Downloaded by: University of Pittsburgh. Copyrighted material.

A Direct Conversion of Aldehydes into 2-Oxoalkane-phosphonates via the Diethyl α -Lithiochloromethane-phosphonate Anion

Philippe Savignac

Equipe IRCHA-CNRS, 2 8 Rue Henri Dunant, F-94320 Thiais, France

Philippe Coutrot

Laboratoire de Synthèse Organique associé au CNRS, Université Pierre et Marie Curie, Tour 44-45, 4 Place Jussieu, F-75230 Paris Cedex 05, France

Addition of a carbonyl compound, aldehyde or ketone, to the lithium derivative of dialkyl chloromethanephosphonate 2 in a mixture of tetrahydrofuran and hexane, at low temperature results in the almost immediate formation of a 1-chloro-2-hydroxyalkanephosphonate which leads on warming to epoxyalkanephosphonates¹ 3.

The reactions of the α-lithiochloromethan ephosphonate carbanion with aldehydes, instead of an epoxide synthesis, can

0039-7881/78/0932-0682 \$ 03.00

© 1978 Georg Thieme Publishers

Table. Diethyl 2-Oxoalkanephosphonates, Diethyl 2-Oxoalkanephosphonothioates, N,N,N',N'-Tetramethyl-2-oxoalkanephosphonic Diamides

	Dames							
Prod- uct	X	Y	R	Base ^a	Yield [%]	b.p./torr or m.p. (solvent)	Molecular formula	¹ H-N.M.R. (CCl ₄) δ [ppm]
5a	C ₂ H ₅ O	О	i-C ₃ H ₇	(<i>i</i> -C ₃ H ₇) ₂ NLi	89	94–98°/0.5 ⁵	C ₉ H ₁₉ O ₄ P (222.2)	5
5b	C_2H_5O	О	i-C ₄ H ₉	$(i-C_3H_7)_2NLi$	90	98100°/0.5 ^{5, 8}	$C_{10}H_{21}O_4P$ (236.3)	5
5e	C_2H_5O	О	n-C ₄ H ₉	(<i>i</i> -C ₃ H ₇) ₂ NLi	92	113-117°/0.5 ^{5, 7}	$C_{10}H_{21}O_4P$ (236.3)	5
5d	C ₂ H ₅ O	О	C_7H_{15}	(<i>i</i> -C ₃ H ₇) ₂ NLi	88	125-129°/0.16	C ₁₃ H ₂₇ O ₄ P (278.3)	5
5e	C ₂ H ₅ O	О	H ₃ C-CH=CH	(<i>i</i> -C ₃ H ₇) ₂ NLi	(85) ^c	b, 5	C ₉ H ₁₇ O ₄ P (220.2)	5
5f	C ₂ H ₅ O	O	C_6H_5	n-C ₄ H ₉ Li	41	150-155°/0.9 ^{5, 6}	$C_{12}H_{17}O_4P$ (256.2)	55
5g	C ₂ H ₅ O	O	C_6H_5	(<i>i</i> -C ₃ H ₇) ₂ NLi	68	150 155°/0.9 ^{5, 6}	$C_{12}H_{17}O_4P$ (256.2)	
5h	C ₂ H ₅ O	О	4-Cl—C ₀ H ₄	n-C ₄ H ₉ Li	40	165-170°/1 ⁵	C ₁₂ H ₁₆ ClO ₄ P (290,7)	5
5i	C ₂ H ₅ O	O	4-H ₃ COC ₆ H ₄	(<i>i</i> -C ₃ H ₇) ₂ NLi	70	155-160°/0.8 ⁵	$C_{13}H_{19}O_5P$ (286.3)	5
5j	C ₂ H ₅ O	0	3,4-O-CH ₂ O-C ₆ H ₃	(<i>i</i> -C ₃ H ₇) ₂ NLi	65	47-48° (ether/pentane)	$C_{13}H_{17}O_6P$ $(300.3)^f$	1.3 (t, 6H); 3.35 (d, 2H); 4.0 (d, q, 4H); 5.95 (s, 2H); 6.73 (m, 1H); 7.45 (m, 2H)
5k	C ₂ H ₅ O	0	4-(H ₃ C) ₂ NC ₆ H ₄	(<i>i-</i> C ₃ H ₇) ₂ NLi	76	>150°/0.5°	C ₁₄ H ₂₂ NO ₄ P (299.3) ^f	1.23 (t, 6H); 3.0 (s, 6H); 3.25 (d, 2H); 3.95 (d, q, 4H); 6.43 (m, 2H); 7.73 (m, 2H)
51	C ₂ H ₅ O	О	2-thienyl	(<i>i</i> -C ₃ H ₇) ₂ NLi	72	155-160°/1 ⁵	C ₁₀ H ₁₅ O ₄ PS (262.3)	5
5m	C ₂ H ₅ O	S	i-C ₃ H ₇	(<i>i</i> -C ₃ H ₇) ₂ NLi	58	8487°/0.7	C ₉ H ₁₉ O ₃ PS (238.3) ^f	0.98 (d, 6H); 1.2 (t, 6H); 2.8 (m, 1H); 3.1 (d, 2H); 4.0 (d. q, 4H)
5n	(H ₃ C) ₂ N	О	<i>i</i> -C ₃ H ₇	(<i>i</i> -C ₃ H ₇) ₂ NLi	76	97 ·100°/0.5	$C_9H_{21}N_2O_2P$ (220.3) ^f	1.05 (d, 6H): 2.53 (d, 12H); 2.90 (m, 1H); 2.93 (d, 2H)
50	(H ₃ C) ₂ N	О	C_6H_5	(<i>i</i> -C ₃ H ₇) ₂ NLi	88	d, 9	$C_{12}H_{19}N_2O_2P$ (254.3)	2.45 (d, 12H): 3.4 (d, 2H); 7.13 (m, 3H); 7.83 (m, 2H)
5 p	(H ₃ C) ₂ N	О	2-thienyl	(<i>i</i> -C ₃ H ₇) ₂ NLi	87	d	C ₁₀ H ₁₇ N ₂ O ₂ PS (260.3)	2.53 (d, 12H); 3.4 (d, 2H); 7 (m, 1H); 7.85 (m, 1H)

