Date: 18-06-12 11:45:12

DOI: 10.1002/ejoc.201200511

Phosphorus-Containing Lewis Base Catalyzed Cascade Reactions of Isatin-**Derived Oximes with Allenic Esters and Further Transformations**

Pages: 12

Cheng-Kui Pei,^[a] Yu Jiang,^[a] and Min Shi*^[a,b]

Keywords: Lewis bases / Domino reactions / Heterocycles / Allenes / Cyclization

Phosphorus containing Lewis base catalyzed cascade reactions of isatin-derived oximes with allenic esters afford the corresponding functionalized nitrones. Further Lewis acid catalyzed highly regioselective intramolecular [3+2] cyclizations give the corresponding bridged cycloadducts. Moreover, a combined "one-pot" reaction is also feasible for the above two catalytic reactions.

Introduction

Oximes and their derivatives are valuable synthetic building blocks,^[1] and they are well-known for their dehydration reactions to produce nitriles.^[2] for their Beckmann rearrangement reactions to prepare amides,^[3] and as precursors of 1,3-dipolar addition reactions.^[4] Recently, allenoates have served as an attractive substrate class for Lewis base

Scheme 1. Reaction modes of oximes and allenoates.

- [a] Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- [b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China Fax: +86-21-64166128 E-mail: Mshi@mail.sioc.ac.cn
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200511.

catalyzed reactions, and they have attracted much synthetic interest because of their facile preparation and diverse reactivity.^[5] To our surprise, the reactions of oximes as substrates with allenoates have been seldom mentioned. The only example was reported by Kwon in 2011, providing β' umpolung addition products due to the nucleophilicity of the oximes [Scheme 1, Equation (1)].^[6] Herein, we wish to report the discovery of the reaction of oximes derived from FULL PAPER

Pages: 12

isatins with allenic esters catalyzed by phosphorus-containing Lewis bases ("P" catalytic cycle)^[7–9] to give functionalized nitrones as the products, and we will also disclose that these nitrones as 1,3-dipoles can undergo highly regioselective intramolecular [3+2] cycloaddition reactions^[10,11] in the presence of a Lewis acid ("LA" catalytic cycle) to afford bridged-ring compounds, which are structural subunits in many natural products and biologically

active molecules^[11] [Scheme 1, Equation (2)].

Results and Discussion

We initially utilized (E)-1-benzyl-3-(hydroxyimino)indolin-2-one (1a; 0.1 mmol, 1.0 equiv.) and ethyl 2,3-butadienoate (2a; 0.2 mmol, 2.0 equiv.) as substrates to investigate their reaction behavior in THF at room temperature in the presence of nitrogen-containing Lewis bases such as 1,4-diazabicyclo[2,2,2]octane (DABCO) ("N" catalytic cycle, 20 mol-%). It was found that the reaction took place smoothly to give the corresponding addition product 3aa in 87% yield [Scheme 1, Equation (2)]. Considering the different reaction profiles of phosphorus- and nitrogen-containing Lewis bases, we changed the Lewis base from DABCO to PPh₃ and were pleased to find that nitrone product 4aa had been afforded in 62% yield. These results attracted our attention. Subsequently, we chose PPh₃ as a Lewis base and screened various solvents for this reaction. We found that toluene was the best solvent for this reaction, affording 4aa in 65% yield (Table 1, Entry 6). In acetonitrile (CH₃CN), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), only addition product 3aa was produced without the formation of 4aa (Table 1, Entries 7–9), and in dioxane, no reaction occurred (Table 1, Entry 10). We next attempted to screen other phosphorus-containing Lewis base catalysts and found that tris(4-fluorophenyl)phosphane $[P(4-FC_6H_4)_3]$ was the best Lewis base for the reaction (Table 1, Entries 11-14). Lowering the reaction temperature to 0 or -10 °C did not improve the yield of 4aa (Table 1, Entries 15 and 16). Raising the reaction temperature to 50 °C furnished 4aa in 72% yield (Table 1, Entry 17), but further increase in the reaction temperature did not improve the reaction outcome (Table 1, Entry 18). Increasing the amount of allenoate employed to 3.0 equiv. produced 4aa in 78% yield (Table 1, Entry 19), and a further increase in the amount of allenoate employed did not give a better reaction outcome (Table 1, Entry 20). We also confirmed that no product was formed in the absence of $P(4-FC_6H_4)_3$ (Table 1, Entry 21). Thus, we established the optimal conditions for this reaction: 20 mol-% $P(4-FC_6H_4)_3$ as the catalyst and toluene as a solvent with 3.0 equiv. allenoate at 50 °C.

