Stille Couplings Catalytic in Tin: The "Sn-O" Approach # William P. Gallagher, Ina Terstiege, and Robert E. Maleczka, Jr.* Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 Received September 28, 2000 **Abstract:** A one-pot tandem Pd-catalyzed hydrostannylation/Stille coupling protocol for the stereoselective generation of vinyltins and their subsequent union, employing only catalytic amounts of tin, is described. By recycling the organotin halide Stille byproduct back to organotin hydride, a hydrostannylation/cross-coupling sequence can be carried out with catalytic amounts of tin. Such a process is most effective with Me₃SnCl serving as the tin source. This protocol allows a 94% reduction of the tin requirement, while maintaining good yields (up to 90%) for a variety of Stille products. Furthermore, since one cycle requires the tin to undergo at least four transformations, each moiety of trialkyltin is experiencing a minimum of 60 reactions over the course of the hydrostannylation/Stille sequence. #### Introduction Beginning in the late 1970s and continuing throughout most of the 1980s, studies by the late J. K. Stille helped to establish the palladium-catalyzed cross-coupling reaction of organotin reactants with a variety of organic electrophiles as a highly useful method for carbon—carbon σ -bond construction. ^{1,2} Today, Stille reactions commonly represent a key step in the preparation of natural products, ³ new materials, ⁴ medicinal agents, ⁵ etc. Although the Stille reaction can be viewed as a routine synthetic tool, its study continues. ^{1d} Recent advances include adaptation of the method to aqueous, ⁶ combinatorial, ⁷ solid phase, ^{7b,c,8} (1) (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771–1780. (b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–523. (c) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813–817. (d) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1–652. (2) Stille's early studies were built on the foundation of his prior work (2) Stille's early studies were built on the foundation of his prior work in the area of transition metal oxidative addition chemistry (Stille, J. K. Acc. Chem. Res. 1977, 10, 434–442) as well as the preliminary reports of Kosugi et al. See: (a) Kosugi, M.; Shimizu, Y.; Migita, T. J. Organomet. Chem. 1977, 129, C36–C38. (b) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 301–302. (c) Kosugi, M.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 1423–1424. (3) For recent examples see: (a) Laio, B. Q.; Negishi, E.-i. *Heterocycles* **2000**, *52*, 1241–1249. (b) Nicolaou, K. C.; Murphy, F.; Barluenga, S.; Ohshima, T.; Wei, H.; Xu, J.; Gray, D. L. F.; Baudoin, O. *J. Am. Chem. Soc.* **2000**, *122*, 3830–3838. (c) Williams, D, R.; Myers, B. J.; Mi, L. *Org. Lett.* **2000**, *2*, 945–948. (d) Huang, A. X.; Xiong, Z. M.; Corey, E. J. *J. Am. Chem. Soc.* **1999**, *121*, 9999–10003. (e) White, J. D.; Hong, J.; Robarge, L. A. *J. Am. Chem. Soc.* **1999**, *64*, 5053–5061. (g) Smith, A. B., III.; Ott, G. R. *J. Am. Chem. Soc.* **1998**, *120*, 3935–3948. (h) Chen, X. T.; Zhou, B. S.; Bhattacharya, S. K.; Gutteridge, C. E.; Pettus, T. R. R.; Danishefsky, S. J. *Angew. Chem., Int. Ed.* **1998**, *37*, 789–792. (4) For recent examples see: (a) Malenfant, P. R. L.; Frechet, J. M. J. *Macromolecules* **2000**, *33*, 3634–3640. (b) Wu, I. Y.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E. *Adv. Mater.* **2000**, *12*, 668–669. (c) Song, S. Y.; Shim, H. K. *Synth. Met.* **2000**, *111*, 437–439. (d) Van Keuren, E.; Mohwald, H.; Rozouvan, S.; Schrof, W.; Belov, V.; Matsuda, H.; Yamada, S. *J. Phys. Chem.* **1999**, *110*, 3584–3590. (e) Yao, Y. X.; Tour, J. M. *Macromolecules* **1999**, *32*, 2455–2461. (5) For recent examples see: (a) Hoepping, A.; Johnson, K. M.; George, C.; Flippen-Anderson, J.; Kozikowski, A. P. *J. Med. Chem.* **2000**, *43*, 2064–2071. (b) Jensen, M. S.; Yang, C. H.; Hsiao, Y.; Rivera, N.; Wells, K. M.; Chung, J. Y. L.; Yasuda, N.; Hughes, D. L.; Reider, P. J. *Org. Lett.* **2000**, 2, 1081–1084. (c) Marriere, E.; Rouden, J.; Tadino, V.; Lasne, M. C. *Org. Lett.* **2000**, 2, 1121–1124. (d) Smaill, J. B.; Rewcastle, G. W.; Loo, J. A.; Greis, K. D.; Chan, O. H.; Reyner, E. L.; Lipka, E.; Showalter, H. D. H.; Vincent, P. W.; Elliott, W. L.; Denny, W. A. *J. Med. Chem.* **2000**, *43*, 1380–1397. fluorous phase,⁹ and super critical environments.¹⁰ Recent work has also provided a greater mechanistic understanding of the reaction,¹¹ expanded its scope,¹² and improved existing Stille protocols.¹³ Many of the newly reported improvements to the Stille reaction offer greater ease in the separation of the cross-coupled product from the organotin byproducts. Difficulties in purification along with cost and toxicity issues associated with using stoichiometric amounts of organostannanes¹⁴ have long been considered problematic features of these reactions. Solutions to the "tin problem" have largely focused on either derivatizing (8) (a) Wendeborn, S.; De Mesmaeker, A.; Brill, W. K.-D.; Berteina, S. Acc. Chem. Res. 2000, 33, 215–224. (b) Lee C. Y.; Hanson, R. N. Tetrahedron 2000, 56, 1623–1629. (c) Kraxner, J.; Arlt, M.; Gmeiner, Synlett 2000, 125–127. (c) Lorsbach, B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549–1581. (d) Brody, M. S.; Finn, M. G. Tetrahedron Lett. 1999, 40, 415–418. (e) Hu, Y. H.; Baudart, S.; Porco, J. A. J. Org. Chem. 1999, 64, 1049–1051. (f) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; Murphy, F. Angew. Chem., Int. Ed. 1998, 37, 2534–2537. (g) Blaskovich, M. A.; Kahn, M. J. Org. Chem. 1998, 63, 1119–1125. (h) Chamoin, S.; Houldsworth, S.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4175–4178. (i) Kuhn, H.; Neumann, W. P. Synlett 1994, 123–124. (9) (a) Olofsson, K.; Kim, S.-Y.; Larhed, M.; Curran, D. P.; Hallberg, A. *J. Org. Chem.* **1999**, *64*, 4539–4541. (b) Hoshino, M.; Degenkolb, P.; Curran, D. P. *J. Org. Chem.* **1997**, *62*, 8341–8349. (c) Curran, D. P.; Hadida, S. *J. Am. Chem. Soc.* **1996**, *118*, 2531–2532. (10) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. *Chem. Rev.* **1999**, *99*, 475–493. (b) Morita, D. K.; Pesiri, D. R.; David, S. A.; Glaze, W. H.; Tumas, W. *J. Chem. Soc., Chem. Commun.* **1998**, 1397–1398. (c) Carroll, M. A.; Holmes, A. B. *J. Chem. Soc., Chem. Commun.* **1998**, 1395–1396. (11) (a) Casado, A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978—8985. (b) Flohr, A. Tetrahedron Lett. 1998, 39, 5177—5180. (c) Quayle, P.; Wang, J. Y.; Xu, J.; Urch, C. J. Tetrahedron Lett. 1998, 39, 489—492. (d) Choshi, T.; Yamada, S.; Nobuhiro, J.; Mihara, Y.; Sugino, E.; Hibino, S. Heterocycles 1998, 48, 11—14. (e) Shirakawa, E.; Yoshida, H.; Hiyama, T. Tetrahedron Lett. 1997, 38, 5177—5180. (f) Mateo, C.; Cardenas, D. J.; Fernandez Rivas. C.; Echavarren. A. M. Chem. Eur. J. 1996, 2, 1596—1606. (g) Farina, V.; Hossain, M. A. Tetrahedron Lett. 1996, 37, 6997—7000. (h) Vicente, J.; Arcas, A.; Bautista, D.; Tiripicchio, A.; Camellini, M. T. New J. Chem. 1996, 20, 345—356. (12) For recent examples see: (a) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed.* **1999**, *38*, 2411–2413. (b) Barchin, B. M.; Valenciano, J.; Cuadro, A. M.; Alvarez-Builla, J.; Vaquero, J. J. *Org. Lett.* **1999**, *1*, 545–547. ^{(6) (}a) Genet, J. P.; Savignac, M. *J. Organomet. Chem.* **1999**, *576*, 305–317 and references therein. (b) Rai, R.; Aubrecht, K. B.; Collum, D. B. *Tetrahedron Lett.* **1995**, *36*, 3111–3114. ^{(7) (}a) Sieber, F.; Wentworth, P.; Janda, K. D. *J. Comb. Chem.* **1999**, *1*, 540–546. (b) Dolle, R. E.; Nelson, K. H., Jr. *J. Comb. Chem.* **1999**, *1*, 235–282. (c) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. *Tetrahedron* **1998**, *54*, 15385–15443 and references therein. the organotin^{5b,6b,8f,i,9,13b-d} or inventing reaction workups^{1d,15} aimed at aiding removal of the tin byproducts.¹⁶ A complementary approach to this problem would be to develop a Stille cross-coupling protocol catalytic in tin. The development of such a catalytic process would involve the design of a catalytic process where the organotin species is the reactant;¹⁷ that is to say, where the tin moiety is fixed to the organic substrate via a stable, covalent bond. 18 # **Results and Discussion** Early work in pursuit of a tin-catalyzed Stille protocol focused on the fact that, in addition to the Stille reaction, the hydrostannylation of terminal alkynes can also be catalyzed by palladium(0).¹⁹ Thus, a Stille reaction catalytic in tin could be achieved if organotin hydride could undergo an in situ chemoselective sequence of Pd(0)-catalyzed vinyltin generation and cross coupling and then be regenerated from the organotin halide byproduct (Figure 1). Realization of such a catalytic cycle would require the address of several issues including (a) regioselectivity during the Pd(0)-mediated hydrostannylation, (b) finding catalyst and solvent conditions which will allow both hydrostannylation and cross coupling, while at the same time minimizing unwanted side reactions (vide infra), and (c) uncovering appropriate methods for recycling the R₃SnX back to R₃SnH. To avoid regiochemical complications, the first group of alkynes studied were all trisubstituted at the propargylic position. Such sterically hindered alkynes are known to heavily favor formation of the terminal (distal) (E)-isomer over the internal (proximal) isomer. 19,20 - (13) For new methods of reaction activation see ref 5b and the following: (a) Han, X. J.; Stoltz, B. M.; Corey, E. J. *J. Am. Chem. Soc.* **1999**, *121*, 7600–7605. (b) Fugami, K.; Ohnuma, S.-y.; Kameyama, M.; Saotome, T.; Kosugi, M. Synlett 1999, 63-64. (c) Fouquet, E.; Rodriguez, A. L. Synlett 1998, 1323-1324. (d) Fouquet, E.; Pereyre, M.; Rodriguez, A. L. J. Org. Chem. 1997, 62, 5242-5243. (e) Farina, V. Pure App. Chem. 1996, 68, 73-78. (f) Crisp, G. T.; Gebauer, M. G. Tetrahedron Lett. 1996, 36, 3389-3392.
