Date: 25-05-12 10:23:31

Europeon Journal

DOI: 10.1002/ejoc.201200228

Efficient Synthesis of 4-Halo-2,5-dihydro-1,2-oxaphosphole 2-Oxides from 1,2-Allenylphosphonates and CuX₂ and Subsequent Suzuki Cross-Coupling of the C-Cl Bonds

Ning Xin^[a] and Shengming Ma^{*[a,b]}

Keywords: Synthetic methods / Cyclization / Cross-coupling / Chirality / Allenes / Phosphorous heterocycles

A convenient and efficient synthesis of 4-halo-2,5-dihydro-1,2-oxaphosphole 2-oxides through CuX_2 -mediated direct halocyclization of diethyl 1,2-allenylphosphonates was developed. The yields range from moderate to excellent. The

Introduction

Many phosphorus-containing compounds may be considered as potential insecticides, bactericides, fungicides, and antibiotic reagents, because of their biological activities,^[1] and such compounds exist widely in nature.^[2] In recent decades, a number of groups have studied the synthesis and transformations of allenylphosphonates,^[3–6] such as palladium-catalyzed coupling reactions with 2-iodophenols, 2-iodobenzoic acids and 2-iodobenzyl alcohols,^[3] cycloaddition reactions,^[4] selenochlorination with PhSeCl,^[5] and halocyclizations.^[6] Several observations have already been disclosed on the halocyclization of allenylphosphonates with relatively active electrophiles such as bromine, sulfenyland selenenvlbromides, and mercuric acetate.^[7] In the bromolactonization reactions, bromine was predominantly used to produce bromine-containing oxaphospholene structures. Previously, we have observed that the nontoxic and mild CuX₂ could serve as an efficient halogenation reagent with easier manipulation and better functional group tolerance in the cyclization of functionalized allenes, such as 2,3allenoic acids,^[8] 2,3-allenamides,^[9] and 2,3-allenoates^[10] (Scheme 1). Recently, we have developed the halocyclization of monoesters of 1,2-allenylphosphonic acids giving 4-halo-2,5-dihydro-1,2-oxaphosphole 2-oxides in good yields, in which the monoesters were prepared in an extra step involving hydrolysis from diethers with excess NaOH in H₂O.^[11] efficiency of axial-to-central chirality transfer has also been studied. Further Suzuki cross-coupling of the resulting vinylic chlorides with dicyclohexyl(2,4,6-trimethoxyphenyl)phosphane (LB-Phos) as the ligand, was established.

Herein, we present our recent results on direct chloro/ bromo-lactonization of 1,2-allenylphosphonates with CuX_2 (Scheme 2) and Suzuki coupling of the corresponding cyclic chlorides with dicyclohexyl(2,4,6-trimethoxyphenyl)phosphane (LB-Phos), which was developed in our group, as the ligand.^[12]

Scheme 1. Halocyclization of functionalized allenes with CuX₂.

Scheme 2. Halolactonization of monoesters of 1,2-allenylphosphonic acids and 1,2-allenylphosphonates.

Results and Discussion

1,2-Allenylphosphonates were prepared through intermolecular Claisen rearrangement of propargylic alcohols

 [[]a] Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China

Fax: +86-21-6260-9305 E-mail: masm@sioc.ac.cn

[[]b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200228.

FULL PAPER

and P(OEt)₂Cl.^[13] We used diethyl (2-methylocta-2,3-dien-4-yl)phosphonate (1a) as the substrate to screen a series of different reaction conditions for the bromocyclization reaction. The desired product was afforded in 82% yield when 1a was treated with 4.0 equiv. CuBr₂ at 60 °C in N,N-dimethylformamide (DMF), which was observed to be the best conditions for the halocyclization of monoesters of 1,2allenylphosphonic acids^[11] (Table 1, entry 1). A variety of solvents such as toluene, acetonitrile, dichloromethane, ethanol, and tetrahydrofuran (THF) were tested: ethanol gave the best result, whereas THF gave the product 2a with some inseparable impurities (Table 1, entries 2-8). Increasing or reducing the amount of CuBr₂ only slightly changed the yields (Table 1, entries 9-11). Finally, it was observed that the best result was obtained when the reaction was conducted with 2.2 equiv. CuBr₂ in EtOH at 60 °C (Table 1, entry 10).

Table 1. CuBr₂-mediated bromocyclization reaction of 1a.^[a]

\rangle	C ₄ H ₉ -n O ² P _{OEt} +	CuBr ₂ —	60 °C	C_4H_9-n O O O O O O O O O O
	1a			2a
Entry	CuBr ₂ [equiv.]	Solvent	Time [h]	Yield of 2a [%] ^[b]
1	4.0	DMF	1	82
2	4.0	<i>i</i> PrOH	2	76
3	4.0	PrOH	2	60
4	4.0	EtOH	2	86
5	4.0	CH_2Cl_2	1	76
6	4.0	THF	1	94 ^[c]
7	4.0	MeCN	2	64
8	4.0	toluene	1	55
9	1.5	EtOH	13	89
10	2.2	EtOH	1	91
11	3.0	EtOH	1	86

[a] The substrate **1a** (0.3 mmol) and CuBr₂ were dissolved in solvent (2 mL) and the resulting mixture was heated at 60 °C. [b] Isolated yield. [c] The product was contaminated with some inseparable impurities with a purity of ca. 90%.

With the optimized reaction conditions in hand, a range of substituted substrates were examined and the reaction was found to proceed smoothly to give 4-bromo-2,5-dihydro-1,2-oxaphosphole 2-oxides **2** in moderate to good yields, indicating a broad substrate scope; R^1 could be allyl, alkyl, or phenyl groups whereas R^2 and R^3 could be alkyl groups (Table 2, entries 1–11).

Chlorides are a better potential halide source with respect to atom economy and safety. With the commercially available $CuCl_2 \cdot 2H_2O$, the results of chlorocyclization under different reaction conditions are summarized in Table 3. In contrast to the results obtained in the former case, the reaction in toluene with 3.0 equiv. $CuCl_2 \cdot 2H_2O$ led to the best result, considering the loading of each reagent (Table 3, entry 6). The use of higher or lower temperatures gave inferior results (Table 3, entries 8 and 9). It should be noted that electrophilic cyclization reactions with other typical cyclization reagents (e.g., Cl_2 or NCS), are not very convenient.^[14]

	R^2 R^1 $O \in R^1$ $O \cap R^1$ $O \in R^1$ $O \cap R^1$ $O \in R^1$ $O \cap R^1$ $O $	+ C 2.2	CuBr ₂ — equiv.	EtOH 60 °C time	$ \begin{array}{c} Br \\ R^2 \\ R^3 & O^2 \end{array} $	R ¹ R OEt O
Entry	R ¹	R ²	R ³		Time [h]	Yield of 2 [%] ^[b]
1	<i>n</i> Bu	Me	Me (1	a)	1	91 (2a)
2	Ph	Me	Me (1	b)	3	69 (2b)
3	allyl	Me	Me (1	c)	1	75 (2c)
4	2-methylallyl	Me	Me (1	d)	1	77 (2d)
5	2-chloroallyl	Me	Me (1	e)	1	79 (2e)
6	nBu	-($CH_{2})_{5}-($	1f)	1	88 (2f)
7	nBu	-(0	CH ₂) ₄ - (1	1g)	1	91 (2g)
8	Ph	-(0	$(H_2)_{5-}$	1 h)	3	85 (2h)
9	Ph	-($CH_{2})_{4}-($	1i)	3	72 (2i)
10	Ph	Et	Et (1j)	3	81 (2j)
11	nBu	nPr	nPr (1	k)	5	85 (2k)

[[]a] Reagents and conditions: **1** (0.3 mmol), CuBr₂ (0.66 mmol), EtOH (2 mL), 60 °C. [b] Isolated yield.

Table 3. CuCl₂·2H₂O-mediated chlorocyclization reaction of 1a.^[a]

\geq	n-C ₄ H ₉ OEt +	CuCl ₂ ·2H ₂ O -	solvent T, t		$= \begin{pmatrix} n-C_4H_9 \\ -f_0 \\ 0 \\ 0 \\ 0 \\ -f_0 \\ 0 \\ -f_0 \\ 0 \\ -f_0 \\ 0 \\ -f_0 \\ -f_$
	1a				3a
Entry	CuCl ₂ •2H ₂ O [equiv.]	Solvent	Time [h]	Т [°С]	Yield of 3a [%] ^[b]
1	4.0	CH_2Cl_2	4	70	83
2	4.0	EtOH	8	70	84
3	4.0	toluene	2	70	86
4	4.0	MeCN	1	70	76
5	4.0	THF	4	70	81
6	3.0	toluene	5	70	87
7	2.2	toluene	5	70	84
8	3.0	toluene	4	80	78
9	3.0	toluene	7	60	84

[a] Reagents and conditions: 1a (0.3 mmol), $CuCl_2 \cdot 2H_2O$, solvent (2 mL). [b] Isolated yield.

Moderate to excellent yields were observed in the CuCl₂·2H₂O-mediated chlorocyclization reaction, although longer reaction times were necessary (Table 4, entries 1–8).

When R^2 and R^3 were not the same, as expected, a mixture of diastereoisomers were obtained in the presence of 4.0 equiv. CuCl₂·2H₂O under otherwise identical conditions (Scheme 3). The relative configuration of the two isomers was unambiguously confirmed by an X-ray diffraction study of *cis*-**3k** (Figure 1).^[15]

Furthermore, optically active substrate (S_a) -(–)-1n was synthesized from optically active (S)-1-phenylpenta-1-yn-3ol according to a known procedure.^[16] Under the standard conditions, the reaction afforded a mixture of (S,S)-3k and (S,R)-3k (Scheme 4) and the absolute configurations in (S,S)-3k were unambiguously established by an X-ray diffraction analysis,^[17] indicating the efficient transformation

Table 4. CuCl₂·2H₂O-mediated chlorocyclization reaction of 1,2allenylphosphonates.^[a]

[a] Reagents	and	conditions:	1	(0.3 mmol),	CuCl ₂ ·2H ₂ O
(0.9 mmol), to	oluene	(2 mL), 70 °	C. [b] Isolated yield.	

trans and *cis* refer to the orientation of the P=O moiety and the substituent at the 5-position on the five-membered ring

Scheme 3. Chlorocyclization reaction of 1,2-allenylphosphonates.

of axial chirality from the easily available optically active propargylic alcohol into the central chirality of the final products (Figure 2). Optically active diethyl 1,2-allenylphosphonate was also tested in the chlorocyclization; the results are summarized in Scheme 5.

Based on these results and on previous reports,^[10] we propose a possible mechanism (Scheme 6). Firstly, coordi-

Figure 1. ORTEP representation of cis-3k.

Scheme 4. Synthesis and cyclization of optically active 1,2-allenyl-phosphonate (S_a) -(-)-**1n**.

Figure 2. ORTEP representation of (S,S)-3k.

nation of the copper salt to the relatively electron-rich C=C bond forms intermediate M1. Then, anti-oxy-metalation affords the five-membered intermediate M2. Arbuzov type dealkylation of the ethoxy groups mediated by a chloride anion leads to the formation of intermediates M4A and M4B. Subsequently, C–X bond formation in the presence of a second molecule of CuX₂ generates the final product 3 together with two molecules of CuX.^[8–10]

We then studied the Suzuki cross-coupling reaction of the C–Cl bonds in $3^{[18]}$ We have previously developed an

Scheme 5. Chorocyclization of optically active 1,2-allenylphosphonates.

Scheme 6. Proposed mechanism for the halocyclization.

electron-rich, sterically bulky phosphane ligand, dicyclohexyl(2,4,6-trimethoxyphenyl)phosphane (LB-Phos),^[12] that can be used to selectively activate the relatively inert C–Cl bond over the more reactive lactonic allylic C–O bond.^[12b] We used the prepared [PdCl₂(LB-Phos)₂] complex as the catalyst and 3.5 equiv. K₂CO₃ as the base. The reaction with phenylboronic acid in toluene at reflux proceeded smoothly to afford the corresponding coupling products in moderate to good yields (Table 5).

When R^2 and R^3 were not the same, Suzuki coupling of both diastereoisomers could be conducted under standard conditions to afford the corresponding products with similar yields (Scheme 7). When optically active substrates were used, coupling products were obtained in good yields without apparent racemization (Scheme 8).

Conclusions

We have demonstrated a CuX₂-mediated direct halocyclization of diethyl 1,2-allenylphosphonates for the conveTable 5. The Suzuki cross-coupling reaction of 4-chloro-2,5-dihydro-1,2-oxaphosphole 2-oxides **3** with phenylboronic acid.^[a]

Entry	\mathbb{R}^1	Time [h]	Yield of 4 [%] ^[b]	
1	<i>n</i> Bu (3a)	5	75 (4 a)	
2	Ph (3b)	17	78 (4b)	
3	allyl (3c)	10.5	55 (4c)	

[a] Reagents and conditions: **3** (0.3 mmol), phenylboronic acid (0.75 mmol), $[PdCl_2(LB-Phos)_2]$ (0.015 mmol), K_2CO_3 (1.05 mmol), toluene (2 mL), reflux. [b] Isolated yield.

Scheme 7. Suzuki coupling reaction of diastereoisomers of 3.

Scheme 8. Suzuki coupling reaction of optically active phosphonates.

nient and efficient synthesis of 4-halo-2,5-dihydro-1,2-oxaphosphole 2-oxides in satisfactory yields and the subsequent Suzuki cross-coupling of the resulting vinylic chlorides. Compared with the results described in the previous report,^[11] this transformation shows better functional Direct Halocyclization of 1,2-Allenylphosphonates

Pages: 13

group tolerance, requires fewer steps, and is simpler to perform. Furthermore, the axial chirality of substrate was transferred efficiently to the central carbon atom in the final, optically active 4-chloro-2,5-dihydro-1,2-oxaphosphole 2-oxides. Considering the high loading of functionalities, ready availability of the optically active starting materials, and potential application of phosphorus-containing compounds, this reaction should be useful in organic synthesis. Further studies in this area are in progress in our laboratory.