^a Second equivalent of base; first one is always *n*-butyllithium.

take a different course if the so-formed alkoxide anion is further treated at low temperature with 1 equivalent of strong base.

Under these conditions after warming² and hydrolysis we do not recover an epoxyalkanephosphonate but instead a 2-oxoalkanephosphonate 5 is formed.

Synthesis of 2-oxoalkanephosphonates by reaction of a 1-chloro-2-hydroxyalkanephosphonate with base is not a standard route and to explain this new synthesis we suggest the two following mechanisms:

in the first one we assume the formation of a carbanion in the β -position, itself favoured by a β -elimination reac-

^b Polymerises on distillation.

^e Product partially polymerised.

^d Decomposes on distillation.

^e Oil partially decomposed on distillation.

^f New compound; gave satisfactory microanalyses ($C \pm 0.4\%$, $H \pm 0.18\%$, $N \pm 0.03\%$).

684 Communications SYNTHESIS

tion; the enol phosphonate which results is converted into the 2-oxoalkanephosphonate;

- in the second one the hydrogen in the α -position is abstracted and the so formed carbanion gives an α -elimination simultaneous to a migration of hydrogen¹⁰ leading to an enol phosphonate as above.

Our aim has been to study the limits of the process. The procedure can be applied to:

- a wide range of aldehydes, aliphatic as well as aromatic, however unsaturated aldehydes (e.g. crotonaldehyde) yield partially polymerised 2-oxoalkanephosphonates;
- esters or amides of α -chloromethanephosphonic acids $(X = RO \text{ or } R_2N)$;
- esters of α -chloromethanephosphonothioic acid (Y = S); unsubstituted α -chloromethanephosphonic acids only; formation of an α -substituted 2-oxoalkanephosphonate failed (favourable to the second mechanism).

The choice of the base initiating elimination is very important and depends on the phosphonate substituent (X).