(g) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, 118, 2748-2749. - (14) (a) Chemistry of Tin; Smith, P. J., Ed.; Blackie Academic & Professional: New York, 1998. (b) Davies, A. G. In Organotin Chemistry; VCH: New York, 1997. - (15) Edelson, B. S.; Stoltz, B. M.; Corey, E. J. Tetrahedron Lett. 1999, 40, 36729-36730 and references therein. - (16) Problems associated with the employment of organostannanes in Stille reactions have also been addressed through the development of nontin cross-coupling protocols, such as the Suzuki coupling of organoboranes (Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483), the Hiyama coupling of vinylsilanes (Horn, K. A. Chem. Rev. 1995, 95, 1317-1350), siloxanes (Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 3266-3270), or silanols (Denmark, S. E.; Neuville, L. Org. Lett. 2000, 2, 3221-3224), and the Negishi coupling of organozincates (Negishi, E. In Organozinc Reagents; Knochel, P., Jones, P., Eds.; Oxford University Press: Oxford, U.K., 1999; Chapter 11). - (17) For prior work aimed at the development of reactions involving the catalytic employment of tin reagents such as (BuCH(Et)CO2)3SnBu, Bu₃SnH, Bu₂SnO, etc., see ref 14 and (a) Hays, D. S.; Fu, G. C. Tetrahedron 1999, 55, 8815-8832 and references therein. (b) Lopez, R. M.; Fu, G. C. Tetrahedron 1997, 53, 16349-16354. (c) Terstiege, I.; Maleczka, R. E., Jr. J. Org. Chem. 1999, 64, 342-343. (d) Spino, C.; Barriault, N. J. Org. Chem. 1999, 64, 5292-5298. (b) Lopez, R. M.; Fu, G. C. Tetrahedron **1997**, *53*, 16349–16354. - (18) For examples of reactions involving stannylene acetal reactants which has been rendered catalytic in tin, see: (a) Martinelli, M. J.; Vaidyanathan, R.; Khau, V. V. Tetrahedron Lett. 2000, 41, 3773-3776. (b) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447-450. - (19) (a) Zhang, H. X.; Guibé F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857-1867. (b) Smith, N. D.; Mancuso, J.; Lautens, M. Chem. Rev. 2000, 100, 3257—3282. (c) Maleczka, R. E., Jr.; Terrell, L. R.; Clark, D. H.; Whitehead, S. L.; Gallagher, W. P.; Terstiege, I. *J. Org. Chem.* **1999**, 64, 5958-5965. (d) Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1987, 60, 3468-3470. (e) Kikukawa, K.; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. 1988, 881-884. Figure 1. Although the regiochemical outcome of the hydrostannylation was assured, the feasibility of carrying out Pd-catalyzed hydrostannylations in the presence of a Stille electrophile was not. A balance would need to be struck between the catalyst requirements for high-yielding hydrostannylations (strong σ -donor ligands such as PPh3) and efficient cross couplings (weaker σ -donor ligands). ^{1d} Equally important was the need to minimize side reactions, especially Pd-mediated Bu₃SnH dimerization²¹ and/or reduction of the organohalides.²² To address the dimerization issue, we examined the palladium-mediated hydrostannylation under a variety of "Stille-like" catalyst and solvent conditions. After investigating the performance of several Pd catalysts (Pd₂dba₃/P(2-furyl)₃, (PPh₃)₂PdCl₂, (MeCN)₂PdCl₂) in various solvents (Et₂O, THF, DMF, NMP), (PPh₃)₂PdCl₂ and Pd₂dba₃/P(2-furyl)₃ in ethereal solvents (THF or Et₂O) emerged as most proficient. Other Pd/solvent combinations promoted bistributyltin formation to such an extent that the rate of the hydrostannylation reactions could no longer compete. With suitable catalyst and solvent conditions secured, the next step was to combine the hydrostannylation and Stille coupling into a single-pot reaction sequence.²³ Initially operating with stoichiometric amounts of tin,24 tributyltin hydride was added to a solution of alkyne, bromostyrene, and Pd catalyst in THF. Although reaction times were relatively long (1-5 days), the one-pot hydrostannylation/Stille sequence gave cross-coupled products in yields comparable to those of the stepwise protocol (Table 1).^{25,26} Furthermore, GC analysis of the reaction mixture - (20) Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768-7780 - (21) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D. J. Organomet. Chem. 1986, 304, 257-265. - (22) (a) Taniguchi, M.; Takeyama, Y.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2593-2595. (b) Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452-461. (c) Pri-Bar, I.; Buchman, O. J. Org. Chem. 1986, 51, 734-738. (d) Pri-Bar, I.; Buchman, O. J. Org. Chem. 1984, 49, 4009-4011. - (23) For the first example of a stepwise one-pot palladium-mediated hydrostannylation/Stille coupling, see: Boden, C. D. J.; Pattenden, G.; Ye, T. J. Chem. Soc., Perkin Trans. 1 1996, 2417-2419. - (24) Even when stoichiometric in tin, a one-pot hydrostannylation/Stille protocol which does not require isolation of the vinyltin can be advantageous when dealing with unstable stannanes (Hitchcock, S. A.; Mayhugh, D. R.; Gregory, G. S Tetrahedron Lett. 1995, 36, 9085-9088). - (25) Maleczka, R. E., Jr.; Terstiege, I. J. Org. Chem. 1998, 63, 9622- Table 1 ^a Unless otherwise stated, all yields refer to isolated products. ^b On the basis of 37% recovered vinylstannane. ^c The low yield was in part due to difficulties in purifying the nonpolar vinyltin inermediate. showed that no Pd-mediated reduction of bromostyrene had occurred. 22,27 With these results in hand, methods for recycling the Bu₃-SnX byproduct back to Bu₃SnH were considered. Strong hydride donors such as LiAlH₄ or NaBH₄^{14,28} were less than ideal as they are known to reduce Pd(II) intermediates²⁹ and would severely curtail the broad functional group tolerance normally associated with the Stille reaction. Hayashi et al.³⁰ had shown that tributyltin hydride can be generated via reduction of (Bu₃-Sn)₂O by the cheap, nontoxic, and relatively mild hydride donor, polymethylhydrosiloxane (PMHS).31 Furthermore, the (Bu₃-Sn)₂O/PMHS mixture had been shown to work well as an in situ source of Bu₃SnH in free radical hydrostannylations of 1-alkynes,³² while the elegant work of Fu and co-workers^{17a,b} demonstrated that PMHS and other silanes can serve as the stoichiometric reducing agent in reactions catalytic in tin. Although PMHS does not reduce organotin halides, ³³ numerous methods exist for converting the Sn-X bond into a Sn-O bond.14 Thus, an "Sn-O" approach to the development of a Stille reaction catalytic in tin was pursued (Scheme 1). The $(Bu_3Sn)_2O/PMHS$ method of Bu_3SnH formation was successfully applied to the one-pot hydrostannylation/Stille sequence (Table 1). Importantly, palladium-mediated hydrosilylation of the alkyne or alkene³⁴ was not observed. ³⁵ However, (28) (a) Corey, E. J.; Suggs, J. W. *J. Org. Chem.* **1975**, *40*, 2554–2555. (b) Curran, D. P. *Synthesis* **1988**, 489–513 and references therein. - (30) Hayashi, K.; Iyoda, J.; Shiihara, I. *J. Organomet. Chem.* **1967**, *10*, 81–94. - (31) Lawrence, N. J.; Bushell, S. M. J. Chem. Soc., Perkin Trans. 1 1999, 23, 3381–3391 and references therein. - (32) Corey, E. J.; Wollenberg, R. H. J. Org. Chem. 1975, 40, 2265-2266 - (33) If made hypervalent by the action of fluoride PMHS can reduce $R_3Sn{-}X$ to $R_3Sn{-}H$ (ref 17c). #### Scheme 1 $$R^{1}$$ H $Pd(0)$ R^{1} $SnBu_{3}$ R^{1} R^{2} X $+$ $Pd(0)$ R^{1} R^{2} X $+$ $Pd(0)$ R^{1} R^{2} X R^{3} a 2-fold excess of (Bu₃Sn)₂O was required since generation of two full equivalents of Bu₃SnH from one molecule of (Bu₃-Sn)₂O occurs only at elevated temperatures (80–110 °C).³⁰ With these results in place, a method of converting the tin halide into an Sn-O species that would be amenable to the sequence of reactions and reagents was sought. Various methods of effecting such a transformation were studied. Since treatment of Bu₃SnCl with NH₄OH had been previously reported to afford (Bu₃Sn)₂O,³⁶ Bu₃SnCl/NH₄OH/PMHS as a potential in situ source of Bu₃SnH was studied. However, when ammonium hydroxide was added to an ethereal solution of tin chloride 11, Pd(0), and PMHS dimer, formation of a white precipitate was observed (presumably ammonium chloride) and, after 2.5 h reaction time, only a 1:1 ratio of product (15) to starting material was obtained. Heating the reaction mixture in toluene/EtOH for 6.5 h increased the ratio to 1.7:1; however, it was not possible to drive this reaction to completion. Thus, direct conversion of the tin halide byproduct into bis(tributyltin) oxide appeared impractical. Since organotin halides can be converted to organotin alkoxides,³⁷ attention turned to tributyltin methoxide as a tributyltin hydride precursor. Hydrostannylation of alkyne **5** using Bu₃SnOMe and PMHS as the in situ tin hydride source produced a small amount of product after 20 min at 0 °C; however, upon stirring at room temperature for an additional 1.5 h, the vinylstannane (**16**) could be isolated in 52% yield.³⁸ Furthermore, a Bu₃SnX to Bu₃SnOMe to Bu₃SnH sequence also worked in a hydrostannylation reaction. Reaction of tributyltin bromide with sodium methoxide at 0 °C, followed by **5**, PMHS, and Pd(0), was complete in only 15 min,³⁹ again affording the vinylstannane in 52% yield.⁴⁰ The reaction sequence could also be carried out by mixing all the reagents at once, and if run below 0 °C, the yield could be improved to 74%. (36) Sawyer, A. K. In *Organotin Compounds*; Marcel Deccer: New York, 1971; Vol. 1. (37) Alleston, D. L.; Davies, A. G. J. Chem. Soc. 1962, 2051-2052. (38) In theory Bu₃SnH could be generated from Bu₃SnOMe without PMHS via β -hydride elimination of a Bu₃Sn-Pd(II)-OMe species: (a) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. *J. Am. Chem. Soc.* **1997**, *119*, 3395–3396. (b) Zask, A.; Helquist, P. *J. Org. Chem.* **1978**, *43*, 1619–1620. However, hydrostannylation experiments performed in the absence of PMHS did not produce any product, thus arguing against such a mechanism. ⁽²⁶⁾ As