Experimental Section

General: Racemic starting materials 1a-n and optically active starting materials (*S*)-(+)-11, (*S*)-(+)-1m, and (*S*)-(-)-1n were prepared according to known procedures.^[11] The *ee* values were determined by HPLC analysis using chiral columns under the conditions noted in the procedures. For details of all analytical instruments used, see ref.^[12]

Synthesis of Starting Materials

Diethyl (6-Chloro-2-methylhepta-2,3,6-trien-4-yl)phosphonate (1e). Typical Procedure: To a solution of 6-chloro-2-methylhepta-6-en-3-yn-2-ol (1.2645 g, 8 mmol) and Et₃N (1295.2 mg, 12.8 mmol) in CH₂Cl₂ (15 mL), was added a solution of P(OEt)₂Cl (2003.8 mg, 12.8 mmol) in CH₂Cl₂ (9 mL) dropwise at -78 °C. After the addition, the resulting mixture was warmed to room temp. and then stirred at room temperature overnight. After complete conversion of the corresponding propargylic alcohol (reaction monitored by TLC; petroleum ether/ethyl acetate, 3:1) the solvent was evaporated, then H₂O (80 mL) and ethyl acetate (80 mL) were added. The organic layer was separated and the organic layer was washed with brine (80 mL) and dried with anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate, 5:1) to afford 1e (1.1147 g, 50%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 5.24 (s, 1 H, =CHH), 5.21 (s, 1 H, =CHH), 4.14–3.94 (m, 4 H, $2 \times$ OCH₂), 3.12 (d, J = 11.4 Hz, 2 H, CH₂), 1.77 (s, 3 H), 1.75 (s, 3 H), 1.29 (t, J = 7.1 Hz, 6 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 208.7 (d, J_{PC} = 6.0 Hz), 139.3 (d, J_{PC} = 7.5 Hz), 114.3, 98.9 (d, $J_{P,C}$ = 15.8 Hz), 87.8 (d, $J_{P,C}$ = 193.8 Hz), 62.1 (d, $J_{P,C}$ = 6.0 Hz), 39.2 (d, $J_{P,C}$ = 10.6 Hz), 19.2 (d, $J_{P,C}$ = 6.8 Hz), 16.2 (d, $J_{P,C}$ = 6.8 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.6 ppm. IR (neat): \tilde{v} = 2984, 2940, 2909, 1962, 1635, 1444, 1378, 1244, 1163, 1022 cm⁻¹. MS (70 eV, EI): m/z (%) = 280 (7.25) [M(³⁷Cl)]⁺, 278 (19.76) [M(³⁵Cl)]⁺, 243 (100) (M - Cl)⁺. HRMS (EI): calcd. for $C_{12}H_{20}O_3P^{35}C1$ [M]⁺ 278.0839; found 278.0831.

Diethyl (3,3-Pentamethylene-1-phenylpropa-1,2-dien-1-yl)phosphonate (1h): The reaction of 1,1-pentamethylene-3-phenylprop-2yn-1-ol (1001.5 mg, 5 mmol), P(OEt)₂Cl (1174.2 mg, 7.5 mmol), and Et₃N (758.9 mg, 7.5 mmol) afforded 1h (1369.6 mg, 85%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.1 Hz, 2 H, 2 × Ph-H), 7.38–7.18 (m, 3 H, 3 × Ph-H), 4.24–4.00 (m, 4 H, 2 × OCH₂), 2.40–2.20 (m, 4 H), 1.82–1.48 (m, 6 H), 1.30 (t, *J* = 6.9 Hz, 6 H, 2 × OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 205.8 (d, *J*_{PC} = 3.8 Hz), 133.3 (d, *J*_{PC} = 10.6 Hz), 128.4, 127.5 (d, *J*_{PC} = 5.3 Hz), 127.0, 105.9 (d, *J*_{PC} = 15.1 Hz), 94.6 (d, *J*_{PC} = 190.8 Hz), 62.3 (d, *J*_{PC} = 6.0 Hz), 30.2 (d, *J*_{PC} = 6.0 Hz), 27.0 (d, *J*_{PC} = 3.0 Hz), 25.7, 16.2 (d, *J*_{PC} = 6.0 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.4 ppm. IR (neat): \tilde{v} = 2982, 2932, 2855, 1945, 1597, 1493, 1445, 1391, 1340, 1316, 1256, 1163, 1053, 1029 cm⁻¹. MS (70 eV, EI): m/z (%) = 320 (84.04) [M]⁺, 182 (100). HRMS (EI): calcd. for C₁₈H₂₅O₃P [M]⁺ 320.1541; found 320.1542.

Diethyl (3,3-Tetramethylene-1-phenylpropa-1,2-dien-1-yl)phosphonate (1i): The reaction of 1,1-tetramethylene-3-phenylprop-2yn-1-ol (931.3 mg, 5 mmol), P(OEt)₂Cl (1174.1 mg, 7.5 mmol), and Et_3N (708.3 mg, 7 mmol) afforded 1i (714.4 mg, 47%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.55 (d, J = 8.1 Hz, 2 H, 2 × Ph-H), 7.37–7.18 (m, 3 H, $3 \times$ Ph-H), 4.22–4.00 (m, 4 H, $2 \times$ OCH₂), 2.70–2.48 (m, 4 H), 1.86–1.70 (m, 4 H), 1.30 (t, J = 7.2 Hz, 6 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 204.9 (d, $J_{P,C}$ = 4.5 Hz), 133.4 (d, $J_{P,C}$ = 10.6 Hz), 128.4, 127.6 (d, $J_{P,C}$ = 6.0 Hz), 127.1, 107.3 (d, $J_{P,C}$ = 15.8 Hz), 97.0 (d, $J_{P,C}$ = 191.5 Hz), 62.4 (d, $J_{\rm P,C}$ = 6.0 Hz), 31.1 (d, $J_{\rm P,C}$ = 6.0 Hz), 27.3, 16.3 (d, $J_{\rm P,C}$ = 6.0 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.0 ppm. IR (neat): $\tilde{v} = 3537, 3479, 3058, 2959, 1943, 1598, 1491, 1442, 1388,$ 1250, 1025 cm⁻¹. MS (70 eV, EI): m/z (%) = 306 (33.02) [M]⁺, 168 (100). HRMS (EI): calcd. for C₁₇H₂₃O₃P [M]⁺ 306.1385; found 306.1388.

Diethyl (3-Ethyl-1-phenylpenta-1,2-dien-1-yl)phosphonate (1j): The reaction of 3-ethyl-1-phenylpenta-1-yn-3-ol (941.0 mg, 5 mmol), P(OEt)₂Cl (1174.1 mg, 7.5 mmol), and Et₃N (708.3 mg, 7 mmol) afforded 1j (854.1 mg, 55%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.58 (d, J = 8.1 Hz, 2 H, 2 × Ph-H), 7.37–7.18 (m, 3 H, $3 \times$ Ph-H), 4.22–4.00 (m, 4 H, $2 \times$ OCH₂), 2.28–2.10 (m, 4 H), 1.29 (t, J = 7.0 Hz, 6 H), 1.11 (t, J = 7.4 Hz, 6 H, $2 \times$ CH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 208.3 (d, J_{PC}) = 4.3 Hz), 133.4 (d, J_{PC} = 10.2 Hz), 128.4, 127.2 (d, J_{PC} = 5.9 Hz), 127.1, 112.3 (d, $J_{P,C}$ = 14.6 Hz), 98.9 (d, $J_{P,C}$ = 190.9 Hz), 62.2 (d, $J_{P,C} = 6.2 \text{ Hz}$), 25.4 (d, $J_{P,C} = 6.0 \text{ Hz}$), 16.2 (d, $J_{P,C} = 6.7 \text{ Hz}$), 12.1 (d, $J_{P,C}$ = 2.0 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.9 ppm. IR (neat): $\tilde{v} = 3059, 3026, 2959, 2904, 2869, 1943, 1598,$ 1493, 1477, 1447, 1390, 1284, 1254, 1162, 1097, 1053, 1026 cm⁻¹. MS (70 eV, EI): m/z (%) = 308 (25.20) [M]⁺, 170 (100). HRMS (EI): calcd. for $C_{17}H_{25}O_3P [M]^+$ 308.1541; found 308.1541.

Diethyl (7-Propyldeca-5,6-dien-5-yl)phosphonate (1k): The reaction of 4-propyldeca-5-yn-4-ol (1980.0 mg, 10 mmol), P(OEt)₂Cl (2348.2 mg, 15 mmol), and Et₃N (1416.8 mg, 14 mmol) afforded **1k** (1610.9 mg, 51%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 4.15–3.92 (m, 4 H, 2× OCH₂), 2.18–1.89 (m, 6 H), 1.50–1.20 (m, 14 H), 0.96–0.80 (m, 9 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 205.6 (d, $J_{P,C}$ = 4.2 Hz), 106.0 (d, $J_{P,C}$ = 17.0 Hz), 93.6 (d, $J_{P,C}$ = 189.2 Hz), 60.9 (d, $J_{P,C}$ = 2.9 Hz), 33.5 (d, $J_{P,C}$ = 5.4 Hz), 29.9 (d, $J_{P,C}$ = 6.6 Hz), 27.9 (d, $J_{P,C}$ = 8.3 Hz), 21.6, 20.0, 15.6 (d, $J_{P,C}$ = 5.7 Hz), 13.1 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 19.8 ppm. IR (neat): \tilde{v} = 2959, 2932, 2872, 1951, 1725, 1462, 1392, 1253, 1163, 1098, 1055, 1029 cm⁻¹. MS (70 eV, EI): *m/z* (%) = 316 (30.17) [M]⁺, 245 (100). HRMS (EI): calcd. for C₁₇H₃₃O₃P [M]⁺ 316.2167; found 316.2169.

Diethyl (Nona-3,4-dien-5-yl)phosphonate (11): The reaction of non-4-yn-3-ol (1822.9 mg, 13 mmol), P(OEt)₂Cl (3256.2 mg, 20.8 mmol), and Et₃N (2104.8 mg, 20.8 mmol) afforded **11** (1176.6 mg, 55%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 5.50–5.35 (m, 1 H, CH=), 4.20–3.96 (m, 4 H, 2× OCH₂), 2.21–1.97 (m, 4 H), 1.54–1.19 (m, 10 H), 1.04 (t, *J* = 7.4 Hz, 3 H), 0.89 (t, *J* = 7.2 Hz, 3 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 208.0 (d, *J*_{PC} = 6.0 Hz), 95.0 (d, *J*_{PC} = 16.6 Hz), 94.7 (d, *J*_{PC} = 187.7 Hz), 62.0 (d, *J*_{PC} = 6.0 Hz), 30.2 (d, *J*_{PC} = 6.8 Hz), 28.1 (d, *J*_{PC} = 7.5 Hz), 22.1, 21.2 (d, *J*_{PC} = 6.8 Hz), 16.3 (d, *J*_{PC} = 6.8 Hz), 13.8, 13.3 (d, *J*_{PC} = 3.8 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 18.9 ppm. IR (neat): \tilde{v} = 2964, 2933, 2873, 2734, 2232, 1952, 1636, 1460, 1392, 1301, 1244, 1164, 1098, 1052, 1023 cm⁻¹. MS (70 eV,

FULL PAPER

EI): m/z (%) = 260 (5.66) [M]⁺, 79 (100). HRMS (EI): calcd. for $C_{13}H_{25}O_3P$ [M]⁺ 260.1541; found 260.1542.

Diethyl (Deca-5,6-dien-5-yl)phosphonate (1m): The reaction of dec-5-yn-4-ol (2743.0 mg, 10 mmol), P(OEt)₂Cl (2348.2 mg, 15 mmol), and Et₃N (1416.7 mg, 14 mmol) afforded **1m** (1690.5 mg, 62%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 5.45–5.28 (m, 1 H, CH=), 4.18–3.95 (m, 4 H, 2× OCH₂), 2.20–1.95 (m, 4 H), 1.52– 1.26 (m, 12 H), 0.99–0.82 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 208.1 (d, J_{PC} = 6.0 Hz), 93.6 (d, J_{PC} = 188.2 Hz), 92.9 (d, J_{PC} = 15.8 Hz), 61.8 (d, J_{PC} = 5.9 Hz), 30.1, 30.0, 29.9 (d, J_{PC} = 6.3 Hz), 28.0 (d, J_{PC} = 6.9 Hz), 22.2 (d, J_{PC} = 4.2 Hz), 21.9, 16.1 (d, J_{PC} = 6.4 Hz), 13.5 (d, J_{PC} = 13.3 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 19.0 ppm. IR (neat): \tilde{v} = 2959, 2932, 2873, 1952, 1464, 1443, 1392, 1246, 1164, 1098, 1052, 1024 cm⁻¹. MS (70 eV, EI): m/z (%) = 274 (1.81) [M]⁺, 81 (100). HRMS (EI): calcd. for C₁₄H₂₇O₃P [M]⁺ 274.1698; found 274.1700.

Diethyl (1-Phenylpenta-1,2-dien-1-yl)phosphonate (1n): The reaction of 1-phenylpenta-1-yn-3-ol (1602.3 mg, 10 mmol), P(OEt)₂Cl (2348.2 mg, 15 mmol), and Et₃N (1416.7 mg, 14 mmol) afforded 1n (1910.9 mg, 68%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (d, J = 7.5 Hz, 2 H, 2 × Ph-H), 7.40–7.19 (m, 3 H, 3 × Ph-H), 5.87–5.72 (m, 1 H, CH=), 4.26–4.01 (m, 4 H, 2 × OCH₂), 2.32– 2.15 (m, 2 H, CH₂), 1.30 (t, J = 7.2 Hz, 6 H, $2 \times$ CH₂CH₃), 1.14 (t, J = 7.5 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta =$ 210.4 (d, J_{PC} = 4.5 Hz), 132.4 (d, J_{PC} = 8.3 Hz), 128.5, 127.5 (d, $J_{\rm P,C}$ = 6.0 Hz), 127.4, 98.0 (d, $J_{\rm P,C}$ = 189.2 Hz), 96.3 (d, $J_{\rm P,C}$ = 15.1 Hz), 62.5 (d, $J_{PC} = 6.0$ Hz), 21.2 (d, $J_{PC} = 6.0$ Hz), 16.2 (d, $J_{P,C} = 6.8$ Hz), 13.2 (d, $J_{P,C} = 3.0$ Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.0 ppm. IR (neat): \tilde{v} = 3062, 2978, 2934, 2905, 1943, 1597, 1579, 1494, 1448, 1391, 1369, 1245, 1163, 1097, 1051, 1021 cm⁻¹. MS (70 eV, EI): m/z (%) = 280 (11.07) [M]⁺, 128 (100). HRMS (EI): calcd. for C₁₅H₂₁O₃P [M]⁺ 280.1228; found 280.1226.