Under the optimized reaction conditions, the reaction generality was investigated by using various oximes 1 in the reaction with several allenic esters 2, and the results of these experiments are summarized in Table 2. With oximes 1b-d bearing different N-protecting groups, the reactions proceeded smoothly to produce the corresponding nitrone

Table 1. Opt	imization	of the co	onditions	s for	the	reaction	n of (E)-1-
benzyl-3-(hy	droxyimino	o)indolin	-2-one (1a)	and	ethyl 2	2,3-butadi-
enoate (2a). ^{[a}	1]						

				EtO ₂ C	
HO L	$\hat{N}_{N} = 0 + =$ Bn	CO ₂ Et phosph (20 mo solve 2a time,	ane I-%) nt r.t.	O O H 4aa Bn	CO ₂ Et
Entry	Solvent	Phosphane	Т [°С]	Time [h]	Yield [%] ^[b]
1	THF	PPh ₃	r.t.	12	62
2	Et ₂ O	PPh ₃	r.t.	12	53
3	DCM	PPh ₃	r.t.	12	46
4	DCE	PPh_3	r.t.	12	48
5	CHCl ₃	PPh_3	r.t.	12	63
6	toluene	PPh_3	r.t.	12	65
7	CH ₃ CN	PPh_3	r.t.	12	_[e]
8	DMF	PPh_3	r.t.	12	_[e]
9	DMSO	PPh_3	r.t.	12	_[e]
10	dioxane	PPh_3	r.t.	12	NR
11	toluene	PBu ₃	r.t.	12	disorder
12	toluene	PMePh ₂	r.t.	12	disorder
13	toluene	$P(4-MeOC_6H_4)$	r.t.	12	45
14	toluene	$P(4-FC_6H_4)_3$	r.t.	12	68
15	toluene	$P(4-FC_{6}H_{4})_{3}$	0	24	68
16	toluene	$P(4-FC_6H_4)_3$	-10	24	68
17	toluene	$P(4-FC_6H_4)_3$	50	3	72
18	toluene	$P(4-FC_{6}H_{4})_{3}$	60	3	70
19 ^[c]	toluene	$P(4-FC_6H_4)_3$	50	3	78
20 ^[d]	toluene	$P(4-FC_6H_4)_3$	50	3	78
21	toluene	-	50	r.t.	NR

[a] All reactions were carried out with **1a** (0.10 mmol) and **2a** (0.20 mmol) in solvent (2.0 mL) for 24 h. [b] Isolated yield. [c] Compound **2a** was used as 3.0 equiv. [d] Compound **2a** was used as 4.0 equiv. [e] Only **3aa** was formed.

products 4ba-da in good to high yields (up to 90%; Table 2, Entries 1–3). Changing the ester moiety of allenic esters 2 from OEt to OBn provided a similar reaction outcome, affording desired product 4ab in 72% yield (Table 2, Entry 4). As for substrates 1e-m, regardless of whether an electrondonating or electron-withdrawing group was introduced at the 5-, 6-, or 7-position of the benzene ring of the N-allylprotected oximes, the reactions proceeded smoothly to give the corresponding products 4 in good yields (Table 2, Entries 5–13). The use of oxime $\ln (R^1 = 5-Me, PG = Bn)$ as the substrate afforded desired product 4na in 88% yield (Table 2, Entry 14). However, as for oxime 10 having a bromine atom at the 4-position of the benzene ring, only addition product 30a was formed rather than the nitrone product, perhaps due to steric effects (Table 2, Entry 15). The allenic ester α -methylallenoate was also used in the reaction. However, the corresponding β' -umpolung addition product was formed, which is similar to the finding of Kwon^[6] (Supporting Information, Scheme S1). The structure of 4da was unambiguously determined by X-ray diffraction. The ORTEP drawing is shown in the Supporting Information.^[12]

Table 2. Substrate scope of the cascade reactions of oximes 1 and allenic esters $2^{[a]}$

[a] All reactions were carried out with 1 (0.10 mmol) and 2 (0.30 mmol) in toluene (2.0 mL) for 3 h. [b] Isolated yield. [c] Only addition product **30a** was formed.