a check on our hydrostannylation experiments, we carried out the one-pot sequence in the better Stille solvent DMF (ref 1c). In these experiments a larger excess of tin hydride (\sim 2.5 equiv) was required to consume the alkyne affording the Stille product (\sim 35%), recovered stannane (\sim 38%), and a fairly large amount (17%) of styrene dimer. ⁽²⁷⁾ It is possible that styrene is not stable under the reaction conditions and therefore could not be detected. However as bromostyrene was used in only very small excess (with respect to the alkyne) and the Stille products were often isolated in high yields (86–89%), it could be concluded that reduction occurs in only a very small extent, if at all. ⁽²⁹⁾ Tsuji, J. Palladium Reagents and Catalysts; Wiley: Toronto, 1995; p 148. ⁽³⁴⁾ Kawanami, Y.; Yamamoto, K. Synlett 1995, 1232-1234 and references therein. ⁽³⁵⁾ In contrast, in attempts to use PhSiH₃ to generate Bu₃SnH from (Bu₃Sn)₂O, we observed that it also underwent a hydrosilylation reaction with the alkyne. This product could be detected in the crude NMR; however it decomposed during column chromatography. #### Scheme 2 Unfortunately, attempts at carrying out the same sequence with catalytic amounts of tin failed. Stirring NaOMe, PMHS, alkyne **11**, bromostyrene, catalytic Pd(0), and 20 mol % of (Bu₃-Sn)₂O⁴¹ in THF at 60 °C for 18 h only afforded 3% of the cross-coupled product (**12**). Under low concentrations, the NaOMe reacts with PMHS rather than the organotin species, resulting in gas evolution⁴⁰ and formation of an insoluble gel.⁴² In theory, the problematic halide to oxide step could be circumvented through the employment of vinyl or aryltriflates as Stille electrophiles (Scheme 2). However, attempts to generate vinylstannanes with tributyltin hydride derived from PMHS reduction of Bu₃SnOTf gave no observable reaction until prolonged stirring/heating decomposed all reactants. On the basis of these results, this approach was abandoned in favor of finding a PMHS-compatible oxo-nucleophile for converting the organotin halide into an organotin alkoxide. In this regard, alkoxides which are less basic/nucleophilic than NaOMe were examined. Although a solution of NaOPh and PMHS in Et₂O/THF polymerized within 15 min, qualitatively the reaction was slow as compared to that with NaOMe. Given the reactivity difference, NaOPh was tested in a Bu₃SnX to Bu₃SnOPh to Bu₃SnH to vinyltin sequence. Treatment of Bu₃SnX with NaOPh in THF,^{43,44} followed by alkyne 11, (Ph₃P)₂PdCl₂, and finally PMHS, resulted in complete disappearance of the alkyne within 15 min at room temperature, and ultimately allowed isolation of the vinylstannane (15) in 71% yield. Adding phenyl iodide to the reaction provided 17 in 54% yield. During attempts at carrying out the sequence with catalytic amounts of tin, the only suggestion of tin turnover came when (39) The shorter reaction time when starting with Bu_3SnBr is interesting as this approach includes one more transformation. We do not believe Bu_3SnBr is reduced directly by PMHS, as treatment of Bu_3SnBr and Bu_3SnCl/NaI with PMHS in the absence of NaOMe did not produce any product. That said we cannot rule out the possibility that $NaOCH_3$ activates the PMHS via a pentacoordinated silane intermediate (Chuit, C.; Corriu, R. P.; Reye, C.; Young, J. C. *Chem. Rev.* **1993**, *93*, 1371-1448), making it more reactive than the nonactivated PMHS toward either Bu_3SnBr or Bu_3SnOCH_3 . (40) The reaction was accompanied by gas evolution, presumably H₂. (41) On the basis of the observations by Fu et al. (Hays, D. S.; Fu, G. C. *J. Org. Chem.* **1996**, *61*, 4–5. Lopez, R. M.; Hays, D. S.; Fu, G. C. *J. Am. Chem. Soc.* **1997**, *119*, 6949–6950), we expected NaOMe would also react with (Bu₃Sn)₂O and the in situ formed Bu₃SnOSiR₃ allowing (Bu₃Sn)₂O to produce 2 equiv of Bu₃SnH despite the relatively low reaction temperatures. (42) In a control experiment, PMHS and NaOR (R = Me or Et) were admixed and within minutes an insoluble gel was formed under heavy gas evolution (43) Running the reaction in dioxane/THF afforded the vinyltin in 46% yield along with the stannane homocoupled product, whereas DMF/THF as solvent and (MeCN)₂PdCl₂ as catalyst only gave Bu₃SnSnBu₃. ## Scheme 3 the reactions were carried out in a repetitive stepwise fashion. In these experiments, 1 equiv of Bu_3SnCl in the presence of 1 equiv of $\mathbf{11}$ was first reacted with NaOPh and then PMHS. Upon complete consumption of the alkyne (approximately 30 min), the temperature was raised, 4 equiv of phenyl iodide was added, and the cross coupling proceeded. Consumption of the vinyl-stannane then constituted completion of the first cycle, at which time another equivalent of $\mathbf{11}$ and NaOPh followed by more PMHS were added. This allowed formation of the Stille product ($\mathbf{17}$) in near quantitative yield based on tin (55% based on alkyne). Organotin formates and acetates⁴⁶ were also explored as potential reaction intermediates. Prolonged heating of reaction mixtures containing a tributyltin halide, PMHS, Pd(0) catalyst, alkyne **7**, and either NaOAc or HCO₂NH₄ did indeed effect hydrostannylation of the alkyne. However, crude NMR and TLC showed the reactions also contained significant amounts of the starting alkyne or protiodestannylated material.⁴⁷ Following the failure of carboxylates, we turned to carbonates. When THF solutions of alkyne **7** and Bu₃SnCl were treated with PMHS, Pd catalyst, and a 3-fold excess of the partially organic soluble Cs₂CO₃, only small amounts of vinylstannane were detected accompanied by a large amount of decomposition products. On the other hand, with a mixture of aqueous Na₂-CO₃ in refluxing Et₂O,⁴⁸ vinylstannane **18** was afforded as a 15:1 ratio of (*E*)/internal isomers (Scheme 3).⁴⁹ The hydrostannylation probably proceeds through a tin carbonate; however, the exact structures of triorganotin carbonates remains a subject of debate.⁵⁰ In fact, the possibility that Bu₃SnCl is hydrolyzing in the aqueous media,⁵¹ with the resultant tin hydroxide (or oxide) being reduced by the PMHS, has not been ruled out. However, reactions run in carbonate-free water showed only trace amounts of **18** by TLC. Experiments aimed at incorporating the cross-coupling step into the sequence identified Pd₂dba₃ and P(2-furyl)₃(TFP) as a better palladium ligand combination. Furthermore, we experimented with the order and time over which reactants were added. Thus, syringe pump addition of alkyne, bromostyrene, and PMHS to a solution of Bu₃SnCl, aqueous Na₂CO₃, and Pd(0) produced the Stille product (8) in 47% yield⁵² or an average of 84% for each of the four reaction steps involved (tin carbonate formation, tin hydride formation, hydrostannylation, Stille ⁽⁴⁴⁾ The reaction slowed when run in toluene/THF and led to unidentified byproduct formation. This is consistent with reports by Fu et al. (ref 17b) that PMHS reduction of Bu₃SnOPh requires the addition of BuOH which presumably transforms the tin phenoxide into the more reactive butoxide. Our results suggest that PMHS can easily reduce Bu₃SnOPh as long as THF is used as the solvent. ⁽⁴⁵⁾ Running the reaction in dioxane (higher boiling point) yielded 40% of the Stille product. ⁽⁴⁶⁾ Bähr, G.; Pawlenka, S. *Methoden der Organischen Chemie*; Thieme Verlag: Stuttgart, 1978; pp 295–296. ⁽⁴⁷⁾ The protiodestannylated material may actually be the result of Pd-(0)/HCO₂NH₄-mediated hydrogenolysis of the alkyne (Tsuji, J.; Yamakawa, T. *Tetrahedron Lett.* **1979**, 613–616). ⁽⁴⁸⁾ For reasons that remain unclear, reactions run in THF were often not as clean as those run in Et_2O . See ref 19c for further discussion. ⁽⁴⁹⁾ Attempts to optimize this reaction via the use of aqueous K_2CO_3 in MeOH proved unproductive. ⁽⁵⁰⁾ Kümmerlen, J.; Sebald, A. J. Organomet. Chem. 1992, 427, 309–323 and references therein. ^{(51) (}a) Das Sarma, K.; Maitra, U. *Tetrahedron* **1998**, *54*, 4965–4976. (b) Maitra, U.; Das Sarma, K. *Tetrahedron Lett.* **1994**, *35*, 7861–7862. ## Scheme 4 | entry | y alkyne | Bu ₃ SnCl
[mol%] | Sn
turnovers | product
yield | |-------|-----------------------|--------------------------------|-----------------|-----------------------------| | 1 | R = HO(Me)(Ph)C - (7) | 20 | 2 | 8 : 40% | | 2 | R = HO(Me)(Ph)C - (7) | 4 | 5 | 8 : 22% ^a | | 3 | $R = HO(Me)_2C- (1)$ | 10 | 2 | 2 : 24% | | 4 | R = OH (5) | 10 | 2.5 | 6 : 26% | ^a 1 mol % Pd(Ph₃P)₂Cl₂ was also added to the reaction. coupling) (Scheme 4). With this result in hand, reactions were attempted with catalytic amounts of tin. Again experimenting with the rate and order of addition, several alkynes were mixed with bromostyrene, catalytic Pd₂-dba₃/TFP, aqueous Na₂CO₃, and substoichiometric quantities of Bu₃SnCl. As illustrated in Table 2, such a blend of reactants afforded the first clear examples of Stille reactions catalytic in tin. With tin loads ranging from 20 to 3.7 mol %, the dienes were produced in yields representing two—five tin turnovers.⁵³ While the results of Table 2 established proof-of-principle, the modest to poor yields were less than practical. In part, the long reaction times (up to 72 h) offered ample time for the tin to react down nonproductive avenues. Attempts to accelerate the reaction through the use of polar solvents (DMF or NMP) or more active catalysts such as (MeCN)2PdCl2 resulted in overall diminished yields, as Pd-catalyzed conversion of Bu₃-SnH into hexabutylditin predominated the reaction.²¹ Furthermore, the addition of copper salts provided little or no improvement in the catalytic process. ^{13a,g,54} In contrast, switching from tributyltins to the less sterically demanding trimethyltins accelerated and, in turn, significantly improved the efficiency of the catalytic cycle.^{55,56} As illustrated in Table 3 (entries 1–8), syringe pump addition of 1.1 equiv of vinyl, aryl, or benzyl bromides or iodides