Diethyl (Nona-3,4-dien-5-yl)phosphonate $[(S_a)-(+)-1]$: The reaction of (S)-non-4-yn-3-ol (1402.5 mg, 10 mmol), P(OEt)₂Cl (2348.2 mg, 15 mmol), and Et₃N (1517.8 mg, 15 mmol) afforded (S_a) -(+)-11 (1133.1 mg, 44%) as a liquid; ee > 99% [HPLC conditions: Chiralcel IC-H column; hexane/*i*PrOH = 95:5; 0.5 mL/min; λ = 214 nm; $t_{\rm R} = 33.4$ (major), 35.1 (minor) min]; $[a]_{\rm D}^{20} = +35.2$ (c = 1.04, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 5.48–5.31 (m, 1 H, CH=), 4.12–3.92 (m, 4 H, 2 × OCH₂), 2.16–1.96 (m, 4 H), 1.50– 1.21 (m, 10 H), 1.00 (t, J = 7.4 Hz, 3 H), 0.85 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 207.9$ (d, $J_{PC} =$ 6.0 Hz), 94.9 (d, $J_{P,C}$ = 15.8 Hz), 94.5 (d, $J_{P,C}$ = 187.7 Hz), 61.9 (d, $J_{P,C} = 6.0 \text{ Hz}$), 30.1 (d, $J_{P,C} = 6.8 \text{ Hz}$), 28.0 (d, $J_{P,C} = 6.8 \text{ Hz}$), 22.0, 21.1 (d, $J_{P,C}$ = 6.8 Hz), 16.2 (d, $J_{P,C}$ = 6.8 Hz), 13.7, 13.2 (d, $J_{P,C}$ = 3.0 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 18.9 ppm. IR (neat): $\tilde{\nu}$ = 2981, 2958, 2933, 2909, 2861, 2714, 1959, 1639, 1445, 1379, 1294, 1243, 1164, 1097, 1052, 1023 cm⁻¹. MS (70 eV, EI): m/z $(\%) = 260 (16.04) [M]^+$, 79 (100). HRMS (EI): calcd. for C₁₃H₂₅O₃P [M]⁺ 260.1541; found 260.1542.

Diethyl (Deca-5,6-dien-5-yl)phosphonate [(*S*_a**)-(+)-1m]:** The reaction of (*S*)-dec-5-yn-4-ol (925.5 mg, 6 mmol), P(OEt)₂Cl (1408.9 mg, 9 mmol), and Et₃N (911.0 mg, 9 mmol) afforded (*S*_a)-(+)-**1m** (1028.3 mg, 62%) as a liquid; *ee* > 99% [HPLC conditions: Chiralcel IC-H column; hexane/iPrOH = 95:5; 0.5 mL/min; λ = 214 nm; *t*_R = 30.7 (major), 32.8 (minor) min]; [*a*]₂²⁰ = +42.0 (*c* = 1.04, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 5.42–5.28 (m, 1 H, CH=), 4.18–3.90 (m, 4 H, 2 × OCH₂), 2.20–1.92 (m, 4 H), 1.50–1.20 (m, 12 H), 1.00–0.81 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 208.2 (d, *J*_{PC} = 6.0 Hz), 33.8 (d, *J*_{PC} = 188.4 Hz), 93.1 (d, *J*_{PC} = 16.0 Hz), 62.0 (d, *J*_{PC} = 7.5 Hz), 22.3 (d, *J*_{PC} =

3.8 Hz), 22.0, 16.3, 16.2, 13.7 (d, $J_{P,C} = 13.6$ Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 19.0$ ppm. IR (neat): $\tilde{v} = 2959$, 2932, 2873, 1952, 1464, 1443, 1392, 1246, 1164, 1098, 1052, 1024 cm⁻¹. MS (70 eV, EI): m/z (%) = 274 (20.19) [M]⁺, 203 (100). HRMS (EI): calcd. for C₁₄H₂₇O₃P [M]⁺ 274.1698; found 274.1697.

Diethyl (1-Phenylpenta-1,2-dien-1-yl)phosphonate $[(S_a)-(-)-1n]$: The reaction of (S)-1-phenylpenta-1-yn-3-ol (801.1 mg, 5 mmol), P(OEt)₂Cl (1174.2 mg, 7.5 mmol), and Et₃N (758.9 mg, 7.5 mmol) afforded (S_a) -(-)-1n (580.6 mg, 41%) as a liquid; ee = 97% [HPLC conditions: Chiralcel IC-H column; hexane/iPrOH = 95:5; 0.5 mL/ min; $\lambda = 214$ nm; $t_R = 53.9$ (major), 57.8 (minor) min]; $[a]_D^{20} = -52.5$ (c = 1.06, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.58 (d, J = 8.4 Hz, 2 H, 2 \times Ph-H), 7.40–7.19 (m, 3 H, 3 \times Ph-H), 5.86–5.73 (m, 1 H, CH=), 4.25–4.02 (m, 4 H, 2 × OCH₂), 2.31–2.17 (m, 2 H, CH₂), 1.30 (t, J = 7.1 Hz, 6 H, $2 \times \text{OCH}_2\text{CH}_3$), 1.14 (t, J = 7.5 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 210.2 (d, J_{PC}) = 2.9 Hz), 132.2 (d, J_{PC} = 8.9 Hz), 128.2, 127.3, 127.2, 97.8 (d, J_{PC} = 189.6 Hz), 96.1 (d, J_{PC} = 14.6 Hz), 62.3 (d, J_{PC} = 5.9 Hz), 21.0 (d, $J_{P,C} = 6.6 \text{ Hz}$), 16.0 (d, $J_{P,C} = 6.7 \text{ Hz}$), 13.0 (d, $J_{P,C} =$ 2.3 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.0 ppm. IR (neat): $\tilde{v} = 3062, 2978, 2934, 2905, 1943, 1597, 1579, 1494, 1448,$ 1391, 1369, 1245, 1163, 1097, 1051, 1021 cm⁻¹. MS (70 eV, EI): m/z $(\%) = 280 (11.07) [M]^+$, 128 (100). HRMS (EI): calcd. for C₁₅H₂₁O₃P [M]⁺ 280.1228; found 280.1226.

CuBr₂-Mediated Bromocyclization Reaction of 1,2-Allenylphosphonates Affording 4-Bromo-2,5-dihydro-1,2-oxaphosphole 2-Oxides 2

4-Bromo-3-butyl-5,5-dimethyl-2-ethoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxide (2a). Typical Procedure: A mixture of 1a (78.1 mg, 0.30 mmol) and CuBr₂ (147.4 mg, 0.66 mmol) was stirred at 60 °C in EtOH (2 mL). After 1 h, the reaction was complete (reaction monitored by TLC; petroleum ether/ethyl acetate, 3:1). The solvent was evaporated and the residue was subjected to column chromatography on silica gel (petroleum ether/ethyl acetate, 5:1) to afford 2a (84.9 mg, 91%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): $\delta = 4.22-3.90$ (m, 2 H, OCH₂), 2.42-2.00 (m, 2 H, CH₂) from C₄H₉), 1.60–1.45 (m, 8 H, CH₂ and $2 \times$ CH₃), 1.45–1.15 (m, 5 H), 0.82 (t, J = 6.9 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 143.2 (d, $J_{P,C}$ = 52.8 Hz), 128.3 (d, $J_{P,C}$ = 150.8 Hz), 86.0 (d, $J_{P,C}$ = 4.0 Hz), 62.8 (d, $J_{P,C}$ = 6.8 Hz), 29.1 (d, $J_{\rm P,C}$ = 1.6 Hz), 27.3, 27.2 (d, $J_{\rm P,C}$ = 3.2 Hz), 26.5, 22.2, 16.3 (d, $J_{\rm P,C}$ = 6.1 Hz), 13.5 ppm. MS (70 eV, EI): m/z (%) = 312 (1.16) $[M(^{81}Br)]^+$, 310 (1.31) $[M(^{79}Br)]^+$, 41 (100).

4-Bromo-2-ethoxy-2,5-dihydro-5,5-dimethyl-3-phenyl-1,2-oxaphosphole 2-Oxide (2b): The reaction of 1b (84.1 mg, 0.30 mmol) and CuBr₂ (147.9 mg, 0.66 mmol) in EtOH (2 mL) afforded **2b** (68.8 mg, 69%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.67 (d, J = 6.6 Hz, 2 H, 2 × Ph-H), 7.48–7.32 (m, 3 H, 3 × Ph-H), 4.18–3.96 (m, 2 H, OCH₂), 1.65 (s, 3 H, CH₃), 1.61 (s, 3 H, CH₃), 1.17 (t, *J* = 7.1 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 142.0 (d, $J_{P,C}$ = 45.5 Hz), 129.9 (d, $J_{P,C}$ = 10.0 Hz), 129.0 (d, $J_{\rm P,C}$ = 1.2 Hz), 128.5, 128.0 (d, $J_{\rm P,C}$ = 6.2 Hz), 127.7 (d, $J_{\rm P,C}$ = 153.9 Hz), 86.4 (d, $J_{P,C}$ = 3.5 Hz), 63.6 (d, $J_{P,C}$ = 7.5 Hz), 27.2 (d, $J_{\rm P,C}$ = 3.8 Hz), 26.9 (d, $J_{\rm P,C}$ = 1.4 Hz), 16.2 (d, $J_{\rm P,C}$ = 5.6 Hz) ppm. MS (70 eV, EI): m/z (%) = 333 (4.66) [M(⁸¹Br) + 1]⁺, 332 (32.15) $[M(^{81}Br)]^+$, 331 (5.90) $[M(^{79}Br) + 1]^+$, 330 (32.72) $[M(^{79}Br)]^+$, 317 $(40.53) \ [M(^{81}Br) - CH_3]^+, \ 315 \ (41.20) \ [M(^{79}Br) - CH_3]^+, \ 251$ (50.35) [M – Br]⁺, 223 (100). HRMS (EI): calcd. for C₁₃H₁₆O₃P⁷⁹Br [M]⁺ 330.0020; found 330.0023.

3-Allyl-4-bromo-2-ethoxy-2,5-dihydro-5,5-dimethyl-1,2-oxaphosphole 2-Oxide (2c): The reaction of 1c (73.3 mg, 0.30 mmol) and CuBr₂ (147.5 mg, 0.66 mmol) in EtOH (2 mL) afforded 2c (66.5 mg, 75%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): δ =

Direct Halocyclization of 1,2-Allenylphosphonates

5.92–5.62 (m, 1 H, =CH), 5.24–4.92 (m, 2 H, =CH₂), 4.17–3.88 (m, 2 H, OCH₂), 3.17–2.82 (m, 2 H, =CCH₂), 1.49 (s, 3 H, CH₃), 1.45 (s, 3 H, CH₃), 1.24 (t, J = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 144.2$ (d, $J_{\rm PC} = 47.4$ Hz), 131.6 (d, $J_{\rm PC} = 2.5$ Hz), 126.6 (d, $J_{\rm PC} = 154.1$ Hz), 117.8, 86.3 (d, $J_{\rm PC} = 3.6$ Hz), 63.4 (d, $J_{\rm PC} = 6.4$ Hz), 31.8 (d, $J_{\rm PC} = 10.1$ Hz), 27.3 (d, $J_{\rm PC} = 2.6$ Hz), 26.7 (d, $J_{\rm PC} = 1.6$ Hz), 16.4 (d, $J_{\rm PC} = 6.3$ Hz) ppm. MS (70 eV, EI): m/z (%) = 297 (2.63) [M(⁸¹Br) + 1]⁺, 296 (22.97) [M(⁸¹Br)]⁺, 295 (3.84) [M(⁷⁹Br) + 1]⁺, 294 (22.14) [M(⁷⁹Br)]⁺, 268 (54.15) [M(⁸¹Br) - C₂H₄]⁺, 266 (53.45) [M(⁷⁹Br) - C₂H₄]⁺, 215 (10.08) [M - Br]⁺, 105 (100).

4-Bromo-2-ethoxy-2,5-dihydro-5,5-dimethyl-3-(2'-methylallyl)-1,2--oxaphosphole 2-Oxide (2d): The reaction of **1d** (77.5 mg, 0.30 mmol) and CuBr₂ (147.4 mg, 0.66 mmol) in EtOH (2 mL) afforded **2d** (70.9 mg, 77%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): δ = 4.83 (s, 2 H, =CH₂), 4.20–3.97 (m, 2 H, OCH₂), 3.15–2.90 (m, 2 H, =CCH₂), 1.72 (s, 3 H, CH₃), 1.54 (s, 3 H, CH₃), 1.25 (td, *J* = 6.3, 1.1 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 145.2 (d, *J*_{P,C} = 47.6 Hz), 139.8 (d, *J*_{P,C} = 1.6 Hz), 126.9 (d, *J*_{P,C} = 154.3 Hz), 113.4, 86.2 (d, *J*_{P,C} = 3.9 Hz), 63.4 (d, *J*_{P,C} = 1.0 Hz), 22.1, 16.4 (d, *J*_{P,C} = 5.9 Hz) ppm. MS (70 eV, EI): *m/z* (%) = 311 (0.97) [M(⁸¹Br) +1]⁺, 310 (6.74) [M(⁸¹Br)]⁺, 309 (1.08) [M(⁷⁹Br) +1]⁺, 308 (6.87) [M(⁷⁹Br)]⁺, 229 (6.48) [M – Br]⁺, 119 (100).

4-Bromo-3-(2'-chloroallyl)-2-ethoxy-2,5-dihydro-5,5-dimethyl-1,2-oxaphosphole 2-Oxide (2e): The reaction of **1e** (83.4 mg, 0.30 mmol) and CuBr₂ (147.3 mg, 0.66 mmol) in EtOH (2 mL) afforded **2e** (78.2 mg, 79%) as an oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.30$ (s, 1 H, =C*H*H), 5.26 (s, 1 H, =C*HH*), 4.20–3.92 (m, 2 H, OCH₂), 3.42–3.21 (m, 2 H, =CCH₂), 1.53 (s, 3 H, CH₃), 1.50 (s, 3 H, CH₃), 1.26 (t, J = 7.1 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 147.3$ (d, $J_{P,C} = 45.8$ Hz), 136.2 (d, $J_{P,C} = 2.6$ Hz), 124.6 (d, $J_{P,C} = 157.2$ Hz), 115.1, 86.6 (d, $J_{P,C} = 3.2$ Hz), 63.7 (d, $J_{P,C} = 6.9$ Hz), 37.1 (d, $J_{P,C} = 10.9$ Hz), 27.3 (d, $J_{P,C} = 3.2$ Hz), 26.7 (d, $J_{P,C} = 1.9$ Hz), 16.4 (d, $J_{P,C} = 6.4$ Hz) ppm. MS (70 eV, EI): m/z (%) = 330 (1.76) [M(⁸¹Br³⁵Cl)]⁺, 328 (1.30) [M(⁷⁹Br³⁵Cl)]⁺, 43 (100). HRMS (EI): calcd. for C₁₀H₁₅O₃P³⁵Cl⁷⁹Br [M]⁺ 327.9631; found 327.9630.

