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Abstract: Three advanced intermediates corresponding to the car-
bon skeleton of the hennoxazoles have been prepared. Central to the
strategy is the synthesis of the oxazoles prior to coupling with the
other fragments and a dithiane addition to allow for the generation
of diastereomers of the natural product.

Key words: hennoxazole A, isopentylidene, bisoxazole, b,g-unsat-
urated aldehyde, skipped polyene

In 1990, Scheuer and Higa isolated a series of alkaloids
from Polyfibrospongia sp., a marine sponge collected
near the island of Miyako, Japan.2 They named these
natural products the hennoxazoles, and the most abundant
member of this family, hennoxazole A (1a, Figure 1) was
found to display antiherpetic and analgesic activity. Sub-
sequent work by Higa provided several additional hen-
noxazoles in which the only differences were within the
C1–C8 polyol region.3 The initial structural assignments
only established the relative configuration about the pyran
ring, while the absolute stereochemistry of the pyran, C8,
and C22 remained unknown.

Figure 1 The hennoxazoles A–E

This structural ambiguity and intriguing bioactivity has
prompted considerable synthetic attention.4 Wipf identi-
fied the absolute stereochemistry of the hennoxazoles by
his synthesis of ent-hennoxazole A (ent-1a),5 while Will-
iams subsequently completed the first synthesis of the
natural enantiomer.6 Barrett7 and Smith8 have described
the construction of model bisoxazoles simulating the
central portion of the hennoxazoles, while Shioiri has

published the synthesis of several key intermediates, cul-
minating in a total synthesis of the natural enantiomer of
hennoxazole A (1a).9 These results have prompted us to
disclose our own efforts toward a unified total synthesis of
the hennoxazoles.

Retrosynthetically, we disconnected the molecule at the
C7–C8 and C18–C19 bonds, leading to three disparate
fragments: epoxide 2, bisoxazole 3 and skipped diene 4
(Scheme 1). These disconnections were chosen to allow
easy variation of the stereochemistry at C8 and C22. After
introduction of C8 as a protected carbonyl, a stereoselec-
tive reduction and subsequent methylation would allow
access to either potential diastereomer. Osmylation,
periodate cleavage, and ketalization at C2 would afford
the hydropyran, while alkynylation to incorporate C18
and palladium coupling with a diene derived from 4
would complete the carbon skeleton. Ketalization with the
appropriate alcohol would provide hennoxazoles A–C
and E, while reductive deoxygenation of 1 would lead to
hennoxazole D.

Scheme 1 Retrosynthetic analysis of hennoxazole A (1a)

The synthesis of the epoxide fragment began from readily
available (R)-1,2,4-butanetriol (5, Scheme 2).10 Selective
1,2-ketalization11 with 3-pentanone was followed by
2,2,6,6-tetramethylpiperidinooxy (TEMPO)-catalyzed
oxidation12 to give volatile aldehyde 6. Direct stereo-
chemical induction from the b-stereocenter of 6 is quite
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poor, but a catalytic chiral methallylation afforded 7 in
90% de.13 Protection of the alcohol as a benzyl or p-meth-
oxybenzyl ether was followed by deketalization to pro-
vide the diol 8.14 This compound served as the precursor
to epoxide 2 in a one-pot epoxidation and dithiane cou-
pling (vide infra).

Scheme 2 Synthesis of epoxide precursor 8. Reagents and conditi-
ons: (a) (MeO)3CH, p-TsOH, Et2CO, MeOH–CH2Cl2 (2:1), reflux,
87%; (b) TEMPO, KBr, aq NaHCO3, NaOCl, aq NaHCO3, brine,
H2O– CH2Cl2, 0 °C, 75%; (c) methallyl tributylstannane, Ti(Oi-Pr)4,
(R)-BINOL, CH2Cl2, 0 °C to –20 °C, 63%; (d) (i) NaH; (ii) PMBBr,
THF–DMF (3:1), 69%; (e) Dowex 50WX8 H+ resin, MeOH, 62%.