to a 37 °C ethereal mixture of various α-trisubstituted alkynes, aqueous Na₂CO₃, PMHS, Pd₂dba₃, Table 3 trifurylphosphine, $PdCl_2(PPh_3)_2$,⁵⁷ and 0.06 equiv of Me_3SnCl^{58} over a period of 15 h afforded the corresponding cross-coupled products in 75–91% yields representing an average of \sim 15 tin turnovers. Allyl bromide and methyl iodide failed under these conditions, and somewhat consistent with our earlier experience with triflates, nonaflate **24** also gave no Stille products (Table 3, entries 9–11). To more fully address regiochemical issues, sterically less demanding alkynes were applied to the protocol. Two α -disubstituted alkynes⁵⁹ afforded the anticipated dienes (Table 4, entries 1–2) but in lower yields presumably due to diminished regiocontrol during the hydrostannylation portion of the reaction sequence.¹⁹ α-Monosubstituted alkynes performed poorly (Table 4, entries 3–4). For example, reaction of **31** resulted in the formation of **32** (16% yield) and the cross-coupled product derived from the proximal vinyltin (3% yield). These results were not entirely surprising as unhindered alkynes are known to undergo non- ⁽⁵²⁾ In comparison, preparing and isolating the vinyltin (via Bu₃SnH and Pd₂dba₃/(P(2-furyl)₃ and then subjecting that material to the Stille reaction (via Pd₂dba₃/(P(2-furyl)₃) gave the cross-coupled product in 63% (56% with (PPh₃)₂PdCl₂), whereas a one-pot hydrostannylation/Stille with Bu₃SnH and (PPh₃)₂PdCl₂ afforded the diene in 75% yield. ⁽⁵³⁾ The same reaction sequence *absent* tin produced no Stille coupling products, ruling out the Pd-mediated coupling of a transient vinylsilane with the halide [(a) Hosimi, A.; Kohra, S.; Tominaya, Y. *Chem. Pharm. Bull.* **1988**, 36, 4622–4625. (b) Hatanaka, Y.; Hiyama, T. *J. Org. Chem.* **1988**, 53, 918–923]. ⁽⁵⁴⁾ Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C. J.; Liebeskind, L. S. J. Org. Chem. **1994**, *59*, 5905–5911. ⁽⁵⁵⁾ Maleczka, R. E., Jr.; Gallagher, W. P.; Terstiege, I. J. Am. Chem. Soc. 2000, 122, 384–385. ⁽⁵⁶⁾ Previous work suggests a only a small increase in the rate-determining transmetalation rate for trimethyl- vs tributylstannanes (Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129-6137), thus in this case substituting Me₃Sn for Bu₃Sn may also facilitate formation of more reactive hypervalent tin species. $^{(57):1\} Pd_2dba_3,\ (2-furyl)_3P,\ and\ PdCl_2(PPh_3)_2\ gave\ the\ best\ yields.$ In situ reduction of PdCl_2(PPh_3)_2 gives the coordinatively unsaturated Pd(0)-(PPh_3)_2 (ref 1c). This species, along with the 1:1 mixture of Pd_2dba_3 and (2-furyl)_3P, affords Pd(0) which is capable of complexing with a PPh_3 and/or (2-furyl)_3P. We speculate that this combination of ligands provides a good compromise between activity toward cross coupling and Bu_3SnH dimerization. However, simply adding the appropriate quantities of PPh_3 and/or (2-furyl)_3P to a solution of either Pd_2dba_3 or PdCl_2(PPh_3)_2 did not prove as effective. Thus the reason for the optimal performance of the mixed palladium system remains unclear. ⁽⁵⁸⁾ Since Me₃SnCl is more prone to hydrolysis than Bu₃SnCl, we repeated the experiment aimed at determining the necessity of Na₂CO₃. As before, reacting **7** with water, Me₃SnCl, Pd catalyst, and PMHS in refluxing Et₂O failed to provide measurable quantities of the vinyltin. ⁽⁵⁹⁾ But-3-yn-2-ol was also studied, but did not afford any of the anticipated diene. Rather two unidentified more polar compounds were observed. Analogous compounds were not detected when reacting 25 or 27. #### Table 4 | entry | alkyne | product yield | |-------|-------------------------|-----------------| | 1 | R = HO(n-Pr)CH- (25) | 26 : 59% | | 2 | R = HO(Ph)CH- (27) | 28 : 69% | | 3 | $R = HOCH_2CH_2 - (29)$ | 30 : 36% | | 4 | $R = MeOCH_{2}- (31)$ | 32 : 16% | Table 5 | R | NBS, AgNO ₃ (cat) | R— — −Br | | |-------|-------------------------------|---------------------|--| | n | acetone, 1 hr, rt | H | | | entry | 1-alkyne | product yield | | | 1 | $R = HOCH_2CH_2 - (29)$ | 33 : 95% | | | 2 | $R = HO(CH_2)_3CH_2-$ (34) | 35 : 95% | | | 3 | $R = THPO(CH_2)_2CH_2 - (36)$ | 37 : 97% | | Table 6 regioselctive palladium-mediated hydrostannylation. 60 Furthermore, Stille coupling of internal (proximal) isomers is very sluggish, thus prohibiting efficient tin turnover.⁶¹ To circumvent problems associated with unhindered alkynes, the employment of 1-bromoalkynes was examined. Guibé^{19a} and more recently Pattenden²³ have shown that palladium-mediated hydrostannylations of 1-bromoalkynes proceed with a high bias toward the (E)-vinylstannanes. Since these reactions produce the R₃SnBr as a byproduct, we rationalized that 1-bromoalkynes should be amenable to our chemistry. Following the general procedure of Pattenden,²³ several 1-bromoalkynes were prepared (Table 5). Despite adding a fifth tin reaction to the sequence, these substrates cleanly afforded dienes in \sim 50% yield (Table 6).⁶² The effect of tin loading was also studied. While higher loads of Me₃SnCl saw little improvement, loadings below 6 mol % of tin resulted in fairly significant reductions in yield (Scheme 5). For example, at 1 mol % of Me₃SnCl the 1,3-diene was formed in only 18% yield. # **Conclusions** The limitations and problems associated with the stoichiometric tin requirement of traditional Stille reactions has been #### Scheme 5 # Scheme 6 $$R^1$$ H $+ Pd(0)$ R^1 $SnMe_3$ R^2 X $+ Pd(0)$ R^1 $+$ addressed. Studies have demonstrated the feasibility of a onepot tandem Pd-catalyzed hydrostannylation/Stille coupling with either Bu₃SnH or (Bu₃Sn)₂O and PMHS serving as the tin hydride source. Furthermore, by in situ conversion of the organotin halide Stille byproduct into an intermediate tin carbonate and then back to organotin hydride, it is possible to conduct a hydrostannylation/cross-coupling sequence with catalytic amounts of tin. Such a sequence is most effective with Me₃SnCl serving as the tin source. While trimethyltins carry the burden of increased toxicity, 14,63 their use can allow for a 94% reduction of the tin requirement while maintaining good yields (up to 90%) for a variety of Stille products. Furthermore, since one cycle requires the tin to undergo at least four transformations (Scheme 6), each molecule of organostannane is experiencing a minimum of 60 reactions over the course of the hydrostannylation/Stille sequence. For optimal efficiency, the hydrostannylation/Stille sequence is best run with α-trisubstituted alkynes so as to avoid regiochemical mixtures during the hydrostannylation step and beyond. This limitation can be mitigated by the employment of 1-bromoalkynes which provide a good level of regiocontrol in the hydrostannylation step and thereby enable the formation of the Stille product, albeit in more modest yields (50-55%). # Experimental Section⁶⁴ Representative Procedure for a Stepwise Hydrostannylation/Stille Cross Coupling (Table 1). Preparation of 5-Methyl-1-phenyl-1,3hexadien-5-ol (2). (Ph₃P)₂PdCl₂ (28 mg, 0.04 mmol) and 3-methyl-1butyn-1-ol (1) (0.40 mL, 4 mmol) were added to 20 mL of THF. The solution was cooled to 0 °C with an ice bath, and then Bu₃SnH (1.18 mL, 4.4 mmol) was added dropwise. The reaction was stirred for 1 h and then concentrated. The resulting residue was then purified by column chromatography (silica gel; pentane/EtOAc 90:10, 1% Et₃N) to afford 1.12 g (75%) of 1-(tributylstannyl)-3-methyl-1-(E)-buten-3ol⁶⁵ as a clear oil. A solution of the 1-(tributylstannyl)-3-methyl-1-(E)buten-3-ol (1.13 g, 3 mmol), (E)- β -bromostyrene (0.42 mL, 3.3 mmol), and (Ph₃P)₂PdCl₂ (7 mg, 0.01 mmol) in dry THF (5 mL) was heated ⁽⁶⁰⁾ For example, hydrostannylation of 29 affords a 2.3/1 mixture of (E)/internal vinylstannanes, whereas hydrostannylation of 31 favors the internal stannane ((E)/internal = 1/2.5). ⁽⁶¹⁾ Surprisingly, the overwhelming balance of the reaction material was not unreacted alkyne, but rather multiple multicomponent cross-coupling products. Product determination and further investigation of these multicomponent cross couplings is underway. ⁽⁶²⁾ Reactions with 1-bromoalkynes proved more efficient if THF was substituted for Et₂O and if both the Stille electrophile and the 1-bromoalkyne were syringe pumped into the reaction vessel simultaneously. Addition of the 1-bromoalkyne at once gave multiple products. ^{(63) (}a) Scott, W. J.; Moretto, A. F. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. Ed.; Wiley: New York, 1995; Vol. 7, pp 5327-5328. (b) Dyer, R. S.; Walsh, T. J.; Wonderlin, W. F.; Bercegeay, M. Neurobehav. Toxicol. Teratol. 1982, 4, 127–133 ⁽⁶⁴⁾ For a description of the general materials and methods employed, see the Supporting Information and ref 19c. ⁽⁶⁵⁾ For previous preparation and spectroscopic data, see ref 19c. for 6 days to 50 °C. A concentrated aqueous KF solution (5 mL) was added to the reaction mixture, which was stirred for 3 h. The phases were separated, the aqueous layer was extracted with Et₂O, and the combined organic phases were dried over MgSO₄. Evaporation of the solvent afforded the crude product, which was purified by radial chromatography (silica gel; petroleum ether/EtOAc 90:10) to afford 5-methyl-1-phenyl-1,3-hexadien-5-ol (2) (363 mg, 65%; 49% from alkyne). IR (CHCl₃) 3598, 3451 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.90 (t, J=7.4 Hz, 3 H), 1.31 (s, 3 H), 1.60 (q, J=7.4 Hz, 2 H), 5.86 (d, J=15.4 Hz, 1 H), 6.38 (ddd, J=15.4, 10.4, 0.6 Hz, 1 H), 6.53 (d, J=15.7 Hz, 1 H), 6.76 (ddd, J=15.7, 10.4, 0.6 Hz, 1 H), 7.16–7.39 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 8.3, 27.4, 35.2, 77.0, 126.2, 127.3, 127.8, 128.5, 128.6, 131.9, 137.2, 140.8; HRMS (EI) m/z 188.1204 [(M)+; calcd for C₁₃H₁₆O 188.1201].⁶⁶ Preparation of (5,5-Dimethylhexa-1,3-dienyl)benzene (4). Applying the hydrostannylation procedure above to 3,3-dimethyl-1-butyne (3) (0.492 g, 6 mmol) afforded after