4-Bromo-3-butyl-2-ethoxy-1-oxa-2-phosphaspiro[**4.5**]dec-3-ene **2**-**Oxide** (**2f**): The reaction of **1f** (90.2 mg, 0.30 mmol) and CuBr₂ (147.2 mg, 0.66 mmol) in EtOH (2 mL) afforded 2f (93.0 mg, 88%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): $\delta = 4.16-3.96$ (m, 2 H, OCH₂), 2.41–2.11 (m, 2 H, CH₂ from C₄H₉), 1.92–1.75 (m, 2 H), 1.75–1.40 (m, 9 H), 1.39–1.21 (m, 5 H), 1.16–1.00 (m, 1 H, cyclohexyl), 0.85 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 143.8$ (d, $J_{P,C} = 48.6$ Hz), 128.3 (d, $J_{P,C} = 153.0$ Hz), 87.8 (d, $J_{P,C} = 3.2$ Hz), 62.9 (d, $J_{P,C} = 6.8$ Hz), 35.0 (d, $J_{P,C} = 2.3$ Hz), 34.3 (d, $J_{P,C} = 1.1$ Hz), 29.3 (d, $J_{P,C} = 5.4$ Hz), 13.6 ppm. MS (70 eV, EI): m/z (%) = 353 (2.54) [M(⁸¹Br) + 1]⁺, 352 (14.33) [M(⁸¹Br)]⁺, 351 (3.82) [M(⁷⁹Br) + 1]⁺, 350 (14.15) [M(⁷⁹Br)]⁺, 310 (96.82) [M(⁸¹Br) - C₃H₆]⁺, 308 (100) [M(⁷⁹Br) - C₃H₆]⁺, 271 (37.19) [M - Br]⁺.

4-Bromo-3-butyl-2-ethoxy-1-oxa-2-phosphaspiro[4.4]non-3-ene 2-Oxide (2g): The reaction of 1g (85.8 mg, 0.30 mmol) and CuBr₂ (148.0 mg, 0.66 mmol) in EtOH (2 mL) afforded 2g (92.1 mg, 91%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): δ = 4.14–3.92 (m, 2 H, OCH₂), 2.42–2.16 (m, 2 H, CH₂ from C₄H₉), 2.18–1.96 (m, 2 H), 1.96–1.62 (m, 6 H), 1.59–1.42 (m, 2 H), 1.38–1.20 (m, 5 H), 0.86 (t, *J* = 7.2 Hz, 3 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 141.2 (d, *J*_{P,C} = 47.6 Hz), 129.6 (d, *J*_{P,C} = 151.9 Hz), 96.0 (d, *J*_{P,C} = 3.6 Hz), 62.9 (d, $J_{P,C}$ = 6.9 Hz), 38.4 (d, $J_{P,C}$ = 3.2 Hz), 37.8 (d, $J_{P,C}$ = 1.8 Hz), 29.3 (d, $J_{P,C}$ = 1.7 Hz), 27.6 (d, $J_{P,C}$ = 10.1 Hz), 24.4 (d, $J_{P,C}$ = 3.8 Hz), 22.3, 16.4 (d, $J_{P,C}$ = 6.2 Hz), 13.6 ppm. MS (70 eV, EI): m/z (%) = 338 (10.74) [M(⁸¹Br)]⁺, 336 (10.82) [M(⁷⁹Br)]⁺, 296 (98.70) [M(⁸¹Br) - C_3H_6]⁺, 294 (100) [M(⁷⁹Br) - C_3H_6]⁺, 257 (93.32) [M - Br]⁺.

4-Bromo-2-ethoxy-3-phenyl-1-oxa-2-phosphaspiro[4.5]dec-3-ene-2-oxide (2h): The reaction of 1h (96.1 mg, 0.30 mmol) and CuBr₂ (147.4 mg, 0.66 mmol) in EtOH (2 mL) afforded **2h** (94.4 mg, 85%) as a white solid; m.p. 126-127 °C (petroleum ether/ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.66 (d, J = 7.2 Hz, 2 H, 2 × Ph-H), 7.51–7.30 (m, 3 H, 3 × Ph-H), 4.20–3.98 (m, 2 H, OCH₂), 2.18– 1.90 (m, 2 H, cyclohexyl), 1.90-1.60 (m, 7 H, cyclohexyl), 1.32-1.12 (m, 4 H, OCH₂CH₃ and cyclohexyl) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 142.5 (d, $J_{P,C}$ = 45.8 Hz), 130.1 (d, $J_{P,C}$ = 10.0 Hz), 129.0, 128.5, 128.2 (d, $J_{P,C} = 6.2$ Hz), 127.7 (d, $J_{P,C} = 154.6$ Hz), 88.1 (d, $J_{P,C}$ = 3.4 Hz), 63.5 (d, $J_{P,C}$ = 6.2 Hz), 34.8 (d, $J_{P,C}$ = 2.7 Hz), 34.6, 24.2, 21.3 (d, $J_{P,C} = 12.2$ Hz), 16.3 (d, $J_{P,C} =$ 5.6 Hz) ppm. MS (70 eV, EI): m/z (%) = 373 (2.44) [M(⁸¹Br) + 1]⁺, $372 (12.05) [M(^{81}Br)]^+, 371 (3.40) [M(^{79}Br) +1]^+, 370 (13.23)$ $[M(^{79}Br)]^+$, 291 (100) $[M - Br]^+$. $C_{16}H_{20}BrO_3P$ (371.21): calcd. C 51.77, H 5.43; found C 51.79, H 5.49.

4-Bromol-2-ethoxy-3-phenyl-1-oxa-2-phosphaspiro[4.4]non-3-ene 2-oxide (2i): The reaction of **1i** (91.5 mg, 0.30 mmol) and CuBr₂ (147.6 mg, 0.66 mmol) in EtOH (2 mL) afforded **2i** (76.9 mg, 72%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.76–7.64 (m, 2 H, 2 × Ph-H), 7.46–7.33 (m, 3 H, 3 × Ph-H), 4.20–3.95 (m, 2 H, OCH₂), 2.36–2.14 (m, 2 H, cyclopentyl), 2.07–1.75 (m, 6 H, cyclopentyl), 1.18 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 140.1 (d, *J*_{PC} = 45.8 Hz), 130.2 (d, *J*_{PC} = 9.7 Hz), 129.1, 128.9 (d, *J*_{PC} = 154.1 Hz), 128.6, 128.2 (d, *J*_{PC} = 6.3 Hz), 96.3 (d, *J*_{PC} = 2.0 Hz), 24.7 (d, *J*_{PC} = 1.4 Hz), 16.3 (d, *J*_{PC} = 5.2 Hz) ppm. MS (70 eV, EI): *m/z* (%) = 358 (5.60) [M(⁸¹-Br)]⁺, 356 (5.73) [M(⁷⁹Br)]⁺, 277 (100) [M – Br]⁺. HRMS (EI): calcd. for C₁₅H₁₈O₃P ⁷⁹Br [M]⁺ 356.0177; found 356.0177.

4-Bromo-2-ethoxy-5,5-diethyl-2,5-dihydro-3-phenyl-1,2-oxaphosphole 2-Oxide (2j): The reaction of **1j** (92.8 mg, 0.30 mmol) and CuBr₂ (147.5 mg, 0.66 mmol) in EtOH (2 mL) afforded **2j** (87.4 mg, 81%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.72–7.60 (m, 2 H, 2 × Ph-H), 7.48–7.32 (m, 3 H, 3 × Ph-H), 4.30–4.01 (m, 2 H, OCH₂), 2.00–1.82 (m, 4 H), 1.19 (t, *J* = 7.0 Hz, 3 H), 1.01–0.89 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 139.3 (d, *J*_{PC} = 47.0 Hz), 131.0 (d, *J*_{PC} = 156.5 Hz), 130.4 (d, *J*_{PC} = 9.9 Hz), 129.0 (d, *J*_{PC} = 1.6 Hz), 128.6, 128.2 (d, *J*_{PC} = 6.0 Hz), 92.3 (d, *J*_{PC} = 1.9 Hz), 63.8 (d, *J*_{PC} = 6.5 Hz), 31.2 (d, *J*_{PC} = 2.9 Hz) ppm. MS (70 eV, EI): *m*/z (%) = 360 (15.82) [M⁺(⁸¹Br)], 356 (16.30) [M(⁷⁹Br)]⁺, 331 (100) [M(⁸¹Br) – C₂H₃]⁺, 331 (100) [M(⁷⁹Br) – C₂H₃]⁺, 279 (46.07) [M – Br]⁺. HRMS (EI): calcd. for C₁₅H₂₀O₃P⁷⁹Br [M]⁺ 358.0333; found 358.0336.

4-Bromo-3-butyl-2-ethoxy-2,5-dihydro-5,5-dipropyl-1,2-oxaphosphole 2-Oxide (2k): The reaction of **1k** (95.0 mg, 0.30 mmol) and CuBr₂ (147.2 mg, 0.66 mmol) in EtOH (2 mL) afforded **2k** (94.2 mg, 85%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 4.25–4.00 (m, 2 H, OCH₂), 2.41–2.10 (m, 2 H, CH₂ from C₄H₉), 1.76–1.55 (m, 4 H), 1.55–1.20 (m, 9 H), 1.15–0.96 (m, 2 H), 0.96–0.70 (m, 9 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 140.8 (d, J_{PC} = 48.8 Hz), 130.6 (d, J_{PC} = 154.9 Hz), 91.2 (d, J_{PC} = 2.0 Hz), 62.9 (d, J_{PC} = 6.8 Hz), 40.2 (d, J_{PC} = 1.3 Hz), 40.0 (d, J_{PC} = 2.3 Hz), 29.4 (d, J_{PC} = 2.3 Hz), 27.3 (d, J_{PC} = 10.0 Hz), 22.3, 16.5 (d, J_{PC} = 5.6 Hz), 15.8 (d, $J_{P,C}$ = 1.4 Hz), 13.8, 13.6 (d, $J_{P,C}$ =

FULL PAPER

10.4 Hz) ppm. MS (70 eV, EI): m/z (%) = 368 (2.54) [M(⁸¹Br)]⁺, 366 (2.58) [M(⁷⁹Br)]⁺, 325 (100) [M(⁸¹Br) - C₃H₆]⁺, 323 (100) [M(⁷⁹Br) - C₃H₆]⁺, 287 (24.07) [M - Br]⁺. HRMS (EI): calcd. for C₁₅H₂₈O₃⁷⁹BrP [M]⁺ 366.0959; found 366.0956.

CuCl₂·2H₂O-Mediated Chlorocyclization Reaction of 1,2-Allenylphosphonates to Afford 4-Chloro-2,5-Dihydro-1,2-oxaphosphole 2-Oxides 3

3-Butyl-4-chloro-2-ethoxy-2,5-dihydro-5,5-dimethyl-1,2-oxaphosphole 2-Oxide (3a). Typical Procedure I: A mixture of 1a (78.0 mg, 0.30 mmol) and CuCl₂·2H₂O (153.5 mg, 0.9 mmol) was stirred at 70 °C in toluene (2 mL) for 5 h. When the reaction was complete (reaction monitored by TLC; petroleum ether/ethyl acetate, 3:1). The solvent was evaporated, the residue was subjected to column chromatography on silica gel (petroleum ether/ethyl acetate, 4:1) to afford **3a** (68.0 mg, 85%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): $\delta = 4.18-3.98$ (m, 2 H, OCH₂), 2.43-2.09 (m, 2 H, CH₂) from C₄H₉), 1.57–1.42 (m, 8 H), 1.42–1.19 (m, 5 H), 0.84 (t, J =7.2 Hz, 3 H, CH₃ from C₄H₉) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 150.4 (d, J_{P,C} = 50.0 Hz), 124.6 (d, J_{P,C} = 157.7 Hz), 85.3 (d, $J_{\rm P,C}$ = 2.9 Hz), 62.9 (d, $J_{\rm P,C}$ = 6.9 Hz), 29.3 (d, $J_{\rm P,C}$ = 2.2 Hz), 26.7 (d, $J_{P,C} = 2.6 \text{ Hz}$), 26.0 (d, $J_{P,C} = 2.6 \text{ Hz}$), 25.3 (d, $J_{P,C} = 9.5 \text{ Hz}$), 22.3, 16.4 (d, $J_{P,C}$ = 6.2 Hz), 13.5 ppm. MS (70 eV, EI): m/z (%) = 268 (0.50) [M(³⁷Cl)]⁺, 266 (1.67) [M(³⁵Cl)]⁺, 240 (1.32) [M(³⁷Cl) - $C_{2}H_{4}^{+}$, 238 (1.94) $[M(^{35}Cl) - C_{2}H_{4}^{+}]$, 226 (5.49) $[M(^{37}Cl) - C_{2}H_{4}^{-}]$ $C_{3}H_{6}^{+}$, 224 (12.86) $[M(^{35}Cl) - C_{3}H_{6}^{+}]^{+}$, 43 (100).

4-Chloro-2-ethoxy-2,5-dihydro-5,5-dimethyl-3-phenyl-1,2-oxaphosphole 2-Oxide (3b): The reaction of **1b** (84.2 mg, 0.30 mmol) and CuCl₂·2H₂O (153.5 mg, 0.9 mmol) in toluene (2 mL) afforded **3b** (83.8 mg, 97%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.72 (d, $J_{\rm PC}$ = 6.9 Hz, 2 H, 2 × Ph-H), 7.48–7.28 (m, 3 H, 3 × Ph-H), 4.20–3.94 (m, 2 H, OCH₂), 1.63 (s, 3 H, CH₃), 1.60 (s, 3 H, CH₃), 1.18 (t, J = 7.1 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 148.9 (d, $J_{\rm P,C}$ = 47.7 Hz), 129.0, 128.9 (d, $J_{\rm P,C}$ = 9.2 Hz), 128.4, 128.0 (d, $J_{\rm P,C}$ = 6.8 Hz), 123.4 (d, $J_{\rm P,C}$ = 159.3 Hz), 85.3 (d, $J_{\rm P,C}$ = 3.1 Hz), 63.5 (d, $J_{\rm P,C}$ = 6.5 Hz), 26.6 (d, $J_{\rm P,C}$ = 3.4 Hz), 26.2 (d, $J_{\rm P,C}$ = 1.6 Hz), 16.2 (d, $J_{\rm P,C}$ = 5.8 Hz) ppm. MS (70 eV, EI): *mlz* (%) = 288 (1.56) [M(³⁷Cl)]⁺, 286 (4.53) [M(³⁵Cl)]⁺, 43 (100). HRMS (EI): calcd. for C₁₃H₁₆O₃P³⁵Cl [M]⁺ 286.0526; found 286.0524.