The central bisoxazole fragment15 was prepared from acid
9 (Scheme 3), readily available from g-butyrolactone.16

Following coupling with serine methyl ester,17 the amide
product 10 was cyclized18 and aromatized19 to give
oxazole 11. The subsequent construction of the second
oxazole ring proved to be considerably more difficult than
we had originally anticipated. While a second serine resi-
due could be added efficiently, all attempts to activate the
corresponding alcohol resulted in elimination and forma-
tion of acrylate 13 (Figure 2). Ultimately, the second ox-
azole was incorporated using methodology developed by
Shapiro.20 Amidation of 11 with malonate 12 gave 14,
which cyclized to the corresponding bisoxazole 15. Final-
ly, reduction of the ester21 and conversion to a dithiane22

yielded the central fragment 3.23

Figure 2

A key constraint in the synthesis of the diene fragment
was the then-unknown stereocenter at C22. Therefore, we
chose a path that originated from a chiral pool member
that was readily available in either enantiomer; in fact,
both enantiomers of 4 were prepared by the route shown
(Scheme 4). Propionate 16 was transformed into aldehyde
1724 by standard procedures, and Horner–Emmons olefi-
nation with a-methylphosphonate 1825 gave 11:1 selectiv-
ity for the Z-alkene 19.26 Following reduction of the
isomeric mixture with DIBAL-H,27 tritylation afforded

the pure Z-isomer 20. The choice of a trityl group was
critical here, as the more activated benzoate protecting
group is prone to elimination and alkene isomerization
upon oxidation to the aldehyde. Desilylation and treat-
ment with Dess–Martin periodinane28 produced the un-
stable b,g-unsaturated aldehyde,29 which was converted to
the E-alkene under Schlosser conditions.30 Acidic detrity-
lation of the inseparable mixture of isomers then gave the
desired alcohol 4.31 The Schlosser olefination, while
poorly selective in this case, was the only procedure of
many that ultimately afforded the requisite diene.32 We
exhaustively explored alternatives in which the disub-
stituted olefin was installed before the trisubstituted one.
While this did allow for a more selective introduction of
the E geometry, subsequent products in the pathway were
quite volatile and provided lower overall yields.

With all three of our initial targets in hand, we set out to
study the union of these fragments to form the hennox-
azoles. Since our goal was to introduce the C22 stereo-
center as late as possible to maintain flexibility, we
explored the opening of epoxide 2 using 2-phenyl-1,3-
dithiane (21)33 as a model for the bisoxazole dithiane 3
(Scheme 5). One-pot epoxidation of 22 and ring opening
by 2134 led to dithiane alcohol 23 in good overall yield.
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Scheme 3 Synthesis of bisoxazole dithiane 3. Reagents and condi-
tions: (a) (i) Et3N, t-BuCOCl, DMAP; (ii) serine methyl ester hydro-
chloride, CH2Cl2, 67%; (b) PPh3, CCl4, i-Pr2NEt, MeCN–CH2Cl2

(4:1), 0 °C to r.t., 70%; (c) CuBr2, DBU, HMTA, CH2Cl2, 90%; (d)
K2CO3, MeOH–H2O (4:1), 89%; (e) (i) 11, Et3N, 2,4,6-trichloro-
benzoyl chloride; (ii) 12, Et3N, DMAP, CH2Cl2, 0 °C to r.t., 92%;
(f) (i) NCS, DMF, 0 °C to r.t.; (ii) i-Pr2NEt, DMF, r.t.; (g) (i) K2CO3,
MeOH, reflux; (ii) MeI, r.t., 72% (2 steps); (h) LiBH4, MeOH, THF,
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Subsequent removal of the dithiane35 gave ketone 24,
which was suitable for either directed or chelation-con-
trolled reduction. The latter was required for the natural
product, and exposure to Prasad’s conditions smoothly
afforded the desired diol 25.36

Scheme 5 Model study for coupling of bisoxazole 3 and diol 8.
Reagents and conditions: (a) (i) 22, tosylimidazole, 0 °C to r.t.; (ii)
NaH, 0 °C to r.t.; (iii) 21, THF, –40 °C to –10 °C, 85%; (b) AgNO3,
NCS, MeCN–H2O (4:1), 69%; (c) Et2B(OMe), NaBH4, THF–MeOH
(4:1), –78 °C, 82%

With a method established to install the final stereocenter,
we turned our attention to the union of 2 and 3. Un-
fortunately, all attempts to use dithiane 3 were unsuccess-
ful, for the compound decomposed almost immediately
under basic conditions. A monooxazole dithiane model37

(Figure 3) survived long enough for deuteration of the
dithiane, indicating that the high base-sensitivity of 3 may
be a property specific to bisoxazoles. This conclusion was
supported by subsequent deprotonation studies of
Williams38 and Smith8 indicating the acidity of the C13
position. Their results suggest that a method of protecting
the C13 site from deprotonation must be used for success-
ful completion of this route, but Liu and Panek have
shown that excess t-BuLi can deprotonate a polyoxazole
dithiane with the appropriate selectivity.39 Despite this
challenging step, the route provides useful techniques for
the synthesis of cyclopentylidene ketals, bisoxazoles, and
b,g-unsaturated aldehydes that should be more generally
applicable.

Figure 3
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