column chromatography (silica gel; pentane, 1% Et₃N) 970 mg (44%) of tributyl(3,3-dimethyl-but-1-enyl)stannane.⁶⁵ Applying the Stille conditions above to tributyl(3,3-dimethyl-but-1-enyl)stannane (980 mg, 2.6 mmol) and (E)-β-bromostyrene (530 mg, 2.9 mmol) afforded after a 5 day reaction time and column chromatography (silica gel; petroleum ether/EtOAc 95:5) (5,5-dimethylhexa-1,3-dienyl)benzene (4)^{66,67} (199 mg, 43%; 19% from alkyne). Preparation of 1-(4-Phenylbuta-1,3-dienyl)cyclohexanol) (6). Applying the hydrostannylation procedure above to 1-ethynylcyclohexanol (5) (124 mg, 1 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 95:5, 1% Et₃N) 290 mg (70%) of 1-(2-tributylstannylvinyl)cyclohexanol²⁰ as a clear oil. Applying the Stille conditions above to 1-(tributylstannyl)-2-(cyclohexanol)-1-ethene (252 mg, 0.6 mmol) and (E)-β-bromostyrene (0.15 mL, 1.2 mmol) afforded after a 30 h reaction time and column chromatography (silica gel; petroleum ether/EtOAc 95:5, 1% Et₃N) 1-(4'-phenyl-1',3'-butadienyl)cyclohexan-1-ol ($\mathbf{6}$)⁶⁶ (83 mg, 60%; 42% from alkyne). Preparation of 2,6-Diphenylhexa-3,5-dien-2-ol (8). Applying the hydrostannylation procedure above to 2-phenylbut-3-yn-2-ol (7) (292.0 mg, 2 mmol) afforded after column chromatography (silica gel; pentane/ EtOAc 95:5, 1% Et₃N) 752 mg (86%) of 2-phenyl-4-tributylstannylbut-3-en-2-ol⁶⁵ as a clear oil. Applying the Stille conditions above to 1-(tributylstannyl)-3-phenyl-1-(*E*)-buten-3-ol (480 mg, 1.1 mmol) and (*E*)-β-bromostyrene (0.14 mL, 1.1 mmol) afforded after a 5 day reaction time and column chromatography (silica gel; petroleum ether/EtOAc 95:5) 1,5-diphenyl-1,3-hexadien-5-ol (8)^{66,68} (180 mg, 65%; 56% from alkyne). Preparation of 3-Methyl-7-phenylhepta-4,6-dien-3-ol (10). Applying the hydrostannylation procedure above to 3-methylpent-1-yn-3-ol (9) (0.23 mL, 2 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 95:5, 1% Et₃N) 624 mg (80%) of 3-methyl-1-tributylstannylpent-1-en-3-ol⁶⁹ as a clear oil. Applying the Stille conditions above to 1-(tributylstannyl)-3-methyl-1-(*E*)-penten-3-ol (540 mg, 1.4 mmol) and (*E*)-β-bromostyrene (0.23 mL, 1.8 mmol) afforded after a 5 day reaction time and column chromatography (silica gel; petroleum ether/EtOAc 90:10) 5-methyl-1-phenyl-1,3-hetadien-5-ol (10)⁶⁶ (199 mg, 70%; 56% from alkyne). Preparation of 2,4-Dimethyl-8-phenylocta-5,7-dien-4-ol (12). Applying the hydrostannylation procedure above to 3,5-dimethyl-1-hexyn-1-ol (11) (757 mg, 6 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 90:10, 1% Et₃N) 1.94 g (77%) of 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol⁶⁵ as a clear oil. Applying the Stille conditions above to 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol (1.30 g, 3.0 mmol) and (*E*)-β-bromostyrene (620 mg, 3.3 mmol) in dry THF (5 mL) afforded after a 5 day reaction time and column chromatography (silica gel; petroleum ether/EtOAc 95:5) 2,4-dimethyl-8-phenylocta-5,7-dien-4-ol (12)⁶⁶ (306 mg, 45%; 35% from alkyne). Preparation of 1,1-Diethyl-5-phenylpenta-2,4-dienylamine (14). Applying the hydrostannylation procedure above to 1,1-diethylpropargylamine (13) (667 mg, 6 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) 1.90 g (80%) of 1,1-diethyl-3-tributylstannylallylamine as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ 0.79 (m, 6 H), 0.87 (m. 15 H), 1.21–1.36 (m, 9 H), 1.38–1.57 (m, 9 H), 5.84 (d, J = 19.5 Hz, 1 H), 5.96 (d, J = 19.5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 7.9, 9.5, 13.9, 27.3, 29.1, 33.7, 58.4, 123.0, 155.0. Applying the Stille conditions above to 1,1-diethyl-3-tributylstannylallylamine (1.30 g, 3.0 mmol) and (E)-F-bromostyrene (0.60 g, 3.3 mmol) in dry THF (5 mL) afforded after a 5 day reaction time and column chromatography (silica gel; petroleum ether/EtOAc 95:5) 1,1-diethyl-5-phenylpenta-2,4-dienylamine (14)⁶⁶ (305 mg, 47%; 36% from alkyne). Representative Procedure for a Tandem One-Pot Hydrostannylation/Stille Coupling with Bu₃SnH (Table 1). Preparation of (5,5-Dimethylhexa-1,3-dienyl)benzene (4). Tributyltin hydride (0.89 mL, 3.3 mmol) was added dropwise at 0 °C to a solution of 3,3-dimethylbut1-yne (3) (0.37 mL, 3 mmol), (E)- β -bromostyrene (0.43 mL, 3.3 mmol), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) in THF (2 mL). The solution was allowed to warm to room temperature overnight and stirred at this temperature for an additional 2 days. The reaction mixture was then treated with a 10% aqueous NH₄OH solution (3 mL) and stirred for 4 h. The phases were separated, the aqueous layer was extracted with Et₂O, and the combined organic phases were dried over MgSO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography (silica gel; petroleum ether) to yield (5,5-dimethylhexa-1,3-dienyl)benzene (4)⁶⁶ (496 mg, 89%). Preparation of 5-Methyl-1-phenyl-1,3-hexadien-5-ol (2) with Bu₃SnH. Applying the conditions from above to 2-methylbut-3-yn-2-ol (1) (0.29 mL, 3 mmol) and (E)-β-bromostyrene (0.43 mL, 3.3 mmol) afforded after column chromatography (silica gel; petroleum ether/ EtOAc 95:5) 5-methyl-1-phenyl-1,3-hexadien-5-ol (2)⁶⁶ (490 mg, 87%). **Preparation of 1-(4-Phenylbuta-1,3-dienyl)cyclohexanol (6) with Bu₃SnH.** The conditions from above were applied to 1-ethynylcyclohexanol (5) with the following modifications: After the addition of tributyltin hydride (0.89 mL, 3.3 mmol), the solution was allowed to warm to room temperature overnight and then heated for an additional 2 days to 45 °C. The reaction mixture was then treated with a 10% aqueous NH₄OH solution (3 mL) and stirred for 4 h. The phases were separated, the aqueous layer was extracted with Et₂O, and the combined organic phases were dried over MgSO₄. Evaporation of the solvent afforded the crude product, which was purified by column chromatography (silica gel; petroleum ether/EtOAc 95:5) to afford 1-(4'-phenyl-1',3'-butadienyl)cyclohexan-1-ol (6)⁶⁶ (349 mg, 51%). Preparation of 1,5-Diphenyl-1,3-hexadien-5-ol (8) with Bu₃SnH. Applying the conditions from above to 2-phenylbut-3-yn-2-ol (7) (146 mg, 1 mmol) and (E)- β -bromostyrene (0.13 mL, 1 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 90:10) 1,5-diphenyl-1,3-hexadien-5-ol (8)⁶⁶ (188 mg, 75%). Preparation of 3-Methyl-7-phenylhepta-4,6-dien-3-ol (10) with Bu₃SnH. Applying the conditions from above to 3-methylpent-1-yn-3-ol (9) (0.34 mL, 3 mmol) and (*E*)- β -bromostyrene (0.43 mL, 3.3 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 95:5) 3-methyl-7-phenylhepta-4,6-dien-3-ol (10)⁶⁶ (520 mg, 86%). Preparation of 2,4-Dimethyl-8-phenylocta-5,7-dien-4-ol (12) with Bu₃SnH. Applying the conditions from above using 3,5-dimethylhex-1-yn-3-ol (11) (0.44 mL, 3 mmol) and (E)- β -bromostyrene (0.43 mL, 3.3 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 95:5) 2,4-dimethyl-8-phenylocta-5,7-dien-4-ol (12)⁶⁶ (523 mg, 76%). Preparation of 1,1-diethyl-5-phenylpenta-2,4-dienylamine (14) with Bu₃SnH. Applying the conditions from above to 1,1-diethylprop-2-ynylamine (13) (0.40 mL, 3 mmol) and (E)- β -bromostyrene (0.43 mL, 3.3 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 80:20) 1,1-diethyl-5-phenylpenta-2,4-dienylamine (14)⁶⁶ (190 mg, 29%) and recovered stannane (450 mg, 37%). Representative Procedure for One-Pot Hydrostannylation/Stille Coupling with in Situ Generated Tin Hydride (Bistributyltin Oxide and Polymethylhydrosiloxane) (Table 1). Preparation of (5,5- ⁽⁶⁶⁾ See Supporting Information for additional spectroscopic data. ⁽⁶⁷⁾ For previous preparations see: (a) Yuan, T. M.; Luh, T. Y. J. Org. Chem. **1992**, *57*, 4550–4552. (b) Tamura, R.; Saegusa, K.; Kakihana, M.; Oda, D. J. Org. Chem. **1988**, *53*, 2723–2728. ⁽⁶⁸⁾ For previous preparations see: Mikhailov, B. M.; Ter-Sarkisyan, G. S.; Tutorskaya, F. B. *Iz. Akad. Nauk. SSSR Ser. Khim.* **1959**, 804–810. (69) For previous preparations see: Hanson, R. N.; Franke, L.; Murphy, F. *Nucl. Med. Biol.* **1996**, *23*, 585–588. Dimethylhexa-1,3-dienyl)benzene (4). A solution of 3,3-dimethylbut-1-yne (3) (0.37 mL, 3 mmol), (Bu₃Sn)₂O (1.86 mL, 3.6 mmol), PMHS (0.42 mL, 7.2 mmol), (E)-β-bromostyrene (0.43 mL, 3.3 mmol), and (PPh₃)₂ PdCl₂ (7 mg, 0.01 mmol) in dry THF (2 mL) was stirred at room temperature for 5 days and then heated to reflux for 5 more days. Then a concentrated aqueous KF solution was added to the reaction mixture, which was stirred for 3 h. The phases were separated, the aqueous layer was extracted with Et₂O, and the combined organic phases were dried over MgSO₄. Evaporation of the solvent afforded the crude product, which was purified by radial chromatography (silica gel; petroleum ether) to yield (5,5-dimethylhexa-1,3-dienyl)benzene (4)⁶⁶ (288 mg, 52%). Preparation of 5-Methyl-1-phenyl-1,3-hexadien-5-ol (2) with (Bu₃Sn)₂O/PMHS. Applying the conditions from to 2-methylbut-3-yn-2-ol (1) (0.29 mL, 3 mmol) and (*E*)-β-bromostyrene (0.43 mL, 3.3 mmol) afforded after radial chromatography (silica gel; petroleum ether/ EtOAc 95:5) 5-methyl-1-phenyl-1,3-hexadien-5-ol (2)⁶⁶ (370 mg, 66%). Preparation of 1-(4-Phenylbuta-1,3-dienyl)cyclohexanol (6) with (Bu₃Sn)₂O/PMHS. Applying the conditions from above to 1-ethynylcyclohexanol (5) (375 mg, 3 mmol) and (E)- β -bromostyrene (0.4 mL, 3.1 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 95:5) 1-(4-phenylbuta-1,3-dienyl)-cyclohexanol (6)⁶⁶ (354 mg, 52%). Preparation of 1,5-Diphenyl-1,3-hexadien-5-ol (8) with (Bu₃Sn)₂O/PMHS. Applying the conditions from above to 2-phenylbut-3-yn-2-ol (7) (438 mg, 3 mmol) and (E)- β -bromostyrene (0.43 mL, 3.3 mmol) afforded after radial chromatography (silica gel; petroleum ether/EtOAc 95:5) 1,5-diphenyl-1,3-hexadien-5-ol (8)⁶⁶ (518 mg, 69%). Preparation of 3-Methyl-7-phenylhepta-4,6-dien-3-ol (10) with (Bu₃Sn)₂O/PMHS. Applying the conditions from