3-Allyl-4-chloro-2-ethoxy-2,5-dihydro-5,5-dimethy-1,2-oxaphosphole 2-Oxide (3c): The reaction of **1c** (73.3 mg, 0.30 mmol) and CuCl₂·2H₂O (153.5 mg, 0.9 mmol) in toluene (2 mL) afforded **3c** (51.5 mg, 68%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): $\delta = 5.88-5.69$ (m, =CH), 5.22-5.00 (m, 2 H, =CH₂), 4.16-3.98 (m, 2 H, OCH₂), 3.13-2.98 (m, 2 H, =CCH₂), 1.52 (s, 3 H), 1.48 (s, 3 H), 1.27 (t, J = 7.1 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 151.2$ (d, $J_{P,C} = 49.5$ Hz), 131.7 (d, $J_{P,C} = 7.5$ Hz), 122.8 (d, $J_{P,C} = 160.6$ Hz), 117.7, 85.5 (d, $J_{P,C} = 2.9$ Hz), 63.2 (d, $J_{P,C} = 6.5$ Hz), 29.8 (d, $J_{P,C} = 6.0$ Hz) ppm. MS (70 eV, EI): *m/z* (%) = 252 (3.31) [M(³⁷Cl)]⁺, 250 (10.15) [M(³⁵Cl)]⁺, 224 (11.76) [M(³⁷Cl) - C₂H₄]⁺, 222 (33.72) [M(³⁵Cl) - C₂H₄]⁺, 43 (100).

4-Chloro-2-ethoxy-2,5-dihydro-5,5-dimethyl-3-(2'-methylallyl)--1,2-oxaphosphole 2-Oxide (3d): The reaction of **1d** (77.9 mg, 0.30 mmol) and CuCl₂·2H₂O (154.0 mg, 0.9 mmol) in toluene (2 mL) afforded **3d** (69.4 mg, 87 %) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): δ = 4.86 (s, 2 H, =CH₂), 4.23–4.01 (m, 2 H, OCH₂), 3.20–3.00 (m, 2 H, =CCH₂), 1.76 (s, 3 H), 1.57 (s, 3 H), 1.54 (s, 3 H), 1.30 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 152.2 (d, *J*_{PC} = 50.1 Hz), 140.0 (d, *J*_{PC} = 1.9 Hz), 123.0 (d, *J*_{PC} = 160.4 Hz), 113.3, 85.4 (d, *J*_{PC} = 2.9 Hz), 63.4 (d, *J*_{PC} = 6.6 Hz), 33.7 (d, *J*_{PC} = 9.9 Hz), 26.7 (d, *J*_{PC} = 3.4 Hz), 26.3 (d, J_{PC} = 2.0 Hz), 22.0, 16.4 (d, J_{PC} = 6.6 Hz) ppm. MS (70 eV, EI): m/z (%) = 266 (8.17) [M(³⁷Cl)]⁺, 264 (24.74) [M(³⁵Cl)]⁺, 119 (100).

3-Butyl-4-chloro-2-ethoxy-1-oxa-2-phosphaspiro[4.5]dec-3-ene 2-Oxide (3e): The reaction of 1f (90.0 mg, 0.30 mmol) and CuCl₂·2H₂O (153.6 mg, 0.9 mmol) in toluene (2 mL) afforded 3e (75.1 mg, 82%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 4.18– 3.96 (m, 2 H, OCH₂), 2.44–2.16 (m, 2 H), 1.90–1.41 (m, 11 H), 1.41–1.22 (m, 5 H), 1.20–1.05 (m, 1 H), 0.87 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 150.8 (d, *J*_{PC} = 50.5 Hz), 124.7 (d, *J*_{PC} = 157.9 Hz), 87.2 (d, *J*_{PC} = 3.0 Hz), 62.9 (d, *J*_{PC} = 7.0 Hz), 34.5 (d, *J*_{PC} = 2.4 Hz), 33.9 (d, *J*_{PC} = 1.5 Hz), 29.4 (d, *J*_{PC} = 1.6 Hz), 25.6 (d, *J*_{PC} = 9.3 Hz), 24.3, 22.4, 21.4, 21.2, 16.4 (d, *J*_{PC} = 5.4 Hz), 13.6 ppm. MS (70 eV, EI): *m/z* (%) = 308 (4.19) [M(³⁷Cl)]⁺, 306 (12.54) [M(³⁵Cl)]⁺, 271 (37.19) [M – Cl]⁺, 266 (33.23) [M(³⁷Cl) – C₃H₆]⁺, 264 (100) [M(³⁵Cl) – C₃H₆]⁺.

3-Butyl-4-chloro-2-ethoxy-1-oxa-2-phosphaspiro[4.4]non-3-ene 2-Oxide (3f): The reaction of 1g (85.9 mg, 0.30 mmol) and CuCl₂·2H₂O (153.6 mg, 0.9 mmol) in toluene (2 mL) afforded **3f** (63.6 mg, 72%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): δ = 4.16–3.92 (m, 2 H, OCH₂), 2.48–2.17 (m, 2 H), 2.17–1.63 (m, 8 H), 1.63–1.43 (m, 2 H), 1.43–1.23 (m, 5 H), 0.90 (t, *J* = 7.4 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 148.1 (d, *J*_{PC} = 50.0 Hz), 126.0 (d, *J*_{PC} = 158.0 Hz), 95.3 (d, *J*_{PC} = 2.2 Hz), 63.0 (d, *J*_{PC} = 6.8 Hz), 37.9 (d, *J*_{PC} = 2.9 Hz), 37.3 (d, *J*_{PC} = 1.7 Hz), 29.4 (d, *J*_{PC} = 2.2 Hz), 25.6 (d, *J*_{PC} = 9.3 Hz), 24.5 (d, *J*_{PC} = 2.9 Hz), 22.4, 16.5 (d, *J*_{PC} = 6.1 Hz), 13.6 ppm. MS (70 eV, EI): *m/z* (%) = 294 (2.27) [M(³⁷Cl)]⁺, 292 (6.79) [M(³⁵Cl)]⁺, 257 (66.67) [M - Cl]⁺, 252 (32.12) [M(³⁷Cl) - C₃H₆]⁺, 250 (100) [M(³⁵Cl) -C₃H₆]⁺.

4-Chloro-2-ethoxy-3-phenyl-1-oxa-2-phosphaspiro[4.5]dec-3-ene 2-Oxide (3g): The reaction of **1h** (96.1 mg, 0.30 mmol) and CuCl₂·2H₂O (153.3 mg, 0.9 mmol) in toluene (2 mL) afforded **3g** (87.9 mg, 90%) as a white solid;^[11] m.p. 121–122 °C (petroleum ether/ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.86–7.60 (m, 2 H, Ph-H), 7.50–7.28 (m, 3 H, 3 × Ph-H), 4.21–3.98 (m, 2 H, OCH₂), 2.07–1.90 (m, 2 H), 1.90–1.63 (m, 7 H), 1.40–1.10 (m, 4 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 149.4 (d, $J_{P,C}$ = 48.9 Hz), 129.2 (d, $J_{P,C}$ = 9.4 Hz), 129.0, 128.5, 128.2 (d, $J_{P,C}$ = 6.6 Hz), 123.6 (d, $J_{P,C}$ = 159.8 Hz), 87.3 (d, $J_{P,C}$ = 1.7 Hz), 24.3, 21.3 (d, $J_{P,C}$ = 12.2 Hz), 16.3 (d, $J_{P,C}$ = 6.0 Hz) ppm. MS (70 eV, EI): *m/z* (%) = 328 (6.30) [M(³⁷Cl)]⁺, 326 (16.78) [M(³⁵Cl)]⁺, 291 (100) [M - Cl]⁺. Cl₆H₂₀ClO₃P (326.76): calcd. C 58.81, H 6.17; found C 58.70, H 6.12.

4-Chloro-2-ethoxy-3-phenyl-1-oxa-2-phosphaspiro[4.4]non-3-ene 2-Oxide (3h)

The reaction of **1i** (91.8 mg, 0.30 mmol) and CuCl₂·2H₂O (153.5 mg, 0.9 mmol) in toluene (2 mL) afforded **3h** (77.8 mg, 83%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.74 (d, *J* = 7.5 Hz, 2 H, 2 × Ph-H), 7.49–7.25 (m, 3 H, 3 × Ph-H), 4.19–3.98 (m, 2 H, OCH₂), 2.38–2.12 (m, 2 H), 2.12–1.74 (m, 6 H), 1.20 (t, *J* = 6.6 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 146.8 (d, *J*_{PC} = 47.6 Hz), 129.2 (d, *J*_{PC} = 10.0 Hz), 129.1, 128.6, 128.2

(d, $J_{P,C} = 6.8$ Hz), 124.8 (d, $J_{P,C} = 158.7$ Hz), 95.4 (d, $J_{P,C} = 1.5$ Hz), 63.6 (d, $J_{P,C} = 6.9$ Hz), 38.0 (d, $J_{P,C} = 3.2$ Hz), 37.8 (d, $J_{P,C} =$ 2.1 Hz), 24.7 (d, $J_{P,C} = 3.2$ Hz), 16.3 (d, $J_{P,C} = 5.6$ Hz) ppm. MS (70 eV, EI): m/z (%) = 314 (1.46) [M(³⁷Cl)]⁺, 312 (5.01) [M(³⁵Cl)]⁺, 277 (100) [M - Br]⁺. HRMS (EI): calcd. for C₁₅H₁₈O₃P³⁵Cl [M]⁺ 312.0682; found 312.0682.

Syntheses of Optically Active 2,5-Dihydro-1,2-oxaphosphole 2-Oxides

3-Butyl-4-chloro-2-ethoxy-5-ethyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide (*cis***-3i,** *trans***-3i). Typical Procedure II:** A mixture of **11** (78.2 mg, 0.30 mmol) and CuCl₂·2H₂O (204.9 mg, 1.2 mmol) were stirred at 70 °C in toluene (2 mL). After 12 h, the reaction was complete (reaction monitored by TLC; petroleum ether/ethyl acetate, 3:1). The reaction mixture was allowed to cool to room temperature, H₂O (20 mL) and ether (20 mL) were then added and the layers were separated. The organic layer was washed with brine (20 mL) and dried with anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane, 10:1:1; 40 cm long column) to afford *cis*-**3i** (36.1 mg, 45%) and *trans*-**3i** (39.4 mg, 49%).

cis-3i: Oil. ¹H NMR (300 MHz, CDCl₃): δ = 4.72–4.61 (m, 1 H, CH), 4.13–3.98 (m, 2 H, OCH₂), 2.46–2.15 (m, 2 H, CH₂ from C₄H₉), 2.05–1.88 (m, 1 H, one proton from CH₂), 1.77–1.59 (m, 1 H, one proton from CH₂), 1.77–1.59 (m, 1 H, one proton from CH₂), 1.57–1.42 (m, 2 H, CH₂ from C₄H₉), 1.38–1.22 (m, 5 H), 0.96–0.80 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 144.9 (d, $J_{P,C}$ = 52.0 Hz), 126.5 (d, $J_{P,C}$ = 158.5 Hz), 82.2 (d, $J_{P,C}$ = 2.9 Hz), 63.0 (d, $J_{P,C}$ = 6.9 Hz), 29.4 (d, $J_{P,C}$ = 1.8 Hz), 25.8 (d, $J_{P,C}$ = 2.6 Hz), 25.1 (d, $J_{P,C}$ = 8.9 Hz), 22.3, 16.3 (d, $J_{P,C}$ = 6.5 Hz), 13.5, 7.5 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 34.0 ppm. IR (neat): \tilde{v} = 2960, 2934, 2874, 1631, 1460, 1388, 1325, 1266, 1182, 1164, 1072, 1034 cm⁻¹. MS(70 eV, EI): *m/z* (%) = 268 (2.34) [M(³⁷Cl)]⁺, 266 (5.53) [M(³⁵Cl)]⁺, 231 (29.14) [M – Cl]⁺, 226 (34.98) [M(³⁷Cl) – C₃H₆]⁺, 224 (100) [M(³⁵Cl) – C₃H₆]⁺. HRMS (EI): calcd. for C₁₁H₂₀O₃P³⁵Cl [M]⁺ 266.0839; found 266.0837.

trans-3i: Oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 4.75-4.61$ (m, 1 H, CH), 4.26–4.01 (m, 2 H, OCH₂), 2.48–2.19 (m, 2 H, CH₂ from C₄H₉), 2.06–1.88 (m, 1 H, one proton from CH₂), 1.72–1.42 (m, 3 H), 1.41–1.25 (m, 5 H), 0.96–0.81 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 145.1$ (d, $J_{PC} = 53.1$ Hz), 126.4 (d, $J_{PC} = 160.1$ Hz), 82.3 (d, $J_{PC} = 3.4$ Hz), 63.2 (d, $J_{PC} = 6.9$ Hz), 29.4 (d, $J_{PC} = 2.2$ Hz), 25.8 (d, $J_{PC} = 1.1$ Hz), 25.1 (d, $J_{PC} = 9.6$ Hz), 22.3, 16.5 (d, $J_{PC} = 5.3$ Hz), 13.6, 7.9 ppm. MS (70 eV, EI): *m/z* (%) = 268 (2.52) [M(³⁷Cl)]⁺, 266 (6.01) [M(³⁵Cl)]⁺, 231 (30.50) [M – Cl]⁺, 226 (34.63) [M(³⁷Cl) – C₃H₆]⁺, 224 (100) [M(³⁵Cl) – C₃H₆]⁺. HRMS (EI): calcd. for C₁₁H₂₀O₃P³⁵Cl [M]⁺ 266.0839; found 266.0841.

3-Butyl-4-chloro-2-ethoxy-5-ethyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide [(S,S)-3i and (S,R)-3i]: The reaction of (S_a) -(+)-**1l** (78.0 mg, 0.3 mmol, ee > 99%) and CuCl₂·2H₂O (204.6 mg, 1.2 mmol) in toluene (2 mL) afforded (*S*,*S*)-**3i** (34.8 mg, 44%) and (*S*,*R*)-**3i** (37.9 mg, 47%).