Next, we utilized nitrone product 4da as the substrate to investigate its intramolecular [3+2] cycloaddition reaction behavior in the presence of Yb(OTf)₃ as the Lewis acid and 4 Å molecular sieves (100 mg for 0.1 mmol of 4da). The results are summarized in Table 3. We found that the cyclization gave a trace amount of 5da in conventional solvents, such as toluene, DCM, and THF, at room temperature (Table 3, Entries 1–3). An increase in the reaction temperature to 80 and 100 °C in toluene resulted in smooth cycloaddition to afford 5da in 50 and 65% yield, respectively, in a highly regioselective manner (Table 3, Entries 4 and 5). A further increase in the reaction temperature to 120 °C did not improve the reaction outcome (Table 3, Entry 6). Other Lewis acids such as BF₃·OEt₂ and Sc(OTf)₃ were also tested in the above reaction; a complex mixture of products was obtained in the former and a 51% yield of 5da was obtained in the latter (Table 3, Entries 7 and 8). We also found that the use of Yb(OTf)₃ as a Lewis acid is essential for this transformation (Table 4, Entry 9). Therefore, Yb(OTf)₃ was used as the catalyst in this cyclization reaction.

Under the optimized reaction conditions, we found that nitrone products 4 could undergo intramolecular [3+2] cycloaddition to afford bridged-ring compounds 5 in good yields with high regioselectivities (Table 4, Entries 1–5), thus opening up a new route to synthesize bridged-ring compounds. Compound 5ca was characterized by spectroscopy and the structure was confirmed by single-crystal X-ray diffraction.^[13] Next, under the optimized reaction conditions, we carried out the one-pot reaction of oximes

[a] All reactions were carried out with **4da** (0.10 mmol) catalyzed by Lewis acid (20 mol-%) with the addition of 4 Å MS (100 mg) in solvent (2.0 mL) for 36 h. [b] Isolated yield.

Table 4. Intramolecular [3+2] cycloaddition reaction of 4.^[a]

R ⁵ 4 6 7 4	$ \begin{array}{c} \text{EtO}_2 C \\ \oplus \\ O, \oplus \\ N \\ 3 \\ 1 \\ 0 \\ N \\ PG \end{array} $	Yb(OTf) ₃ 2Et <u>4Å MS</u> toluene,	; (20 mol-%) (100 mg) 100 °C, 36 h		⊖ ^H ∕∕−CO₂Et O
Entry	Substrate	\mathbb{R}^1	PG	Product	Yield [%] ^[b]
1	4aa	Н	Bn	5aa	65
2	4ca	Η	CPh ₃	5ca	60
3	4ga	5-C1	1-allyl	5ga	68
4	4ha	6-Me	1-allyl	5ha	65
5	4na	5-Me	Bn	5na	70

[a] All reactions were carried out at 100 °C by using 4 (0.10 mmol) catalyzed by Yb(OTf)₃ (20 mol-%) with the addition of 4 Å MS (100 mg) in toluene (2.0 mL) for 3 h, unless otherwise specified. [b] Isolated yield.

1b and **1d** with allenoate **2a** by adding $P(4-FC_6H_4)_3$ (20 mol-%) in toluene and performing the reaction at 50 °C for 3 h, followed by the addition of $Yb(OTf)_3$ (20 mol-%) and 4 Å molecular sieves without purification upon heating the reaction mixtures at 100 °C for 36 h. The corresponding bridged-ring compounds **5ba** and **5da** could be obtained in 57 and 61% yield, respectively (Scheme 2).

To clarify the reaction mechanism, several deuterium labeling experiments were conducted, and the results are summarized in Scheme 3. The first experiment was carried out with 1d-d (80%D) and 2a under the standard reaction conditions to afford crude product 4da in 88% yield along with 26, 15, 9, and 11% Dcontent^[14] incorporated at the D¹, D², D³, and D⁴ positions, respectively [Scheme 3, Equation (1)], after silica gel column chromatography. Consider-

Date: 18-06-12 11:45:12

Pages: 12

Scheme 2. One-pot reaction of oximes 1b and 1c with allenoate 2a.

ing that a trace amount of H₂O would assist the 1,2-proton transfer and affect the D content of $4da^{[15]}$ that and 1d-dcould be also generated in situ from 1d and D₂O, we carried out the same reaction with 1d in toluene/ D_2O (1.0 equiv.) and found that 4da was formed in 88% yield along with 38, 25, 15, and 17% D content incorporated at the D¹, D², D³, and D⁴ positions, respectively [Scheme 3, Equation (2)]. Increasing the employed amount of D₂O could improve the D content incorporated at the D^1 , D^2 , D^3 , and D^4 positions [Scheme 3, Equation (2)]. Increasing the employed amount of D₂O to 15.0 equiv., we observed 100% D content incorporated at the D^1 , D^2 , D^3 , and D^4 positions [Scheme 3, Equation (2)]. These deuterium labeling experiments indicate that proton transfer between the oxime or water and the allenic ester can occur in the presence of a tertiary phosphane and several intermolecular proton transfers can take place at the same time in the catalytic cycle.