above to 3-methylpent-1-yn-3-ol (9) (0.35 mL, 3 mmol) and (E)- β -bromostyrene (0.4 mL, 3.1 mmol) afforded after radial chromatography (silica gel; petroleum ether/EtOAc 95:5) 3-methyl-7-phenylhepta-4,6-dien-3-ol (10)⁶⁶ (364 mg, 60%). Preparation of 2,4-Dimethyl-8-phenylocta-5,7-dien-4-ol (12) with (Bu₃Sn)₂O/PMHS. Applying the conditions from to 3,5-dimethylhex-1-yn-3-ol (11) (0.44 mL, 3 mmol) and (E)- β -bromostyrene (0.4 mL, 3.1 mmol) afforded after column chromatography (silica gel; petroleum ether/EtOAc 95:5) 2,4-dimethyl-8-phenylocta-5,7-dien-4-ol (12)⁶⁶ (400 mg, 58%). Pd(0)-Mediated Hydrostannylation with Bu₃SnCl/NH₄OH/PMHS Generated Bu₃SnH. Preparation of 3,5-Dimethyl-1-tributylstannylhex-1-en-3-ol (15) (Scheme 5, eq 1). To a mixture of Bu₃SnCl (2 mmol, 0.46 mL) and aqueous NH₄OH (2 mL) in Et₂O were added 3,5-dimethylhex-1-yn-3-ol (11) (2 mmol, 0.29 mL), PMHS dimer (2 mmol, 0.66 mL), and (PPh₃)₂PdCl₂ (14 mg, 0.02 mmol). The solution was stirred at room temperature for 1.5 h and then heated overnight. TLC showed a greater than 1:1 ratio for alkyne/stannane; however, upon column chromatography (silica gel; pentane/EtOAc 95:5) only 117 mg (14%) of 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol (15)⁶⁵ was isolated. Pd(0)-Mediated Hydrostannylation with Bu₃SnCl/NH₄OH/PMHS Generated Bu₃SnH. Preparation of 3,5-Dimethyl-1-tributylstannylhex-1-en-3-ol (15). Aqueous NH₄OH (5 mL) was added to a solution of 3,5-dimethylhex-1-yn-3-ol (11) (0.29 mL, 2 mmol), Bu₃SnCl (0.46 mL, 2 mmol), PMHS dimer (0.33 mL, 1 mmol), (PPh₃)₂PdCl₂ (3.5 mg, 0.005 mmol) in EtOH (1 mL), and toluene (2 mL). The reaction mixture was heated to 55 °C for 30 min; TLC showed only formation of tin dimer and stannane and a small amount of unreacted alkyne. The solution was heated for an additional 6 h, but the composition did not change any further. The mixture was then washed with water, and the organic phase was washed with brine and dried over MgSO₄. Evaporation of the solvent yielded the crude product. ¹H NMR showed a 1.7:1 ratio of stannane/alkyne and a 21:1 ratio of (*E*)/int-stannane. Column chromatography (silica gel; hexane/EtOAc 96:4) afforded 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol (15)⁶⁵ (177 mg, 21%). Pd(0)-Mediated Hydrostannylation with Bu₃SnOMe/PMHS Generated Bu₃SnH. Preparation of 1-(2-Tributylstannylvinyl)cyclohexanol (16). PMHS (0.06 mL, 1.1 mmol) was added dropwise at 0 °C under N₂ to a solution of 1-ethynylcyclohexanol (5) (124 mg, 1 mmol), Bu₃SnOCH₃ (0.29 mL, 1 mmol), and (PPh₃)₂PdCl₂ (3.5 mg, 0.005 mmol) in THF (2 mL). The solution was stirred for 1.5 h until GC showed a 13:1 ratio of stannane/Bu₃SnOCH₃. The solvent was evaporated, and column chromatography (silica gel; petroleum ether/ EtOAc 95:5) of the crude product yielded 1-(2-tributylstannylvinyl)-cyclohexanol (16)⁶⁶ (220 mg, 52%). Pd(0)-Mediated Hydrostannylation with Bu₃SnBr/NaOMe/PMHS Generated Bu₃SnH. Preparation of 1-(2-Tributylstannyl-vinyl)cyclohexanol (16) Using Bu₃SnBr. To a solution of 1-ethynyl-cyclohexanol (5) (124 mg, 1 mmol), Bu₃SnBr (90%, 0.31 mL, 1 mmol), and (PPh₃)₂PdCl₂ (3.5 mg, 0.005 mmol) in dry THF (1 mL) were added NaOCH₃ (162 mg, 3 mmol) and PMHS (0.06 mL, 1.1 mmol) at 0 °C under N₂. GC analysis after 15 min showed complete conversion of Bu₃SnBr. The mixture was washed with water; the organic phase was washed with brine and dried over MgSO₄. After evaporation of the solvent, the crude product was purified by column chromatography (silica gel; petroleum ether/EtOAc 95:5) to yield 1-(2-tributylstannyl-vinyl)cyclohexanol (16)⁶⁶ (220 mg, 52%). Pd(0)-Mediated Hydrostannylation with Bu₃SnCl/NH₄OH/PMHS Generated Bu₃SnH. Preparation of 3,5-Dimethyl-1-tributylstannylhex-1-en-3-ol (15). NaOCH₃ (54 mg, 1 mmol) was added at -7 °C to a solution of 3,5-dimethylhex-1-yn-3-ol (11) (0.145 mL, 1 mmol), PMHS (0.06 mL, 1.1 mmol), Bu₃SnCl (0.27 mL, 1 mmol), and (PPh₃)₂-PdCl₂ (3.5 mg, 0.005 mmol) in THF (1 mL). After stirring for 1.5 h at 0 °C, the reaction mixture was cooled to -7 °C again, treated with PMHS (0.06 mL, 1.1 mmol) and NaOCH₃ (110 mg, 2 mmol), and allowed to warm to 0 °C within 1 h. The solvent was then evaporated and the crude product purified by column chromatography (silica gel; petroleum ether/EtOAc 95:5) to yield 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol (15)⁶⁵ (306 mg, 74%). Attempted Tandem One-Pot Hydrostannlyation/Stille Cross Coupling Using Substoichiometric Amounts of Tin (20 mol % of (Bu₃Sn)₂O and NaOCH₃ and PMHS]. Preparation of 2,4-Dimethyl-8-phenylocta-5,7-dien-4-ol (12). A solution of 3,5-dimethylhex-1-yn-3-ol (11) (0.15 mL, 1 mmol), (*E*)- β -bromostyrene (0.13 mL, 1 mmol), (Bu₃Sn)₂O (0.1 mL, 0.2 mmol), PMHS (0.07 mL, 1.2 mmol), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) in THF was treated with NaOCH₃ (65 mg, 1.2 mmol). Gas evolution occurred, and the reaction mixture was heated to 60 °C. After 5 h additional PMHS (0.07 mL, 1.2 mmol) and NaOCH₃ (65 mg, 1.2 mmol) were added. The solution was heated overnight, additional PMHS (0.07 mL, 1.2 mmol) was added, and after an additional 3 h at 60 °C, a 10% aqueous NH₄OH solution was added. The aqueous phase was extracted with Et₂O, and the combined organic phases were washed with brine and dried over MgSO₄. After evaporation of the solvent, the crude product was purified by column chromatography (silica gel; petroleum ether/EtOAc 95:5) to yield 2,4dimethyl-8-phenylocta-5,7-dien-4-ol (12)⁶⁶ (8 mg, 3%). Pd(0)-Mediated Hydrostannylation with Bu₃SnCl/NaOPh/PMHS Generated Bu₃SnH. Preparation of 3,5-Dimethyl-1-tributylstannylhex-1-en-3-ol (15). Phenol (188 mg, 2 mmol) and Na (46 mg, 2 mmol) were stirred in dry THF until the sodium was dissolved. This solution was added to a mixture of 3,5-dimethylhex-1-yn-3-ol (11) (0.145 mL, 1 mmol), Bu₃SnCl (0.27 mL, 1 mmol), (PPh₃)₂PdCl₂ (3.5 mg, 0.005 mmol), and THF. A very fine precipitation of NaCl formed, and TLC indicated complete conversion of Bu₃SnCl into the phenoxide. PMHS (0.09 mL, 1.5 mmol) was added at room temperature, and after 15 min TLC showed complete conversion of the alkyne. The solvent was evaporated, and ¹H NMR of the crude product showed a 14:1 ratio for (*E*)/int-stannane. Column chromatography (silica gel; pentane/EtOAc 95:5) afforded 3,5-dimethyl-1-tributylstannylhex-1-en-3-ol (15)⁶⁵ (250 mg, 71%). See above for spectroscopic data. Bu₃SnCl/NaOPh/PMHS Mediated Tandem One-Pot Hydrostannylation/Stille Coupling. Preparation of 3,5-Dimethyl-1-phenylhex-1-en-3-ol (17). To a solution of Pd₂dba₃ (9.2 mg, 0.01 mmol), TFP (9.3 mg, 0.04 mmol), Bu₃SnCl (0.27 mL, 1 mmol), and NaOPh (0.5 mL of 4 M solution in THF, 2 mmol) in THF (2 mL) were added 3,5-dimethylhex-1-yn-3-ol (11) (0.145 mL, 1 mmol) and PMHS (0.09 mL, 1.5 mmol). The reaction mixture was stirred until TLC showed complete consumption of the alkyne. Iodobenzene (0.33 mL, 3 mmol) was added, and the solution was heated to reflux for 5 h. During this time additional iodobenzene (0.05 mL, 0.45 mmol) was added. A saturated aqueous KF solution was added, and the reaction mixture was stirred for additional 3 h. The organic phase was washed with water and brine and dried over MgSO₄. After evaporation of the solvent, column chromatography (silica gel; pentane/EtOAc 95:5) of the crude product yielded of 3,5-dimethyl-1-phenylhex-1-en-3-ol (17)⁶⁶ (110 mg, 54%). IR (CHCl₃) 3594 cm⁻¹; 1 H NMR (300 MHz, CDCl₃) δ 0.91–0.99 (m, 6 H), 1.34 (s, 3 H), 1.35–1.81 (m, 3 H), 6.27 (d, J=16.2 Hz, 1 H), 6.57 (d, J=16.2 Hz, 1 H), 7.20–7.39 (m, 5 H), (OH not observed); 13 C NMR (75 MHz, CDCl₃) δ 24.4, 24.5, 24.6, 29.22, 51.5, 73.7, 126.3, 126.42, 127.2, 128.5, 137.1, 137.2; HRMS (EI) m/z 204.1465 [(M)+; calcd for C14H20O 204.1412]. Anal. Calcd for $C_{14}H_{20}O$: C, 82.30; H, 9.87. Found: C, 82.36; H, 9.85. Attempted Tandem One-Pot Hydrostannylation/Stille Coupling with Substoichiometric Amounts of Bu₃SnCl/NaOPh/PMHS Generated Bu₃SnH. Preparation of 3,5-Dimethyl-1-phenylhex-1-en-3-ol (17). A NaOPh solution in THF (prepared from PhOH (94 mg, 1 mmol) and Na (23 mg, 1 mmol) was added to a solution of Bu₃SnCl (0.14 mL, 0.5 mmol), 3,5-dimethylhex-1-yn-3-ol (11) (0.07 mL, 0.5 mmol), Pd₂dba₃ (13 mg, 0.014 mmol), and TFP (13 mg, 0.06 mmol) in dry THF (2 mL). After stirring at room temperature for 15 min, PMHS (0.03 mL, 0.5 mmol) and iodobenzene (0.1 mL, 1 mmol) were added and the mixture was heated to 60 °C. After 30 min, an additional 2 equiv of iodobenzene was added and the solution was heated for an additional 2 h. 3,5-Dimethylhex-1-yn-3-ol (0.07 mL, 0.5 mmol) and a NaOPh solution in THF (0.25 mL, 4 M) were added. After stirring at room temperature for 15 min, PMHS (0.03 mL, 0.05 mmol) was added and the reaction mixture was heated until TLC showed complete consumption of stannane. The reaction mixture was extracted with water, and the organic phase was dried over MgSO₄, concentrated, and purified by column chromatography (silica gel; pentane/EtOAc 97:3) to yield 3,5-dimethyl-1-phenylhex-1-en-3-ol (17)⁶⁶ (112 mg, 55%). See above for spectroscopic data. Pd(0)-Mediated Hydrostannylation with Bu₃SnCl/Na₂CO₃/PMHS Generated Bu₃SnH. Preparation of 2-Phenyl-4-tributylstannylbut-3-en-2-ol (18) (Scheme 3). A mixture of 2-phenylbut-3-yn-2-ol (7) (125 mg, 0.85 mmol), Bu₃SnCl (0.27 mL, 1 mmol), PMHS (0.12 mL, 2 mmol), (PPh₃)₂PdCl₂ (4.6 mg, 0.006 mmol), and Na₂CO₃ (318 mg, 3 mmol) in H₂O (0.5 mL) and Et₂O (5 mL) was heated to reflux for 30 min before additional PMHS (0.12 mL, 2 mmol) and Na₂CO₃ (159 mg, 1.5 mmol) were added. After heating the solution for an additional 5.5 h, water was added and the phases were separated. The organic phase was washed with brine and dried over MgSO₄. After evaporation of the solvent the crude product was purified by column chromatography (silica gel; petroleum ether/EtOAc 95:5) to yield 2-phenyl-4-tributyl-stannylbut-3-en-2-ol and 2-phenyl-3-tributylstannylbut-3-en-2-ol (18)⁶⁵ (278 mg, 75%). One-Pot Hydrostannylation/Stille Cross Coupling with Bu₃SnCl and Na₂CO₃/PMHS Generated