(*S*,*S*)-3i: 98% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_R = 6.5$ (minor), 6.9 (major) min]; $[a]_{20}^{20} = +8.4$ (c = 1.50, CHCl₃); oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 4.75-4.62$ (m, 1 H, CH), 4.21–4.00 (m, 2 H, CH₂ from C₄H₉), 2.50–2.20 (m, 2 H, one proton from CH₂), 2.09–1.93 (m, 1 H, one proton from CH₂), 1.80–1.64 (m, 1 H, one proton from CH₂), 1.64–1.46 (m, 2 H, CH₂ from C₄H₉), 1.44–1.28 (m, 5 H), 1.02–0.84 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $δ = 145.0 (d, J_{PC} = 52.6 Hz), 126.6 (d, J_{PC} = 158.4 Hz), 82.3 (d, J_{PC} = 2.9 Hz), 63.1 (d, J_{PC} = 6.9 Hz), 29.4 (d, J_{PC} = 2.5 Hz), 25.9 (d, J_{PC} = 2.4 Hz), 25.2 (d, J_{PC} = 9.5 Hz), 22.4, 16.4 (d, J_{PC} = 6.3 Hz), 13.6, 7.6 ppm. MS (70 eV, EI):$ *m/z*(%) = 268 (1.67) [M(³⁷Cl)]⁺, 266 (4.96) [M(³⁵Cl)]⁺, 231 (23.13) [M - Cl]⁺, 226 (30.71) [M(³⁷Cl) - C₃H₆]⁺, 224 (94.79) [M(³⁵Cl) - C₃H₆]⁺, 43 (100). HRMS (EI): calcd. for C₁₁H₂₀O₃P³⁵Cl [M]⁺ 266.0839; found 266.0838.

(*S*,*R*)-3i: oil; 98% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_R = 13.0$ (major), 15.6 (minor) min]; $[a]_D^{20} = -23.9$ (*c* = 1.60, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.78-4.62$ (m, 1 H, CH), 4.30–4.04 (m, 2 H, OCH₂), 2.49–2.21 (m, 2 H, CH₂ from C₄H₉), 2.08–1.92 (m, 1 H, one proton from CH₂), 1.74–1.45 (m, 3 H), 1.42–1.25 (m, 5 H), 0.99–0.85 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 145.2$ (d, $J_{P,C} = 53.3$ Hz), 126.5 (d, $J_{P,C} = 160.1$ Hz), 82.4 (d, $J_{P,C} = 2.9$ Hz), 63.3 (d, $J_{P,C} = 6.6$ Hz), 29.5 (d, $J_{P,C} = 2.0$ Hz), 25.8 (d, $J_{P,C} = 2.1$ Hz), 25.2 (d, $J_{P,C} = 9.1$ Hz), 22.4, 16.6 (d, $J_{P,C} = 5.4$ Hz), 13.6, 8.0 ppm. MS (70 eV, EI): *m*/*z* (%) = 268 (1.65) [M(³⁷Cl)]⁺, 266 (4.72) [M(³⁵Cl)]⁺, 231 (28.77) [M - Cl]⁺, 226 (33.28) [M(³⁷Cl) - C₃H₆]⁺, 224 (100) [M(³⁵Cl) - C₃H₆]⁺. HRMS (EI): calcd. for C₁₁H₂₀O₃P³⁵Cl [M]⁺ 266.0839; found 266.0839.

3-Butyl-4-chloro-2-ethoxy-2,5-dihydro-5-propyl-1,2-oxaphosphole 2-Oxide (*cis***-3j**, *trans***-3j**): The reaction of **1m** (82.2 mg, 0.3 mmol) and CuCl₂·2H₂O (204.8 mg, 1.2 mmol) in toluene (2 mL) afforded *cis*-**3j** (34.6 mg, 41%) and *trans***-3j** (40.0 mg, 48%).

cis-3j: Oil. ¹H NMR (300 MHz, CDCl₃): δ = 4.75–4.63 (m, 1 H, CH), 4.18–4.02 (m, 2 H, OCH₂), 2.50–2.20 (m, 2 H, CH₂ from C₄H₉), 2.00–1.82 (m, 1 H, one proton from CH₂), 1.74–1.26 (m, 10 H), 1.00–0.83 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 145.5 (d, J_{PC} = 52.8 Hz), 126.2 (d, J_{PC} = 158.3 Hz), 81.5 (d, J_{PC} = 2.8 Hz), 63.2 (d, J_{PC} = 6.6 Hz), 35.1 (d, J_{PC} = 2.5 Hz), 25.2 (d, J_{PC} = 9.8 Hz), 22.4, 17.1, 16.4 (d, J_{PC} = 6.7 Hz), 13.6 (d, J_{PC} = 6.6 Hz) ppm. MS (70 eV, EI): *m/z* (%) = 282 (2.79) [M(³⁵Cl)]⁺, 280 (8.38) [M(³⁵Cl)]⁺, 245 (25.70) [M – Cl]⁺, 240 (29.17) [M(³⁷Cl) – C₃H₆]⁺, 238 (100) [M(³⁵Cl) – C₃H₆]⁺. HRMS (EI): calcd. for C₁₂H₂₂O₃P³⁵Cl [M]⁺ 280.0995; found 280.0992.

trans-3j: Oil. ¹H NMR (300 MHz, CDCl₃): δ = 4.76–4.66 (m, 1 H, CH), 4.24–4.09 (m, 2 H, OCH₂), 2.50–2.20 (m, 2 H, CH₂ from C₄H₉), 2.00–1.85 (m, 1 H, one proton from CH₂), 1.62–1.28 (m, 10 H), 1.00–0.85 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 145.7 (d, $J_{P,C}$ = 53.4 Hz), 126.0 (d, $J_{P,C}$ = 159.6 Hz), 81.4 (d, $J_{P,C}$ = 3.5 Hz), 63.3 (d, $J_{P,C}$ = 6.9 Hz), 35.0 (d, $J_{P,C}$ = 2.0 Hz), 29.5 (d, $J_{P,C}$ = 1.7 Hz), 25.2 (d, $J_{P,C}$ = 9.8 Hz), 22.4, 17.5, 16.6 (d, $J_{P,C}$ = 5.6 Hz), 13.6 (d, $J_{P,C}$ = 4.3 Hz) ppm. MS (70 eV, EI): *m/z* (%) = 282 (2.30) [M(³⁵Cl)]⁺, 280 (6.02) [M(³⁵Cl)]⁺, 245 (26.98) [M⁺ – Cl], 240 (32.48) [M(³⁷Cl) – C₃H₆]⁺, 238 (100) [M(³⁵Cl) – C₃H₆]⁺. HRMS (EI): calcd. for C₁₂H₂₂O₃P³⁵Cl [M]⁺ 280.0995; found 280.0993.

3-Butyl-4-chloro-2-ethoxy-5-ethyl-2,5-dihydro-1,2-oxaphosphole 2-Oxide [(*S*,*S*)-**3j**, (*S*,*R*)-**3j**]: The reaction of (*S*)-**1m** (82.3 mg, 0.3 mmol, ee > 99%), and CuCl₂·2H₂O (204.9 mg, 1.2 mmol) in toluene (2 mL) afforded (*S*,*S*)-**3j** (36.2 mg, 43%) and (*S*,*R*)-**3j** (42.4 mg, 50%).

(*S*,*S*)-3**;** Oil; 98% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_{\rm R} = 6.2$ (minor), 6.6 (major) min]; $[a]_{\rm D}^{20} = +12.6$ (c = 0.20, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.74-4.63$ (m, 1 H, CH), 4.20–3.92 (m, 2 H, OCH₂), 2.50–2.19 (m, 2 H, CH₂ from C₄H₉), 2.00–1.80 (m, 1 H, one proton from CH₂), 1.71–1.20 (m, 10 H), 1.00–0.80 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 145.4$ (d, $J_{\rm P,C} =$

52.8 Hz), 126.0 (d, $J_{P,C} = 158.1$ Hz), 81.4 (d, $J_{P,C} = 2.8$ Hz), 63.0 (d, $J_{P,C} = 7.2$ Hz), 35.0 (d, $J_{P,C} = 2.5$ Hz), 29.4 (d, $J_{P,C} = 1.7$ Hz), 25.1 (d, $J_{P,C} = 9.3$ Hz), 22.3, 17.0, 16.3 (d, $J_{P,C} = 6.1$ Hz), 13.5 (d, $J_{P,C} = 6.2$ Hz) ppm. MS (70 eV, EI): m/z (%) = 282 (1.49) [M(³⁷Cl)]⁺, 280 (3.96) [M(³⁵Cl)]⁺, 245 (26.30) [M - Cl]⁺, 240 (34.35) [M(³⁷Cl) - C₃H₆]⁺, 238 (100) [M(³⁵Cl) - C₃H₆]⁺. HRMS (EI): calcd. for C₁₂H₂₂O₃P³⁵Cl [M]⁺ 280.0995; found 280.0999.

(*S*,*R*)-3j: Oil; 98% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_R = 10.8$ (major), 13.7 (minor) min]; $[a]_D^{20} = -36.8$ (c = 0.22, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.78-4.64$ (m, 1 H, CH), 4.28–4.04 (m, 2 H, OCH₂), 2.48–2.21 (m, 2 H, CH₂ from C₄H₉), 1.99–1.85 (m, 1 H, one proton from CH₂), 1.63–1.27 (m, 10 H), 1.00–0.85 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 145.6$ (d, $J_{P,C} = 53.3$ Hz), 125.9 (d, $J_{P,C} = 160.4$ Hz), 81.3 (d, $J_{P,C} = 3.6$ Hz), 63.2 (d, $J_{P,C} = 6.7$ Hz), 34.9 (d, $J_{P,C} = 0.8$ Hz), 29.4 (d, $J_{P,C} = 2.6$ Hz), 25.1 (d, $J_{P,C} = 9.8$ Hz), 22.3, 17.4, 16.5 (d, $J_{P,C} = 5.4$ Hz), 13.5 (d, $J_{P,C} = 4.2$ Hz) ppm. MS (70 eV, EI): m/z (%) = 282 (1.97) [M-(³⁷Cl)]⁺, 280 (5.36) [M(³⁵Cl)]⁺, 245 (31.09) [M - Cl]⁺, 240 (34.41) [M(³⁷Cl) - C₃H₆]⁺, 238 (100) [M⁺(³⁵Cl) - C₃H₆]. HRMS (EI): calcd. for C₁₂H₂₂O₃P³⁵Cl [M]⁺ 280.0995; found 280.1001.

4-Chlorol-2-ethoxy-5-ethyl-2,5-dihydro-3-pheny-1,2-oxaphosphole 2-Oxide (cis-3k, trans-3k): The reaction of **1n** (84.1 mg, 0.3 mmol), and CuCl₂·2H₂O (204.5 mg, 1.2 mmol) in toluene (2 mL) afforded *cis-***3k** (34.2 mg, 40%) and *trans-***3k** (36.0 mg, 42%).

cis-**3k**: White solid; m.p. 76–77 °C (petroleum ether/ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.82–7.68 (m, 2 H, 2 × Ph-H), 7.50–7.32 (m, 3 H, 3 × Ph-H), 4.92–4.78 (m, 1 H, CH), 4.20–3.98 (m, 2 H, OCH₂), 2.21–2.04 (m, 1 H, one proton from CH₂), 1.94–1.76 (m, 1 H, one proton from CH₂), 1.22 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃), 1.04 (t, *J* = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 143.6 (d, *J*_{PC} = 50.3 Hz), 129.3 (d, *J*_{PC} = 10.6 Hz), 128.8 (d, *J*_{PC} = 10.2 Hz), 128.7, 128.2 (d, *J*_{PC} = 6.9 Hz), 125.2 (d, *J*_{PC} = 159.7 Hz), 82.5 (d, *J*_{PC} = 2.9 Hz), 63.7 (d, *J*_{PC} = 6.9 Hz), 26.0 (d, *J*_{PC} = 3.2 Hz), 16.3 (d, *J*_{PC} = 6.2 Hz), 7.8 ppm. MS (70 eV, EI): *m/z* (%) = 288 [M⁺(³⁷Cl), 2.88], 286 [M⁺(³⁵Cl), 8.65], 251 (22.52) [M⁺ – Cl], 102 (100). C₁₃H₁₆ClO₃P (286.69): calcd. C 54.46, H 5.63; found C 54.46, H 5.58.

trans-3k: Oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.78–7.66 (m, 2 H, 2 × Ph-H), 7.48–7.32 (m, 3 H, 3 × Ph-H), 4.92–4.79 (m, 1 H, CH), 4.30–4.03 (m, 2 H, OCH₂), 2.22–2.04 (m, 1 H, one proton from CH₂), 1.88–1.70 (m, 1 H, one proton from CH₂), 1.22 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃), 1.04 (t, *J* = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 143.8 (d, *J*_{PC} = 51.3 Hz), 129.2, 129.0 (d, *J*_{PC} = 10.1 Hz), 128.6, 128.2 (d, *J*_{PC} = 6.5 Hz), 125.4 (d, *J*_{PC} = 161.7 Hz), 82.4 (d, *J*_{PC} = 5.2 Hz), 8.2 ppm. MS (70 eV, EI): *m/z* (%) = 288 (2.88) [M(³⁷Cl)]⁺, 286 (10.13) [M(³⁵Cl)]⁺, 251 (14.84) [M – Cl]⁺, 43 (100). HRMS (EI): calcd. for C₁₃H₁₆O₃P³⁵Cl [M]⁺ 286.0526; found 286.0528.

4-Chloro-2-ethoxy-5-ethyl-2,5-dihydro-3-phenyl-1,2-oxaphosphole 2-Oxide [(S,S)-3k, (S,R)-3k]: The reaction of (S_a) -(-)-**1n** (84.3 mg, 0.3 mmol, ee = 96%), and CuCl₂·2H₂O (204.5 mg, 1.2 mmol) in toluene (2 mL) afforded (*S*,*S*)-3k (37.7 mg, 44%) and (*S*,*R*)-3k (38.9 mg, 45%).

