroform solution. A summary of crystal data, data collection, and refinement parameters for the structural analysis is given in Table 2. Crystals were glued to a glass fiber using an inert polyfluorinated oil and mounted in the low temperature N₂ stream (200 K) of a Bruker-Nonius Kappa-CCD diffractometer equipped with an area detector and an Oxford Cryostream 700 unit. Intensities were collected using graphitemonochromated Mo– K_{α} radiation ($\lambda = 0.71073$ Å). Data were measured with an exposure time of 40 s per frame (eight sets; 479 frames; phi/omega scans 2.0° scan-width). Raw data were corrected for Lorenz and polarization effects.

The structure was solved by direct methods, completed by subsequent difference Fourier techniques and refined by fullmatrix least squares on F^2 (SHELXL-97) [30]. Anisotropic thermal parameters were used in the last cycles of refinement for almost all non-hydrogen atoms. Absorption correction procedures were carried out using the multiscan SORTAV program [31]. The hydrogen atoms were included from geometrical calculations and refined using a riding model. All the calculations were made using the WINGX system [32].

4.5. Procedure for the Heck reaction

The corresponding catalyst precursor was weighed (5 μ mol) into a 10 mL screw-capped glass vial equipped with a magnetic stirrer. The vial was fitted with a magnetic stirring bar, capped and sealed with a septum, and purged by repeated argon/vacuum operations. Methyl acrylate (0.5 mmol), 4-iodotoluene (0.5 mmol), triethylamine (0.5 mmol), and naphthalene as internal GC standard (0.1 mmol) were dissolved in acetonitrile (5 mL) and syringed into the vial. The vial was immediately placed in an oil bath thermostated at 80 °C, with vigorous stirring, taking

that instant as the starting time of the reaction. Stirring of the mixture was maintained and 1 μL samples were withdrawn periodically and analyzed by GC using naphthalene as internal standard.

Acknowledgments

We gratefully acknowledge financial support from the DGI-Ministerio de Ciencia y Tecnología (Project CTQ2008-02918/BQU and CTQ2011-24096) and Universidad de Alcalá (FPI grant to SV).

Appendix A. Supplementary material

CCDC 874139 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

References

- (a) B. Cornils, W.A. Herrmann (Eds.), Aqueous-Phase Organometallic Catalysis: Concepts and Applications, second ed., Wiley-VCH, Weinheim, Germany, 2004;
 (b) F. Joó, Aqueous Organometallic Catalysis, Kluwer, Dordrecht, The
 - (c) C.-J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68–82.
- [2] (a) K.H. Shaughnessy, Chem. Rev. 109 (2009) 643–710;
- (b) P. Kalck, F. Monteil, Adv. Organomet. Chem. 34 (1992) 219–284.
- [3] N. Pinault, D.W. Bruce, Coord. Chem. Rev. 241 (2003) 1–25.
- [4] R. Laurent, A.-M. Caminade, in: A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Ouali, B. Delavaux-Nicot (Eds.), Dendrimers: Towards Catalytic, Material and Biomedical Uses, Wiley, Chichester, UK., 2011 (chapter 10).
- [5] (a) J.M.J. Fréchet, D.A. Tomalia (Eds.), Dendrimers and Other Dendritic Polymers, Wiley-VCH, New York, 2002;
 (b) G.R. Newkome, C.N. Moorefield, F. Vögtle (Eds.), Dendrimers and Den-
- drons: Concepts, Syntheses, Applications, Wiley-VCH, Weinheim, 2001. [6] (a) A.W. van der Made, P.W.N.M. van Leeuwen, J. Chem. Soc. Chem. Commun.
- (1992) 1400–1401;
 (b) A.W. van der Made, P.W.N.M. van Leeuwen, J.C. de Wilde, R.A.C. Brandes, Adv. Mater. 5 (1993) 466–468.(c) A.M. Muzafarov, O.B. Gorbatsevich, E.A. Rebrov, G.M. Ignatéva, T.B. Myakushev, A.F. Bulkin, V.S. Papkov, Polym. Sci. Ser. A 35 (1993) 1575–1580;
 (d) L.L. Zhou, J. Roovers, Macromolecules 26 (1993) 963–968;
 (e) B. Alonso, I. Cuadrado, M. Morán, J. Losada, J. Chem. Soc. Chem. Commun.
 - (1994) 2575–2576; (f) P.R. Dvornic, M.J. Owen (Eds.), Silicon-Containing Dendritic Polymers, Springer, 2009.
- [7] J.W.J. Knapen, A.W. van der Made, J.C. de Wilde, P.W.N.M. Van Leeuwen, P. Wijkens, D.M. Grove, G. van Koten, Nature 372 (1994) 659–663.
- [8] Selected reviews on dendritic catalyts: (a) D. Astruc, F. Chardac, Chem. Rev. 101 (2001) 2991–3023:
- (b) R. Kreiter, A.W. Kleij, R.J.M. Klein Gebbink, G. van Koten, Top. Curr. Chem. 217 (2001) 163–199;
 (c) G.E. Oosterom, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Angew. Chem. Int. Ed. 40 (2001) 1828–1849;
 - (d) D. Méry, D. Astruc, Coord. Chem. Rev. 250 (2006) 1965-1979;
- (e) R. Andrés, E. de Jesús, J.C. Flores, New J. Chem. 31 (2007) 1161-1191;
- (f) D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110 (2010) 1857-1959.
- [9] S.W. Krska, D. Seyferth, J. Am. Chem. Soc. 120 (1998) 3604–3612.
- [10] Selected publications: (a) R. Andrés, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Eur. J. Inorg. Chem. (2002) 2281–2286;
 (b) R. Andrés, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, J. Organomet. Chem. 690 (2005) 939–943;
 (c) J.M. Benito, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Chem. Commun. (2005) 5217–5219;
 (d) J.M. Benito, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Organometallics 25 (2006) 3045–3055;
 (e) J.M. Benito, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, P. Gómez-Sal, Organometallics 25 (2006) 3876–3887.
- [11] F. Montilla, A. Galindo, R. Andrés, M. Córdoba, E. de Jesús, C. Bo, Organometallics 25 (2006) 4138–4143.
- [12] I. Dorado, R. Andres, E. de Jesus, J.C. Flores, J. Organomet. Chem. 693 (2008) 2147–2152.
- [13] (a) R. Núñez, A. González-Campo, A. Laromaine, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Org. Lett. 8 (2006) 4549–4552;
 (b) J. Sánchez-Nieves, P. Ortega, M.A. Muñoz-Fernández, R. Gómez, F.J. de la Mata, Tetrahedron 66 (2010) 9203–9213.
- [14] (a) G.E. Oosterom, R.J. van Haaren, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Chem. Commun. (1999) 1119–1120;