Bu₃SnH. Preparation of 2,6-Diphenylhexa-3,5-dien-2-ol (8) (Scheme 4). A mixture of Pd₂dba₃ (9.2 mg, 0.01 mmol) and TFP (9.3 mg, 0.04 mmol) in Et₂O (5 mL) was stirred at room temperature for 15 min before Bu₃SnCl (0.84 mL, 3 mmol), Na₂CO₃ (638 mg, 6 mmol), and H₂O (2 mL) were added. Over a period of 18 h a solution of 2-phenylbut-3-yn-2-ol (7) (438 mg, 3 mmol), (E)- β -bromostyrene (0.67 mL, 5 mmol), and PMHS (0.3 mL, 5 mmol) in Et₂O (5 mL) was added with a syringe pump to the refluxing solution. The solution was stirred for an additional 4 days; then a saturated aqueous KF solution was added and the reaction mixture was stirred for an additional 3 h. The organic phase was washed with water and brine and dried over MgSO₄. After evaporation of the solvent, radial chromatography (silica gel; pentane/EtOAc 95:5) of the crude product yielded 2,6-diphenylhexa-3,5-dien-2-ol (8)⁶⁶ (354 mg, 47%). Tandem Hydrostannlyation/Stille Cross Coupling Using Substoichiometric Amounts of Tin (20 mol % of Bu₃SnCl and PMHS). Preparation of 2,6-Diphenylhexa-3,5-dien-2-ol (8) (Table 2). A mixture of Pd₂dba₃ (9.2 mg, 0.01 mmol) and TFP (9.3 mg, 0.04 mmol) in Et₂O (5 mL) was stirred for 15 min at room temperature. 2-Phenylbut-3-yn-2-ol (7) (146 mg, 1 mmol), Bu₃SnCl (0.05 mL, 0.2 mmol), (*E*)-β-bromostyrene (0.13 mL, 1 mmol), Na₂CO₃ (560 mg, 5 mmol), PMHS (0.15 mL, 2.5 mmol), and H₂O (1 mL) were added, and the mixture was heated to reflux. After 1 h additional Na₂CO₃ (560 mg, 5 mmol) and after 2 h and 3.5 h additional PMHS (2×, 0.15 mL, 2.5 mmol) were added. The reaction mixture was refluxed for a total of 7.5 h and filtered, and the filtrate was washed with ether. After evaporation of the solvent, the residue was purified by column chromatography (silica gel; petroleum ether/EtOAc 90:10) to yield 2,6-diphenylhexa-3,5-dien-2-ol (8)⁶⁶ (100 mg, 40%). See above for spectroscopic data. Tandem Hydrostannlyation/Stille Cross Coupling Using Substoichiometric Amounts of Tin (4 mol % of Bu₃SnCl and PMHS). Preparation of 2,6-Diphenylhexa-3,5-dien-2-ol (8) (Table 2). A solution of Pd₂dba₃ (9.2 mg, 0.01 mmol) and TFP (9.3 mg, 0.04 mmol) in ether (5 mL) was stirred for 15 min before (E)- β -bromostyrene (0.67 mL, 5 mmol), Bu₃SnCl (0.05 mL, 0.185 mmol), (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol), Na₂CO₃ (425 mg, 4 mmol), and H₂O (1 mL) were added. While the solution was stirred at room temperature, a solution of 2-phenylbut-3-yn-2-ol (7) (730 mg, 5 mmol) and PMHS (0.45 mL, 7.5 mmol) in Et₂O (3 mL) was added with a syringe pump. After 5.5 h additional Na₂CO₃ (425 mg, 4 mmol) in H₂O (1 mL) were added. After 3 days at room temperature, an aqueous NH₄OH solution (10%, 2 mL) was added to the reaction mixture, which was then stirred for 30 min and extracted with ether. The organic phase was washed with water and brine and dried over MgSO₄. After evaporation of the solvent, column chromatography (silica gel; petroleum ether then petroleum ether/EtOAc 90:10) of the residue afforded 2,6-diphenylhexa-3,5-dien-2-ol (8)⁶⁶ (250 mg, 22%). Tandem Hydrostannlyation/Stille Cross Coupling Using Substoichiometric Amounts of Tin (10 mol % of Bu₃SnCl and PMHS). Preparation of 5-Methyl-1-phenyl-1,3-hexadien-5-ol (2) (Table 2). A mixture of Pd₂dba₃ (18.4 mg, 0.02 mmol) and TFP (18.6 mg, 0.08 mmol) in Et₂O (5 mL) was stirred for 15 min at room temperature. 2-Methylbut-3-yn-2-ol (1) (0.1 mL, 1 mmol), Bu₃SnCl (0.056 mL, 0.2 mmol), Na₂CO₃ (212 mg, 2 mmol), PMHS (0.12 mL, 2 mmol), (E)β-bromostyrene (0.15 mL, 1.15 mmol), and H₂O (1 mL) were added, and the reaction mixture was heated to reflux for 1 h before additional alkyne (0.1 mL, 1 mmol) was added. After refluxing for 23 h, a saturated aqueous KF solution was added and the mixture was stirred for 3 h. The phases were separated; the organic phase was washed with brine and dried over MgSO₄. Evaporation of the solvent and radial chromatography (silica gel; pentane/EtOAc 97:3) of the residue yielded 5-methyl-1-phenyl-1,3-hexadien-5-ol (2)⁶⁶ (90 mg, 42% ((*E*)- β -bromostyrene as limiting reagent), 2.4 cycles). Tandem Hydrostannylation/Stille Cross Coupling Using Substoichiometric Amounts of Tin (10 mol % of Bu₃SnCl and PMHS). Preparation of 1-(4-Phenylbuta-1,3-dienyl)cyclohexanol (6) (Table 2). A mixture of Pd₂dba₃ (18.4 mg, 0.02 mmol) and TFP (18.6 mg, 0.08 mmol) in Et₂O (5 mL) was stirred for 15 min at room temperature. 1-Ethynylcyclohexanol (5) (124 mg, 1 mmol), Bu₃SnCl (0.056 mL, 0.2 mmol), Na₂CO₃ (212 mg, 2 mmol), PMHS (0.12 mL, 2 mmol), (E)- β -bromostyrene (0.15 mL, 1.15 mmol), and H₂O (1 mL) were added, and the reaction mixture was heated to reflux for 1 h before additional alkyne (0.1 mL, 1 mmol) was added. After refluxing for 12 h, additional (E)- β -bromostyrene (0.15 mL, 1.15 mmol) was added together with PMHS (0.12 mL, 2 mmol). The solution was heated for an additional 24 h; then saturated aqueous KF solution was added and the mixture was stirred for 3 h. The phases were separated, and the organic phase was washed with brine and dried over MgSO₄. Evaporation of the solvent and radial chromatography (silica gel; pentane/EtOAc 97:3) of the residue yielded 1-(4-phenylbuta-1,3-dienyl)cyclohexanol (6)⁶⁶ (117 mg, 26%). Representative Procedure for the Tandem One-Pot Hydrostannylation/Stille Cross Coupling with Catalytic Amounts of tin Using Me₃SnCl. Preparation of 1-(4'-Phenyl-1'-3'-butadienyl)cyclohexan-1-ol (6) (Table 3, entry 1). Tri-2-furylphosphine (9.3 mg, 0.04 mmol) was added to a solution of Pd₂dba₃ (9.2 mg, 0.01 mmol) in dry diethyl ether (5 mL). After 15 min of stirring the solution at room temperature, 1-ethynyl-1-cyclohexanol (5) (124 mg, 1.0 mmol), PMHS (0.1 mL, 1.5 mmol), Me₃SnCl (0.06 mL of a 1 M solution in THF, 0.06 mmol), Na₂CO₃ (85 mg, 0.8 mmol), H₂O (0.5 mL), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) were added. The reaction was heated to reflux, and a solution of (*E*)-β-bromostyrene (275 mg, 1.5 mmol) in diethyl ether (4 mL) was added dropwise via a syringe pump (0.24 mL/h). When the addition was complete, an aqueous NH₄OH solution (10%, 2 mL) was added and the reaction mixture stirred for 30 min. The reaction was then filtered and separated, and the aqueous phase was extracted with diethyl ether. The organics were combined, washed with water and then brine, dried over MgSO₄, and filtered. The solvent was evaporated, and the residue was purified by column chromatography (silica gel; pentane/EtOAc 90:10, 1% Et₃N) to afford 1-(4'-phenyl-1'-3'-butadienyl)cyclohexan-1-ol (6)66 (205 mg, 90%) as an oil. Preparation of 1,5-Diphenyl-1,3-hexadien-5-ol (8) (Table 3, entry 2). Applying the conditions above to 2-phenyl-3-butyn-2-ol (7) (146 mg, 1.0 mmol) and (E)- β -bromostyrene (275 mg, 1.5 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) 1,5-diphenyl-1,3-hexadien-5-ol (8)⁶⁶ (211 mg, 85%) as an oil. Preparation of 2-Phenyl-4-(p-methoxyphenyl)-3-buten-2-ol (19) (Table 3, entry 3). Applying the conditions above to 2-phenyl-3-butyn-2-ol (7) (292 mg, 2.0 mmol) and p-iodoanisole (702 mg, 3.0 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 90: 10, 1% Et₃N) 2-phenyl-4-(p-methoxyphenyl)-3-buten-2-ol (19)⁷⁰ (204 mg, 80%) as an oil. Preparation of 5-Amino-5-ethyl-1-phenyl-1,3-heptadiene (14) (Table 3, entry 4). Applying the conditions above to 1,1-diethylpropargylamine (13) (111 mg, 0.14 mL, 1.0 mmol) and (E)- β bromostyrene (275 mg, 1.5 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 50:50, 1% Et₃N) 5-amino-5-ethyl-1phenyl-1,3-heptadiene (14)⁶⁶ (170 mg, 86%) as an oil. Preparation of 5-Methyl-1-phenyl-1,3-hexadien-5-ol (2) (Table 3, entry 5). Applying the conditions above to 2-methyl-3-butyn-2-ol (1) (84 mg, 0.10 mL, 1.0 mmol) and (*E*)- β -bromostyrene (275 mg, 1.5 mmol) afforded after column chromatography (silica gel; pentane/ EtOAc 90:10, 1% Et₃N) 5-methyl-1-phenyl-1,3-hexadien-5-ol (2)⁶⁶ (173 mg, 91%) as an oil which gave spectroscopic data consistent with that previously reported. Preparation of 2-Methyl-4-(p-n-butylphenyl)-3-buten-2-ol (20) (**Table 3, entry 6**). Applying the conditions above to 2-methyl-3-butyn-2-ol (1) (168 mg, 0.20 mL, 2.0 mmol) and *p-n*-butyliodobenzene (780 mg, 3 mmol) afforded after column chromatography (silica gel; pentane/ EtOAc 90:10, 1% Et₃N) 2-methyl-4-(p-n-butylphenyl)-3-buten-2-ol $(20)^{66}$ (328 mg, 75%) as an oil. Preparation of 2-Methyl-4-(6-aceto-1-(E)-hexene)-3-buten-2-ol (22E) and 2-Methyl-4-(6-aceto-1-(Z)-hexene)-3-buten-2-ol (22Z) (Table 3, entry 7). Applying the conditions above to 2-methyl-3-butyn-2-ol (1) (84 mg, 0.10 mL, 1.0 mmol) and a 3:1 mixture of 6-aceto-1iodo-1-(E)-hexene (21E) and 6-aceto-1-iodo-1(Z)-hexene (21Z) (402 mg, 1.5 mmol; experimental preparation provided below) afforded after column chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) 180 mg (80%) of an oily inseparable 4:1 mixture of 2-methyl-4-(6aceto-1-(E)-hexene)-3-buten-2-ol (22E)66 and 2-methyl-4-(6-aceto-1-(Z)-hexene)-3-buten-2-ol (22Z).66 Preparation of 2-Methyl-5-phenylpent-3-en-2-ol (23) (Table 3, entry 8). Applying the conditions above to 2-methyl-3-butyn-2-ol (1) (0.10 mL, 1.0 mmol) and benzyl bromide (0.18 mL, 1.5 mmol) afforded after flash chromatography (silica gel; pentane/EtOAc, 1% Et₃N) 2-methyl-5-phenylpent-3-en-2-ol (**23**)^{66,71} (151 mg, 85%) as a thick yellow oil. Preparation of 8-Phenylocta-5,7-dien-4-ol (26) (Table 4, entry 1). Applying the conditions above to 1-hexyn-3-ol (25) (0.12 mL, 1.0 mmol) and (E)- β -bromostyrene (275 mg, 1.5 mmol) afforded after column chromatography (silica gel; pentane/EtOAc 90:10, 1% Et₃N) to afford 120 mg (59%) of 8-phenylocta-5,7-dien-4-ol (26)⁶⁶ as a yellow Preparation of 1,5-Diphenylpenta-2,4-dien-1-ol (28) (Table 4, entry 2). Applying the conditions above to 1-phenyl-2-propyn-1-ol (27) (0.25 mL, 2.0 mmol) and (E)- β -bromostyrene (549 mg, 3.0 mmol) afforded after flash chromatography (silica gel; pentane/EtOAc