(*S*,*S*)-3k: White solid; m.p. 85–86 °C (petroleum ether/ethyl acetate); 95% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_R = 9.0$ (minor), 11.8 (major) min]; $[a]_D^{20} = +12.2$ (c = 1.70, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.76$ (d, J = 8.1 Hz, 2 H, 2 × Ph-H), 7.51–7.32 (m, 3 H, 3 × Ph-H), 4.92–4.81 (m, 1 H, CH), 4.21–4.00 (m, 2

H, OCH₂), 2.22–2.05 (m, 1 H, one proton from CH₂), 1.95–1.78 (m, 1 H, one proton from CH₂), 1.23 (t, J = 7.1 Hz, 3 H, OCH₂CH₃), 1.05 (t, J = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 143.6$ (d, $J_{PC} = 50.3$ Hz), 129.3 (d, $J_{PC} = 1.0$ Hz), 128.8 (d, $J_{PC} = 10.0$ Hz), 128.7, 128.2 (d, $J_{PC} = 6.8$ Hz), 125.2 (d, $J_{PC} = 159.8$ Hz), 82.5 (d, $J_{PC} = 2.9$ Hz), 63.7 (d, $J_{PC} = 6.8$ Hz), 26.0 (d, $J_{PC} = 2.5$ Hz), 16.3 (d, $J_{PC} = 6.1$ Hz), 7.8 ppm. MS (70 eV, EI): m/z (%) = 288 (12.37) [M⁺(³⁷Cl)], 286 (37.01) [M⁺(³⁵Cl)], 251 (84.15) [M⁺ - Cl], 223 (100). C₁₃H₁₆ClO₃P (286.69): calcd. C 54.46, H 5.63; found C 54.46, H 5.58.

(*S*,*R*)-4k: Oil; 94% *ee* [HPLC conditions: Chiralcel AS-H column; hexane/*i*PrOH, 90:10; 0.5 mL/min; $\lambda = 214$ nm; $t_R = 15.0$ (major), 19.8 (minor) min]; $[a]_D^{20} = -84.9$ (*c* = 1.78, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.80-7.60$ (m, 2 H, 2 × Ph-H), 7.50-7.30 (m, 3 H, 3 × Ph-H), 4.93-4.78 (m, 1 H, CH), 4.30-4.03 (m, 2 H, OCH₂), 2.22-2.05 (m, 1 H, one proton from CH₂), 1.90-1.70 (m, 1 H, one proton from CH₂), 1.92 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃), 1.04 (t, *J* = 7.4 Hz, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 143.8$ (d, $J_{P,C} = 50.7$ Hz), 129.2 (d, $J_{P,C} = 1.1$ Hz), 128.9 (d, $J_{P,C} = 10.2$ Hz), 128.6, 128.1 (d, $J_{P,C} = 6.5$ Hz), 125.3 (d, $J_{P,C} = 161.6$ Hz), 82.4 (d, $J_{P,C} = 5.2$ Hz), 8.1 ppm. MS (70 eV, EI): *m*/*z* (%) = 288 (10.44) [M⁺(³⁷Cl)], 286 (32.04) [M(³⁵Cl)]⁺, 251 (72.15) [M - Cl]⁺, 223 (100). HRMS (EI): calcd. for C₁₃H₁₆O₃P³⁵Cl [M]⁺ 286.0526; found 286.0534.

[PdCl₂(LB-Phos)₂]-Catalyzed Suzuki Cross-Coupling Reaction of 4-Halo-2-ethoxy-2,5-dihydro-1,2-oxaphosphole 2-Oxides with Phenylboronic Acids

3-Butyl-2-ethoxy-2,5-dihydro-5,5-dimethyl-4-phenyl-1,2-oxaphosphole 2-Oxide (4a); Typical Procedure: To a Schlenk tube containing K₂CO₃ (145.1 mg, 1.05 mmol) dried with a heat gun, were charged phenylboronic acid (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.5 mg, 0.015 mmol), **3a** (80.0 mg, 0.3 mmol), and toluene (2 mL) sequentially under an Ar atmosphere. The mixture was stirred under reflux until the reaction was complete (ca. 5 h) (reaction monitored by TLC; petroleum ether/ethyl acetate, 3:1). The reaction mixture was allowed to cool to room temperature, H₂O (10 mL) and diethyl ether (10 mL) were added and the layers were separated. The organic layer was washed with brine (10 mL) and dried with anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane, 8:1:1; 40 cm long column) to afford 4a (69.3 mg, 75%) as an oil.^[11] ¹H NMR (300 MHz, CDCl₃): $\delta = 7.41-7.27$ (m, 3 H, 3 × Ph-H), 7.11–6.98 (m, 2 H, 2 × Ph-H), 4.21–4.05 (m, 2 H, OCH₂), 2.18–1.83 (m, 2 H, CH₂) from C₄H₉), 1.50-1.25 (m, 11 H), 1.22-1.06 (m, 2 H, CH₂ from C₄H₉), 0.80–0.65 (m, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 161.1 (d, $J_{P,C}$ = 24.3 Hz), 133.8 (d, $J_{P,C}$ = 22.1 Hz), 128.4, 128.2, 127.8, 126.0 (d, $J_{P,C}$ = 155.7 Hz), 85.9 (d, $J_{P,C}$ = 8.6 Hz), 62.4 (d, $J_{P,C}$ = 6.9 Hz), 30.4 (d, $J_{P,C}$ = 2.3 Hz), 27.3 (d, $J_{P,C}$ = 2.3 Hz), 26.7 (d, $J_{P,C}$ = 1.5 Hz), 25.4 (d, $J_{P,C}$ = 12.4 Hz), 22.3, 16.5 (d, $J_{\rm PC}$ = 5.8 Hz), 13.5 ppm. MS (70 eV, EI): m/z (%) = 308 $(2.45) [M]^+$, 266 (15.19) $[M - C_3H_6]^+$, 43 (100).

2-Ethoxy-2,5-dihydro-5,5-dimethyl-3,4-diphenyl-1,2-oxaphosphole 2-Oxide (4b): The reaction of **3b** (80.0 mg, 0.3 mmol), and K₂CO₃ (145.1 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), PdCl₂(LB-Phos)₂] (13.5 mg, 0.015 mmol) in toluene (2 mL), afforded **4a** (76.8 mg, 78%) as an oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.44-7.24$ (m, 5 H, 5 × Ph-H), 7.22–7.08 (m, 5 H, 5 × Ph-H), 4.28–4.05 (m, 2 H, OCH₂), 1.64 (s, 3 H, CH₃), 1.54 (s, 3 H, CH₃), 1.27 (t, J = 7.0 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃): $\delta = 160.2$ (d, $J_{PC} = 23.0$ Hz), 134.2 (d, $J_{PC} = 20.9$ Hz), Date: 25-05-12 10:23:31

Pages: 13

Direct Halocyclization of 1,2-Allenylphosphonates

130.8 (d, $J_{P,C} = 13.1$ Hz), 128.7, 128.6, 128.5 (d, $J_{P,C} = 2.0$ Hz), 128.24, 128.21, 128.0 (d, $J_{P,C} = 1.0$ Hz), 125.4 (d, $J_{P,C} = 158.6$ Hz), 86.0 (d, $J_{P,C} = 7.8$ Hz), 63.1 (d, $J_{P,C} = 6.4$ Hz), 27.5 (d, $J_{P,C} = 3.7$ Hz), 26.8 (d, $J_{P,C} = 2.6$ Hz), 16.4 (d, $J_{P,C} = 5.8$ Hz) ppm. MS (70 eV, EI): m/z (%) = 328 (8.92) [M]⁺, 313 (13.62) [M - CH₃]⁺, 43 (100). HRMS (EI): calcd. for C₁₉H₂₁O₃P [M]⁺ 328.1228; found 328.1230.

3-Allyl-2-ethoxy-2,5-dihydro-5,5-dimethyl-4-phenyl-1,2-oxaphosphole 2-Oxide (4c): The reaction of 3c (75.2 mg, 0.3 mmol), and K₂CO₃ (145.0 mg, 1.05 mmol), PhB(OH)₂ (91.6 mg, 0.75 mmol), $[PdCl_2(LB-Phos)_2]$ (13.6 mg, 0.015 mmol) in toluene (2 mL), afforded 4c (48.1 mg, 55%) in oil.[11] ¹H NMR (300 MHz, CDCl₃): δ = 7.46–7.31 (m, 3 H, 3 × Ph-H), 7.16–7.02 (m, 2 H, 2 × Ph-H), 5.86–5.63 (m, 1 H, CH), 5.10–4.90 (m, 2 H, =CH₂), 4.25–4.02 (m, 2 H, OCH₂), 2.99–2.62 (m, 2 H, CH₂), 1.47 (s, 3 H, CH₃), 1.45 (s, 3 H, CH₃), 1.34 (t, J = 7.2 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR $(75.4 \text{ MHz}, \text{CDCl}_3)$: $\delta = 161.9 \text{ (d}, J_{PC} = 24.8 \text{ Hz}), 133.8 \text{ (d}, J_{PC} = 24.8 \text{ Hz})$ 2.1 Hz), 133.5 (d, $J_{P,C}$ = 21.3 Hz), 128.49, 128.48, 127.8 (d, $J_{P,C}$ = 1.7 Hz), 124.1 (d, J_{PC} = 158.0 Hz), 116.9, 86.1 (d, J_{PC} = 8.3 Hz), 62.8 (d, $J_{P,C}$ = 6.6 Hz), 30.1 (d, $J_{P,C}$ = 12.7 Hz), 27.3 (d, $J_{P,C}$ = 2.7 Hz), 26.8 (d, $J_{P,C}$ = 2.0 Hz), 16.5 (d, $J_{P,C}$ = 6.1 Hz) ppm. MS $(70 \text{ eV, EI}): m/z \ (\%) = 292 \ (90.67) \ [M]^+, \ 277 \ (11.01) \ [M - CH_3]^+,$ 141(100)

3-Butyl-2-ethoxy-5-ethyl-2,5-dihydro-4-phenyl-1,2-oxaphosphole 2-Oxide (cis-4d): The reaction of cis-3i (80.0 mg, 0.3 mmol), and K₂CO₃ (145.0 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.6 mg, 0.015 mmol) in toluene (2 mL), afforded *cis*-4d (80.0 mg, 86%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.49–7.30 (m, 3 H, 3 × Ph-H), 7.14 (d, J = 7.2 Hz, 2 H, $2 \times$ Ph-H), 5.12–5.00 (m, 1 H, CH), 4.22–4.04 (m, 2 H, OCH₂), 2.46–2.14 (m, 2 H, CH₂ from C₄H₉), 1.78–1.61 (m, 1 H, one proton from CH₂), 1.61-1.48 (m, 2 H), 1.48-1.15 (m, 6 H), 0.93-0.75 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 154.5 (d, J_{PC} = 26.5 Hz), 133.3 (d, $J_{\rm P,C}$ = 22.2 Hz), 128.7, 128.6, 127.3, 126.2 (d, $J_{P,C} = 157.1 \text{ Hz}$, 82.9 (d, $J_{P,C} = 9.0 \text{ Hz}$), 62.4 (d, $J_{P,C} = 6.7 \text{ Hz}$), 30.5 (d, $J_{P,C}$ = 1.7 Hz), 26.7 (d, $J_{P,C}$ = 1.4 Hz), 25.3 (d, $J_{P,C}$ = 12.1 Hz), 22.5, 16.3 (d, $J_{P,C}$ = 6.2 Hz), 13.5, 8.2 ppm. MS (70 eV, EI): m/z (%) = 308 (13.66) [M]⁺, 266 (100) [M⁺ - C₃H₆]. HRMS (EI): calcd. for $C_{17}H_{25}O_3P [M]^+$ 308.1541; found 308.1540.

3-Butyl-2-ethoxy-5-ethyl-2,5-dihydro-4-phenyl-1,2-oxaphosphole 2-Oxide (trans-4d): The reaction of trans-3i (80.0 mg, 0.3 mmol), and K₂CO₃ (145.1 mg, 1.05 mmol), PhB(OH)₂ (91.6 mg, 0.75 mmol), $[PdCl_2(LB-Phos)_2]$ (13.7 mg, 0.015 mmol) in toluene (2 mL), afforded trans-4d (77.8 mg, 84%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.46–7.29 (m, 3 H, 3 × Ph-H), 7.12 (d, J = 7.5 Hz, 2 H, 2 × Ph-H), 5.12–5.00 (m, 1 H, CH), 4.32–4.07 (m, 2 H, OCH₂), 2.43-2.09 (m, 2 H, CH₂ from C₄H₉), 1.75-1.43 (m, 3 H), 1.43-1.19 (m, 6 H), 0.92–0.75 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 154.9 (d, $J_{P,C}$ = 26.7 Hz), 133.5 (d, $J_{P,C}$ = 23.0 Hz), 128.7, 127.4 (d, $J_{P,C} = 1.2 \text{ Hz}$), 126.3 (d, $J_{P,C} = 159.0 \text{ Hz}$), 83.1 (d, $J_{P,C} = 9.1 \text{ Hz}$), 62.6 (d, $J_{P,C}$ = 6.3 Hz), 30.7 (d, $J_{P,C}$ = 2.6 Hz), 26.6 (d, $J_{P,C}$ = 1.1 Hz), 25.3 (d, $J_{P,C}$ = 12.7 Hz), 22.6, 16.6 (d, $J_{P,C}$ = 5.3 Hz), 13.6, 8.3 ppm. MS (70 eV, EI): m/z (%) = 308 (30.31) [M]⁺, 266 (100) $[M - C_3H_6]^+$. HRMS (EI): calcd. for $C_{17}H_{25}O_3P$ $[M]^+$ 308.1541; found 308.1539.

3-Butyl-2-ethoxy-2,5-dihydro-4-phenyl-5-propyl-1,2-oxaphosphole 2-Oxide (*cis***-4e):** The reaction of *cis***-3j** (84.3 mg, 0.3 mmol), and K₂CO₃ (145.0 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.6 mg, 0.015 mmol) in toluene (2 mL), afforded *cis***-4e** (86.4 mg, 89%) as an oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.48–7.30 (m, 3 H, 3 × Ph-H), 7.20–7.03 (m, 2 H, 2 × Ph-H), 5.13–4.99 (m, 1 H, CH), 4.21–4.01 (m, 2 H, OCH₂), 2.42–2.12 (m, 2 H, CH₂ from C₄H₉), 1.65–1.13 (m, 11 H), 0.89– 0.69 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 155.1 (d, $J_{P,C}$ = 26.8 Hz), 133.5 (d, $J_{P,C}$ = 21.6 Hz), 128.8, 127.5, 125.9 (d, $J_{P,C}$ = 157.2 Hz), 82.1 (d, $J_{P,C}$ = 9.5 Hz), 62.6 (d, $J_{P,C}$ = 6.8 Hz), 36.1 (d, $J_{P,C}$ = 2.6 Hz), 30.6 (d, $J_{P,C}$ = 2.0 Hz), 25.4 (d, $J_{P,C}$ = 13.0 Hz), 22.6, 17.8, 16.5 (d, $J_{P,C}$ = 5.9 Hz), 13.6 (d, $J_{P,C}$ = 6.0 Hz) ppm. MS (70 eV, EI): m/z (%) = 322 (13.84) [M]⁺, 280 (100) [M - C₃H₆]⁺. HRMS (EI): calcd. for C₁₈H₂₇O₃P [M]⁺ 322.1698; found 322.1706.