The mechanism for the reactions has not been unequivocally established, but one rational explanation is shown in Scheme 4 based on earlier reports^[7] and our own deuterium labeling investigations. Addition of phosphane to allenoate 2a delivers zwitterionic intermediate A. Deprotonation of pronucleophile 1 by zwitterionic intermediate A forms intermediate B. The negatively charged oxygen ion of the oxime can coordinate with the phosphate ion of the phosphonium enolate,^[7e,7f,15] which precludes addition of the negative oxygen ion to the enolate, and the following conjugate addition of the nitrogen atom of the oxime to the enolate forms intermediate C. Subsequently, facile 1,2-proton transfer affords intermediate **D**, and then elimination takes place to give intermediate E. The existence of the positively charged nitrogen ion of intermediate E makes deprotonation from the active methylene feasible by zwitterionic intermediate A to give intermediate F, which undergoes conjugate addition to give intermediate G, and then facile 1,2proton transfer affords intermediate H. Finally, elimination takes place to give the corresponding product 4 and regenerates the phosphane catalyst. In the "LA" catalytic cycle, the two esters of nitrone 4 can be activated by $Yb(OTf)_3$ to give intermediate I, which undergoes cyclization regioselectively to give intermediate J. Intermediate J undergoes another cyclization to furnish cycloaddition product 5 and regenerates the Yb(OTf)₃ catalyst, presumably through an asynchronous concerted process. Therefore, the one-pot synthetic sequence can be also summarized as a cascade process including two phosphane-catalyzed cascade catalytic cycles ("P" cycle) combined with a Lewis acid catalyzed catalytic cycle ("LA" cycle) (Scheme 4). From what has been discussed above, we can easily draw a conclusion

Scheme 3. Deuterium labeling experiments.

Cascade Reactions of Isatin-Derived Oximes with Allenic Esters EtO₂C CO₂Et CO₂Et 2: CO₂Ef ⊕PR₄ Yb(OTf) EtO. "LA EtO₂ EtO₂ ÖE PG CO₂Et PG

Scheme 4. A plausible reaction mechanism.

about the possible details on the formation of D^1 , D^2 , D^3 , and D^4 incorporated products. In the first "P" cycle, D^2 incorporation could be obtained by proton transfer between the deuterium atom at the hydroxy group of the oxime with intermediate **A**, and 1,2-proton transfer of intermediate **C** gives D^1 incorporation. Intermediates **G** and **H** in the second "P" cycle could also undergo intermolecular proton transfer with the deuterium atom at the hydroxy group of the remaining oxime or D_2O to provide D^3 and D^4 incorporated products, suggesting that the corresponding deuterated intermediate **H** could be regenerated through deprotonation by the in situ generated counteranion to participate in the catalytic cycle.^[15]

Conclusions

In summary, we have found and developed an interesting phosphorus-containing Lewis base catalyzed cascade reactions of isatin-derived oximes with allenic esters to give the corresponding functionalized nitrones in good to excellent yields under mild conditions. The obtained nitrones could further undergo intramolecular [3+2] cycloaddition to afford bridged-ring compounds in good yields with high regioselectivities, and these compounds are useful building blocks in the organic synthesis of biologically useful compounds.^[11] Furthermore, a combined "one-pot" reaction is also feasible for the above two catalytic reactions. A plausible reaction mechanism has also been proposed on the basis of previous literature and our own deuterium labeling investigations. Efforts are in progress to elucidate further mechanistic details of these reactions and to understand their scope and limitations.

Experimental Section

General Procedure for 1: To a solution of *N*-Bn-protected isatin (1.2 g, 0.50 mmol) in MeOH (10 mL) was added hydroxylamine hydrochloride (0.41 g, 0.60 mmol) and potassium carbonate (0.83 g, 0.60 mmol). The resulting mixture was stirred under reflux overnight. The reaction mixture was concentrated under reduced pres-

sure, and the residue was purified by column chromatography on silica gel (pentane/EtOAc, 2:1) to give 1a as a yellow solid (1.13 g, 90% yield).