90:10, 1% Et₃N) 1,5-diphenylpenta-2,4-dien-1-ol (28)^{66,72} (320 mg, 68%) as Preparation of 6-Phenylhexa-3,5-dien-1-ol (30) (Table 4, entry 3). Tri-2-furylphosphine (9.3 mg, 0.04 mmol) was added to a solution of Pd₂dba₃ (9.2 mg, 0.01 mmol) in dry diethyl ether (5 mL). After 15 min of stirring the solution at room temperature, 3-butyn-1-ol (29) (0.08 mL, 1.0 mmol), PMHS (0.09 mL, 1.5 mmol), Me₃SnCl (0.06 mL of a 1 M solution in THF, 0.06 mmol), Na₂CO₃ (85 mg, 0.8 mmol), H₂O (0.5 mL), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) were added, respectively. The reaction was heated to reflux, and a solution of (E)- β -bromostyrene (274.5 mg, 1.5 mmol) in diethyl ether (4 mL) was added dropwise via a syringe pump (0.24 mL/h). When the addition was complete, an aqueous NH₄OH solution (10%, 2 mL) was added and the reaction mixture stirred for 30 min. The reaction was then filtered and separated, and the aqueous phase was extracted with diethyl ether. The organics were combined, washed with water and then brine, dried over MgSO₄, and filtered. The solvent was evaporated, and the residue was purified by column chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) to afford 62 mg (36%) of 6-phenylhexa-3,5-dien-1-ol (30)⁶⁶ as a white solid (mp = 63-64 °C). Preparation of (5-Methoxypenta-1,3-dienyl)benzene (32) (Table 4, entry 4). Tri-2-furylphosphine (9.3 mg, 0.04 mmol) was added to a solution of Pd₂dba₃ (9.2 mg, 0.01 mmol) in dry diethyl ether (5 mL). After 15 min of stirring the solution at room temperature, methyl propargyl ether (31) (0.08 mL, 1.0 mmol), PMHS (0.09 mL, 1.5 mmol), Me₃SnCl (0.06 mL of a 1 M solution in THF, 0.06 mmol), Na₂CO₃ (85 mg, 0.8 mmol), H₂O (0.5 mL), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) were added, respectively. The reaction was heated to reflux, and a solution of (E)- β -bromostyrene (275 mg, 1.5 mmol) in diethyl ether (4 mL) was added dropwise via a syringe pump (0.24 mL/h). When the addition was complete, an aqueous NH₄OH solution (10%, 2 mL) was added and the reaction mixture stirred for 30 min. The reaction was then filtered and separated, and the aqueous phase was extracted with diethyl ether. The organics were combined, washed with water and then brine, dried over MgSO₄, and filtered. The resulting residue was purified by column chromatography (silica gel; pentane/EtOAc 95:5, 1% Et₃N) to afford 54 mg (16%) of (5-methoxy-penta-1,3-dienyl)benzene (32).73 Representative Procedure for the Tandem One-Pot Hydrostannylation/Stille Cross Coupling with Catalytic Amounts of Me₃SnCl Using 1-Bromoalkynes. Preparation of 4-(4-Methoxyphenyl)but-3en-1-ol (38) (Table 6). To 10 mL of THF were added Pd₂dba₃ (9.2 mg, 0.01 mmol) and tri-2-furylphosphine (9.3 mg, 0.04 mmol), and the mixture was allowed to stir for 15 min. Me₃SnCl (0.06 mL of a 1 M solution in THF, 0.06 mmol), Na₂CO₃ (0.0852 g, 0.80 mmol), 1 mL of H₂O, PMHS (0.09 mL, 1.5 mmol), and (PPh₃)₂PdCl₂ (7 mg, 0.01 mmol) were all added, respectively. The mixture was then heated to reflux, and a solution of 4-bromobut-3-yn-1-ol (33) (149 mg, 1.0 mmol) and p-iodoanisole (351 mg, 1.5 mmol) in 4 mL of Et₂O was added via a syringe pump (0.024 mL/h). When addition was complete, 2 mL of 10% NH₄OH (aqueous) was added and the mixture was stirred for an additional 30 min. The reaction was then filtered and separated, and the aqueous layer was extracted with ether. All organics were combined, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. The resulting residue was then purified by flash chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) to give 91 mg (51%) of 4-(4-methoxyphenyl)but-3-en-1-ol (38)^{66,74} as an oil. Preparation of 8-Phenylocta-5,7-dien-1-ol (39) (Table 6). Applying the conditions from above using 6-bromo-hex-5-yn-1-ol19c (35) (177 mg, 1.0 mmol) and (E)- β -bromostyrene (275 mg, 1.5 mmol) afforded a residue which was purified by flash chromatography (silica gel; pentane/EtOAc 80:20, 1% Et₃N) to give 98 mg (49%) of 8-phenylocta-5,7-dien-1-ol (39)⁷⁵ as a white solid (mp = 38-39 °C). ¹H NMR (500 MHz, CDCl₃) δ 1.51 (m, 2 H), 1.61 (m, 2 H), 1.73 (br s, 1 H), 2.19 (q, J = 7.9 Hz, 2 H), 3.65 (t, J = 6.6 Hz, 2 H), 5.83 (dt, J = 7.5, 15.5 Hz, ⁽⁷⁰⁾ For spectroscopic data see: Chiacchio, U.; Liguori, A.; Romeo, G.; Sindona, G.; Uccella, N. Heterocycles 1993, 36, 799-817. ⁽⁷¹⁾ For previous preparations see: Reich, H. J.; Shah, S. K.; Chow, F. J. Am. Chem. Soc. 1979, 101, 6648-6656. ⁽⁷²⁾ For spectroscopic data see: Desideri, N.; Sestili.I.; Artico, M.; Massa, S.; Loi, A. G.; Doa M.; Musiu, C.; Lacolla, P. Med. Chem. Res. **1995**, 5, 431-441. ⁽⁷³⁾ For spectroscopic data see Reddy, A. M.; Rao, V. J. J. Org. Chem. **1992**, *57*, 6727–6731. ⁽⁷⁴⁾ For spectroscopic data see: Breuer, E.; Sarel, S. Tetrahedron 1968, 24, 6339-6349. ⁽⁷⁵⁾ For spectroscopic data see: Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582-7594. 1 H), 6.23 (dd, J=10.4, 15.9 Hz 1 H), 6.46 (d, J=15.9 Hz, 1 H), 6.76 (dd, J=10.2, 15.7 Hz 1 H), 7.14–7.46 (m, 5 H);¹³C NMR (125 MHz, CDCl₃) δ 137.5, 135.2, 130.9, 130.2, 129.3, 128.5, 127.1, 126.1, 62.7, 32.5, 32.2, 25.3. **Preparation of 2-(5-Phenylpent-4-enyloxy)tetrahydropyran (40)** (**Table 6).** Applying the conditions above to 2-(5-bromo-pent-4-ynyloxy)-tetrahydropyran^{19c} (**37**) (143 mg, 0.58 mmol) and *p*-iodobenzene (0.17 mL, 1.5 mmol) afforded a residue which was purified by flash chromatography (silica gel; pentane/EtOAc 95:5, 1% Et₃N) to give 75 mg (52%) of 2-(5-phenylpent-4-enyloxy)tetrahydropyran (**40**)^{66,76} as an oil. Preparation of 6-Aceto-1-iodo-1-(E)-hexene (21E) and 6-Aceto-**1-iodo-1(Z)-hexene (21Z).** A solution containing a 3:1 E/Z mixture of 6-aceto-1-(tributylstannyl)-1-hexene⁶⁵ (1.0 g, 2.31 mmol) in anhydrous dichloromethane (10 mL) was cooled to 0 °C. Iodine (586 mg, 2.31 mmol) in anhydrous dichloromethane (6 mL) was slowly added to the reaction mixture being careful not to let the purple color persist. The reaction was quenched by the addition of aqueous sodium thiosulfate. The reaction mixture was diluted with diethyl ether and water, and the layers were separated. The organic phase was washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The crude iodide was purified by flash silica gel chromatography (silica gel; pentane/ EtOAc 95:5) to afford 610 mg (98%) of an oily inseparable 4:1 mixture of 6-aceto-1-iodo-1-(E)-hexene (21E) and 6-aceto-1-iodo-1(Z)-hexene (21Z).66 IR (neat) 1734 cm⁻¹; 1 H NMR (300 MHz, CDCl₃) δ 1.40– 1.725 (m, 8 H), 2.00-2.23 (m, 10 H), 4.00-4.10 (m, 4 H), 6.02 (d, J $= 14.3, 1 \text{ H}, (E), 6.11-6.25 \text{ (m, 2 H, (Z))}, 6.42-6.56 \text{ (m, 1 H} (E))}; {}^{13}\text{C}$ NMR (75 MHz, CDCl₃) δ 20.9, 24.3, 24.7, 27.8, 27.9, 34.2, 35.5, 64.1, 64.2, 75.0, 82.9, 140.6, 145.9, 171.1; HRMS (EI) m/z 267.9958 [(M)+ calcd for C₈H₁₃IO₂ 267.9960]. **Preparation of 1,1,2,2,3,3,4,4,4-Nonafluorobutane-1-sulfonic Acid 4-Methoxyphenyl Ester (24).** Following the general procedure of Corey, ^{13a} to a solution of *p*-methoxyphenol (1.24 g, 10 mmol) and Et₃N (1.70 mL, 12 mmol) in CH₂Cl₂ (80 mL) at room temperature was added perfluoro-1-butanesulfonyl fluoride (2.16 mL, 12 mmol) dropwise. The resulting solution was stirred for 2 h. The reaction mixture was then washed with 5% NaOH (2 \times 100 mL), H₂O (2 \times 100 mL), and brine (2 \times 100 mL) and then dried over MgSO₄ and concentrated. The resulting residue was purified by column chromatography (silica gel; pentane/EtOAc 95:5, 1% Et₃N) to afford 3.28 g (81%) of 1,1,2,2,3,3,4,4-nonafluorobutane-1-sulfonic acid 4-methoxyphenyl ester (24) a clear oil **Preparation of 4-Bromobut-3-yn-1-ol (33) (Table 5).** *N*-Bromosuccimide (9.78 g, 55 mmol) and AgNO₃ (0.750 g, 4.4 mmol) were added to a solution of 3-butyn-1-ol (**29**) (3.78 mL, 50 mmol) in dry acetone (150 mL). The reaction was stirred at room temperature until complete by TLC (1 h). The reaction was quenched by the addition of 200 mL of pentane and then washed with H₂O. The layers were separated, the aqueous layer was back extracted with Et₂O/pentane (1:1), and the organics were combined, dried over MgSO₄, filtered, and concentrated. The resulting residue was then purified by flash chromatography (silica gel; pentane/EtOAc 90:10, 1% Et₃N) to give 7.45 g (94%) of 4-bromobut-3-yn-1-ol (**33**).⁷⁸ **Acknowledgment.** Generous support was provided by the NIH (HL-58114), NSF (CHE-9984644), and MSU from an All University Research Initiation Grant and start-up funds for R.E.M. We also thank Mr. Michael Rice for running important control experiments. **Supporting Information Available:** Spectroscopic data for all new compounds pictured, as well as detailed experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org. #### JA0035295 ⁽⁷⁶⁾ For spectroscopic data see: Johns, A.; Murphy, J. A.; Sherburn, M. S. *Tetrahedron* **1989**, *45*, 7835–7858. ⁽⁷⁷⁾ For spectroscopic data see: Subramanian, L. R.; Martinez, A. G.; Fernandez, A. H.; Alvarez, R. M. *Synthesis* **1984**, 481–485. ⁽⁷⁸⁾ For spectroscopic data see: Montirth, J. M.; DeMario, D. R.; Kurth, M. J.; Schore, N. E. *Tetrahedron* **1998**, *54*, 11741–11748.