We have found that esters of 1-chloro-2-hydroxyalkanephosphonates (X=RO) in the presence of butyllithium are subjected to P-substitution. Nucleophilic attack at phosphorus by butyllithium can be a major reaction and we isolated a 2-oxoalkanephosphonate mixed with a large amount of the butylation products⁴. Thus, it is better with phosphonate esters to substitute for butyllithium hindered bases such as lithium diisopropylamide. Use of t-butyllithium failed; it provides poor yield of 2-oxoalkanephosphonate soiled with side-products.

In contrast, with phosphonamides $(X = R_2N)$ attack on the phosphorus atom is avoided and invariably we used two equivalents of butyllithium or the couple butyllithium/lithium disopropylamide.

Results are summarized in Table I. All the compounds (except 5j, 5k, 5m, 5n) have been compared (physical data, ¹H-N.M.R. and I.R. spectra) to samples obtained by another way^{5, 6, 7, 8}.

Diethyl 2-Oxoalkanephosphonates 5 ($X - C_2H_5O$, Y = O); General Procedure:

A 1.45 molar solution of *n*-butyllithium in hexane (0.054 mol + 5 %) is placed in a three-necked flask equipped with a stirrer, an addition

funnel, a low temperature thermometer, and a nitrogen inlet tube. An equal volume of tetrahydrofuran (~40 ml) is added to the cooled (-20°) solution. Subsequently diethyl chloromethanephosphonate (10 g, 0.054 mol) in tetrahydrofuran (10 ml) is added dropwise at -70°. After 10 min, the clear reaction mixture becomes turbid and the carbonyl compound (0.054 mol) in tetrahydrofuran (10 ml) is added at -75° to -70° . The mixture slowly becomes clear. After 30 min, lithium diisopropylamide (0.054 mol + 5 %) (previously prepared by addition at 0° of n-butyllithium to diisopropylamine dissolved in tetrahydrofuran) is added at -70° . Stirring is continued for 3 h at -70° and then the mixture is slowly allowed to warm to room temperature within a few hours (overnight). At room temperature the mixture is slowly hydrolysed with 2 normal sulfuric acid so that it becomes neutral and the aqueous solution extracted with dichloromethane (3×50 ml). The combined organic layers are dried with magnesium sulfate, the solvent is removed under reduced pressure, and the product is purified by vacuum distillation.

A similar procedure is used when $X=C_2H_5O$, Y=S; when $X=(CH_3)_2N$, Y=O the procedure is the same, especially for metallation, except that the second equivalent of base can be n-butyllithium or lithium disopropylamide and hydrolysis is performed with water (40 ml).

Dedicated to Professor Henri Normant on the occasion of his 71th birthday.

Received: March 30, 1978

¹ P. Coutrot, P. Savignac, Synthesis 1978, 34.

If the addition of the base at low temperature was followed by hydrolysis we recovered the 1-chloro-2-hydroxyalkanephosphonate; at low temperature the elimination reaction is very slow.

G. Lavielle, M. Carpentier, P. Savignac, Tetrahedron Lett. 1973, 173.

Purification of β-ketophosphonate is simple in the case R = Ar; the etheral solution of the crude is washed three times with a five per cent aqueous solution of sodium hydroxide and the enolate so formed put in acidic medium to generate the β-ketophosphonate which is then extracted which ether.

P. Savignac, F. Mathey, *Tetrahedron* **34**, 649 (1978). F. Mathey, P. Savignac, *Synthesis* **1976**, 766.

⁶ M. S. Chattha, A. M. Aguiar, J. Org. Chem. 38, 15 1908 (1973).

G. Sturtz, C. Charrier, H. Normant, Bull. Soc. Chim. Fr. 1966, 1707.

⁸ P. A. Grieco, G. S. Pogonowski, J. Am. Chem. Soc. 95, 3071 (1973).

⁹ E. H. Corey, G. T. Kwiatkowski, J. Am. Chem. Soc. 88, 5654 (1966).

¹⁰ J. Villieras, C. Bacquet, J. F. Normant, J. Organometal. Chem. C 40 (1972).