(b) G.E. Oosterom, S. Steffens, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Top. Catal. 19 (2002) 61-73;

(c) J.N.H. Reek, D. de Groot, G.E. Oosterom, P.C.J. Kamer, P.W.N.M. van Leeuwen, C. R. Chim. 6 (2003) 1061-1077;

(d) C. Müller, LJ. Ackerman, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, J. Am. Chem. Soc. 126 (2004) 14960-14963;

- (e) R.A. Gossage, E. Muñoz-Martínez, G. van Koten, Tetrahedron Lett. 39 (1998) 2397-2400;
- (F) R.A. Gossage, E. Muñoz-Martínez, H. Frey, A. Burgath, M. Lutz, A.L. Spek, G. van Koten, Chem. Eur. J. 5 (1999) 2191–2197;
- (g) R. van Heerbeek, J.N.H. Reek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Tetrahedron Lett. 40 (1999) 7127–7130;
- (h) P.N.M. Botman, A. Amore, R. van Heerbeek, J. Willem Back, H. Hiemstra, J.N.H. Reek, J.H. van Maarseveen, Tetrahedron Lett. 45 (2004) 5999-6002;
- (i) A. Amore, R. van Heerbeek, N. Zeep, J. van Esch, J.N.H. Reek, H. Hiemstra,
- J.H. van Maarseveen, J. Org. Chem. 71 (2006) 1851–1860;
- (j) R. van Heerbeek, P.C.J. Kamer, P.N.M.W. van Leeuwen, J.N.H. Reek, Org. Biomol. Chem. 4 (2006) 211–223.
- [15] R. Andrés, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Eur. J. Inorg. Chem. (2005) 3742-3749.
- See also A. Tuchbreiter, H. Werner, L.H. Gade, Dalton Trans. (2005) 1394–1402. [16]
- [17] R. Andrés, E. de Jesús, J.L.G. Fierro, P. Terreros, New J. Chem. 35 (2011) 2203–2211.
- [18] S.E. Durran, M.R.J. Elsegood, N. Hawkins, M.B. Smith, S. Talib, Tetrahedron Lett. 44 (2003) 5255-5257.

- [19] (a) S. Pawlenko, Organosilicon Chemistry, Walter de Gruyter, New York, 1986; (b) C. Eaborn, Organosilicon Compounds, Butterworth, London, 1960.
- [20] J. Fawcett, P.A.T. Hoye, R.D.W. Kemmitt, D.J. Law, D.R. Russell, J. Chem. Soc. Dalton Trans. (1993) 2563-2568.
- [21] (a) M. Keles, T. Keles, O. Serindag, Trans. Met. Chem. 33 (2008) 717-720;
- (b) M. Keles, Z. Aydin, O. Serindag, J. Organomet. Chem. 692 (2007) 1951-1955. [22] A.L. Balch, M.M. Olmstead, S.P. Rowley, Inorg. Chim. Acta 168 (1990) 255-264.
- M.B. Smith, S.H. Dale, S.J. Coles, T. Gelbrich, M.B. Hursthouse, M.E. Light, P.N. Horton, CrystEngComm 9 (2007) 165–175.
 J.O. Daiss, K.A. Barth, C. Burschka, P. Hey, R. Ilg, K. Klemm, I. Richter,
- S.A. Wagner, R. Tacke, Organometallics 23 (2004) 5193–5197.
- [25] H.C. Marsmann, F. Uhlig, in: R.R. Gupta, M.D. Lechner (Eds.), Chemical Shifts and Coupling Constants for Silicon-29, Springer-Verlag, Berlin Heidelberg, 2008.
- [26] L.D. Narsiak, H.W. Post, J. Org. Chem. 24 (1959) 489-496.
- [27] A.K. Sahoo, T. Oda, Y. Nakao, T. Hiyama, Adv. Synth. Catal. 346 (2004)
- 1715 1727
- [28] D. Drew, J.R. Doyle, Inorg. Synth. 13 (1972) 47-55. [29] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, third ed.,
- Butterworth-Heinemann, Oxford, 1988.
- [30] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112-122.
- [31] R.H. Blessing, Acta Crystallogr. A51 (1995) 33–38.
- [32] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.