2-Ethoxy-2,5-dihydro-5,5-dimethyl-3,4-diphenyl-1,2-oxaphosphole 2-Oxide (cis-4f): The reaction of cis-3k (86.0 mg, 0.3 mmol), and K₂CO₃ (145.0 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.6 mg, 0.015 mmol) in toluene (2 mL), afforded cis-4f (89.6 mg, 91%) as a white solid; m.p. 93-94 °C (petroleum ether/ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.44– 7.19 (m, 8 H, 8 × Ph-H), 7.19–7.08 (m, 2 H, 2 × Ph-H), 5.40–5.25 (m, 1 H, CH), 4.20–3.94 (m, 2 H, OCH₂), 1.90–1.69 (m, 1 H, one proton from CH_2), 1.65–1.45 (m, 1 H, one proton from CH_2), 1.15 $(t, J = 7.2 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 0.99 (t, J = 7.2 \text{ Hz}, 3 \text{ H}, \text{OCH}_2\text{CH}_3) \text{ ppm}.$ ¹³C NMR (75.4 MHz, CDCl₃): δ = 153.8 (d, $J_{P,C}$ = 25.6 Hz), 133.1 (d, $J_{P,C} = 21.1 \text{ Hz}$), 130.9 (d, $J_{P,C} = 12.7 \text{ Hz}$), 129.1, 128.9, 128.7 (d, $J_{\rm P,C} = 6.4$ Hz), 128.5, 128.2, 127.9, 125.7 (d, $J_{\rm P,C} = 161.7$ Hz), 83.0 (d, $J_{P,C}$ = 8.1 Hz), 63.3 (d, $J_{P,C}$ = 6.4 Hz), 26.8 (d, $J_{P,C}$ = 2.3 Hz), 16.3 (d, $J_{P,C}$ = 5.1 Hz), 8.4 ppm. MS (70 eV, EI): m/z (%) = 328 (12.29) $[M]^+$, 299 (100) $[M^+ - C_2H_4]$. $C_{19}H_{21}O_3P$ (328.35): calcd. C 69.50, H 6.45; found C 69.33, H 6.43.

3-Butyl-2-ethoxy-5-ethyl-2,5-dihydro-4-phenyl-1,2-oxaphosphole 2-Oxide [(S,S)-4d]: The reaction of (S,S)-3i (80.1 mg, 0.3 mmol, ee = 98%), and K₂CO₃ (145.1 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.5 mg, 0.015 mmol) in toluene (2 mL), afforded (S,S)-4d (87.2 mg, 94%) as an oil. 98% ee [HPLC conditions: Chiralcel AS-H column; hexane/iPrOH, 80:20; 0.5 mL/ min; $\lambda = 230$ nm; $t_R = 9.7$ (minor), 12.9 (major) min]; $[a]_D^{20} = +142.9$ $(c = 2.64, \text{CHCl}_3)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.47-7.28$ (m, $3 H, 3 \times Ph-H$), 7.18–7.05 (m, 2 H, 2 × Ph-H), 5.10–4.99 (m, 1 H, CH), 4.20-4.00 (m, 2 H, OCH₂), 2.42-2.14 (m, 2 H, CH₂ from C₄H₉), 1.74–1.61 (m, 1 H, one proton from CH₂), 1.61–1.48 (m, 2 H, CH₂ from C₄H₉), 1.48–1.15 (m, 6 H), 0.93–0.75 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 154.6 (d, $J_{P,C}$ = 26.2 Hz), 133.4 (d, $J_{P,C} = 21.6 \text{ Hz}$), 128.74, 128.70, 127.4, 126.3 (d, $J_{P,C} =$ 157.3 Hz), 83.0 (d, $J_{P,C}$ = 8.7 Hz), 62.5 (d, $J_{P,C}$ = 6.4 Hz), 30.6 (d, $J_{P,C} = 2.3 \text{ Hz}$), 26.8 (d, $J_{P,C} = 2.0 \text{ Hz}$), 25.4 (d, $J_{P,C} = 13.0 \text{ Hz}$), 22.6, 16.4 (d, $J_{P,C} = 5.7$ Hz), 13.5, 8.3 ppm. MS (70 eV, EI): m/z(%) = 308 (14.94) $[M]^+$, 266 (100) $[M - C_3H_6]^+$. HRMS (EI): calcd. for C₁₇H₂₅O₃P [M]⁺ 308.1541; found 308.1544.

3-Butyl-2-ethoxy-2,5-dihydro-4-phenyl-5-propyl-1,2-oxaphosphole 2-Oxide [(S,S)-4e]: The reaction of (S,S)-3j (84.0 mg, 0.3 mmol, ee = 98%), and K_2CO_3 (145.1 mg, 1.05 mmol), PhB(OH)₂ (91.5 mg, 0.75 mmol), [PdCl₂(LB-Phos)₂] (13.7 mg, 0.015 mmol) in toluene (2 mL), afforded (S,S)-4e (86.7 mg, 90%) as an oil. 98% ee [HPLC conditions: Chiralcel AS-H column; hexane/iPrOH, 80:20; 0.5 mL/ min; $\lambda = 230$ nm; $t_R = 12.8$ (minor), 14.8 (major) min]; $[a]_{\rm D}^{20} =$ +136.2 (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.44$ – 7.29 (m, 3 H, $3 \times$ Ph-H), 7.11 (d, J = 6.9 Hz, 2 H, $2 \times$ Ph-H), 5.12-4.98 (m, 1 H, CH), 4.20-4.00 (m, 2 H, OCH2), 2.42-2.10 (m, 2 H, CH₂ from C₄H₉), 1.61-1.12 (m, 11 H), 0.85-0.69 (m, 6 H) ppm. ¹³C NMR (75.4 MHz, CDCl₃): δ = 155.1 (d, $J_{P,C}$ = 26.6 Hz), 133.5 (d, $J_{P,C}$ = 23.0 Hz), 128.8, 127.5, 126.0 (d, $J_{P,C}$ = 157.2 Hz), 82.1 (d, $J_{P,C}$ = 9.2 Hz), 62.6 (d, $J_{P,C}$ = 7.1 Hz), 36.1 (d, $J_{\rm P,C}$ = 2.2 Hz), 30.6 (d, $J_{\rm P,C}$ = 2.3 Hz), 25.4 (d, $J_{\rm P,C}$ = 12.4 Hz), 22.6, 17.8, 16.5 (d, $J_{P,C}$ = 6.4 Hz), 13.6 (d, $J_{P,C}$ = 5.3 Hz) ppm. MS

FULL PAPER

(70 eV, EI): m/z (%) = 322 (12.77) [M]⁺, 280 (100) [M - C₃H₆]⁺. HRMS (EI): calcd. for C₁₈H₂₇O₃P [M]⁺ 322.1698; found 322.1696.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra of all the products.

Acknowledgments

Financial support from the National Natural Science Foundation of China (NSFC) (grant number 21172192) is appreciated. We thank Mr. Bo Lü in this group for reproducing the results presented: **2e** in Table 2, (S,S)-**3i** and (S,R)-**3i** in Scheme 5 and (S,S)-**4d** in Scheme 8.

- a) M. M. Mader, P. A. Bartlett, Chem. Rev. 1997, 97, 1281; b)
 J. W. Darrow, D. G. Drueckhammer, J. Org. Chem. 1994, 59, 2976; c) I. Morita, K. Kunimoto, M. Tsuda, S. I. Tada, M. Kise, K. Kimura, Chem. Pharm. Bull. 1987, 35, 4144; d) J. D. Stewart, L. J. Liotta, S. J. Benkovic, Acc. Chem. Res. 1993, 26, 396; e) J. Collard, C. Benezra, Tetrahedron Lett. 1982, 23, 3725; f) R. G. Almquist, W. R. Chao, C. Jennings-White, J. Med. Chem. 1985, 28, 1067; g) Y. Segall, R. L. Grendell, R. F. Toia, J. Casida, E. J. Agric. Food Chem. 1991, 39, 380; h) H. Seto, T. Kuzuyama, Nat. Prod. Rep. 1999, 16, 589.
- [2] a) K. Moonen, I. Laureyn, C. V. Stevens, *Chem. Rev.* 2004, 104, 6177; b) I. Ntai, M. L. Manier, D. L. Hachey, B. O. Bachmann, *Org. Lett.* 2005, 7, 2763.
- [3] a) M. Chakravarty, K. C. Swamy, J. Org. Chem. 2006, 71, 9128;
 b) M. Pavan, M. Chakravarty, K. C. Swamy, Eur. J. Org. Chem. 2009, 5927.
- [4] a) S. Ma, F. Yu, J. Zhao, *Synlett* 2007, 583; b) K. C. Swamy,
 M. Chakravarty, N. N. Kumar, K. V. Sajna, *Eur. J. Org. Chem.* 2008, 4500.
- [5] G. He, H. Guo, R. Qian, Y. Guo, C. Fu, S. Ma, *Tetrahedron* 2009, 65, 4877.
- [6] a) P. Li, Z. Liu, J. Liu, *Tetrahedron* 2010, 66, 9729; b) V. Brel,
 E. Abramkin, *Mendeleev Commun.* 2002, 12, 64.
- [7] a) R. S. Macomber, G. A. Krudy, K. Seff, L. E. Rendon-Diazmiron, J. Org. Chem. 1983, 48, 1425; b) R. S. Macomber, J. Am. Chem. Soc. 1977, 99, 3072; c) R. S. Macomber, J. Org. Chem. 1977, 42, 3297; d) R. S. Macomber, J. Org. Chem. 1978, 43, 1832; e) R. S. Macomber, E. R. Kennedy, J. Org. Chem. 1976, 41, 3191.
- [8] a) S. Ma, S. Wu, J. Org. Chem. 1999, 64, 9314; b) S. Ma, S. Wu, Chem. Commun. 2001, 441.

- [9] a) S. Ma, H. Xie, Org. Lett. 2000, 2, 3801; b) S. Ma, H. Xie, Tetrahedron 2005, 61, 251.
- [10] S. Ma, S. Wu, Tetrahedron Lett. 2001, 42, 4075.
- [11] S. Ma, F. Yu, X. Lian, J. Zhao, Y. Yu, J. Org. Chem. 2009, 74, 1130.
- [12] a) S. Ma, B. Lü, C. Fu, *Tetrahedron Lett.* 2010, 51, 1284; b) S. Ma, B. Lü, C. Fu, *Chem. Eur. J.* 2010, 16, 6434; c) S. Ma, B. Lü, P. Li, C. Fu, L. Xue, Z. Lin, *Adv. Synth. Catal.* 2011, 353, 100.
- [13] H. Altenbach, R. Korff, Tetrahedron Lett. 1981, 22, 5175.
- [14] a) W. H. Carothers, G. J. Berchet, J. Am. Chem. Soc. 1933, 55, 1628; b) W. H. Mueller, P. E. Butler, K. Griesbaum, J. Org. Chem. 1967, 32, 2651; c) M. L. Poutsma, J. Org. Chem. 1968, 33, 4080.
- [15] Crystal data for compound *cis*-**3k**: C₁₃H₁₆ClO₃P; *MW* = 286.68; orthorhombic; space group *P*2(1)2(1)2(1); final *R* indices [$I > 2\sigma(I)$], R1 = 0.0355, wR2 = 0.1015, *R* indices (all data) R1 = 0.0368, wR2 = 0.1032; a = 6.0093(2) Å, b = 13.5764(5) Å, c = 17.8709(7) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$; V = 1457.99(9) Å³; T = 296(2) K; Z = 4; reflections collected/ unique 16841/2567 ($R_{int} = 0.0236$), number of observations [$I > 2\sigma(I)$] 2178, parameters: 164. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- [16] K. Koosha, J. Berlan, M.-L. Capmau, W. Chodkiewicz, Bull. Soc. Chim. Fr. 1975, 1291.
- [17] Crystal data for compound (*S*,*S*)-**3k**: C₁₃H₁₆ClO₃P; *MW* = 286.68; orthorhombic; space group *P*2(1)2(1)2(1); final *R* indices [$I > 2\sigma(I)$], R1 = 0.0359, wR2 = 0.1014, *R* indices (all data) R1 = 0.0379, wR2 = 0.1036; a = 6.0101(4) Å, b = 13.5807(9) Å, c = 17.8837(12) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$; V = 1459.69(17) Å³; T = 296(2) K; Z = 4; reflections collected/unique 16904/2569 ($R_{int} = 0.0236$), number of observations [$I > 2\sigma(I)$] 2431, parameters: 163, CCDC-862989.
- [18] For reviews, see: a) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, 95, 2457; b) A. Suzuki, *J. Organomet. Chem.* 1999, 576, 147; c) N. Miyaura, *Metal-Catalyzed Cross-Coupling Reactions* (Eds.: A. de Meijere, F. Diederich), Wiley-VCH, New York, 2004, chapter 2; d) A. Suzuki, *Handbook of Organopalladium Chemistry for Organic Synthesis* (Ed.: E. I. Negishi), Wiley Interscience, New York, 2002, chapter III.2.2.

Received: February 27, 2012 Published Online: ■ Date: 25-05-12 10:23:31

Pages: 13

Direct Halocyclization of 1,2-Allenylphosphonates

Halocyclization

ᆗ

CuX₂-mediated direct halocyclization of diethyl 1,2-allenylphosphonates was developed to afford 4-halo-2,5-dihydro-1,2-oxaphosphole 2-oxides. The efficiency of axialto-central chirality transfer and subsequent Suzuki cross-coupling of the resulting vinylic chlorides with dicyclohexyl(2,4,6trimethoxyphenyl)phosphane (LB-Phos) as the ligand were also investigated.

N. Xin, S. Ma* 1–13

Efficient Synthesis of 4-Halo-2,5-dihydro-1,2-oxaphosphole 2-Oxides from 1,2-Allenylphosphonates and CuX₂ and Subsequent Suzuki Cross-Coupling of the C–Cl Bonds

Keywords: Synthetic methods / Cyclization / Cross-coupling / Chirality / Allenes / Phosphorous heterocycles