(*E*)-1-Benzyl-3-(hydroxyimino)indolin-2-one (1a): A yellow solid (1.13 g, 90% yield); m.p. 219–220 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 4.94 (s, 2 H), 6.96 (d, *J* = 7.6 Hz, 1 H), 7.05 (t, *J* = 7.6 Hz, 1 H), 7.21–7.26 (m, 1 H), 7.29–7.35 (m, 5 H), 8.02 (d, *J* = 7.6 Hz, 1 H), 13.6 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 42.6, 109.6, 115.4, 122.8, 127.0, 127.2, 127.5, 128.7, 132.0, 136.3, 142.8, 143.5, 163.3 ppm. IR (CH₂Cl₂): \tilde{v} = 2982, 2933, 1717, 1655, 1595, 1558, 1442, 1369, 1040, 964, 786, 730 cm⁻¹. MS (ESI): *m*/*z* = 275.0 [M + Na]⁺. HRMS (ESI): calcd. for C₁₅H₁₂N₂O₂Na [M + Na]⁺ 275.0791; found 275.0797.

(*E*)-3-(Hydroxyimino)-1-methylindolin-2-one (1b): A yellow solid (0.79 g, 90% yield); m.p. 209–210 °C. ¹H NMR (400 MHz, [D₆]-DMSO, TMS): δ = 3.14 (s, 3 H), 7.01–7.07 (m, 2 H), 7.40 (t, *J* = 7.6 Hz, 1 H), 7.95 (d, *J* = 7.6 Hz, 1 H), 13.4 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 25.8, 109.0, 115.2, 122.6, 126.8, 132.0, 143.7, 143.8, 163.1 ppm. IR (CH₂Cl₂): \tilde{v} = 3213, 2926, 2851, 1716, 1609, 1558, 1457, 1374, 1329, 1071, 1015, 969, 801, 697, 541 cm⁻¹. MS (ESI): *m/z* = 177.0 [M + H]⁺. HRMS (ESI): calcd. for C₉H₉N₂O₂ [M + H]⁺ 177.0659; found 177.0657.

(*E*)-3-(Hydroxyimino)-1-tritylindolin-2-one (1c): A yellow solid (1.62 g, 80% yield); m.p. 263–265 °C. ¹H NMR (400 MHz, [D₆]-DMSO, TMS): δ = 6.24 (d, *J* = 7.6 Hz, 1 H), 6.98 (t, *J* = 7.6 Hz, 1 H), 7.07 (t, *J* = 7.6 Hz, 1 H), 7.20 (t, *J* = 7.2 Hz, 3 H), 7.28 (t, *J* = 7.2 Hz, 6 H), 7.47 (d, *J* = 7.2 Hz, 6 H), 8.04 (d, *J* = 7.6 Hz, 1 H), 13.4 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 73.9, 115.3, 116.9, 122.4, 126.5, 126.8, 127.8, 128.7, 130.3, 142.1, 143.0, 143.3, 164.0 ppm. IR (CH₂Cl₂): \tilde{v} = 3213, 2926, 2851, 1716, 1609, 1558, 1457, 1374, 1329, 1071, 1015, 969, 801, 697, 541 cm⁻¹. MS (ESI): *m*/*z* = 427.0 [M + Na]⁺. HRMS (ESI): calcd. for C₂₇H₂₀N₂O₂Na [M + Na]⁺ 427.1417; found 427.1426.

(*E*)-1-Allyl-3-(hydroxyimino)indolin-2-one (1d): A yellow solid (0.90 g, 89% yield); m.p. 215–217 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 4.34 (dt, *J* = 5.2, 1.5 Hz, 2 H), 5.23 (dd, *J* = 10.0, 1.5 Hz, 1 H), 5.25 (dd, *J* = 17.2, 1.5 Hz, 1 H), 5.79–5.87 (m, 1 H), 6.80 (d, *J* = 8.0 Hz, 1 H), 7.03 (dt, *J* = 8.0, 1.0 Hz, 1 H), 7.32 (dt, *J* = 8.0, 1.0 Hz, 1 H), 8.07 (dd, *J* = 8.0, 1.0 Hz, 1 H), 11.48 (br. s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 42.2, 109.2, 115.6, 117.9, 123.2, 128.1, 130.9, 132.1, 143.2, 144.1, 164.0 ppm. IR (CH₂Cl₂): \tilde{v} = 3219, 2924, 1716, 1608, 1465, 1378, 1352, 1194, 1043, 1017, 949, 751, 705 cm⁻¹. MS (ESI): *m/z* = 224.9 [M +

FULL PAPER

Na]⁺. HRMS (ESI): calcd. for $C_{11}H_{10}N_2O_2Na$ [M + Na]⁺ 225.0635; found 225.0641.

(*E*)-1-Allyl-3-(hydroxyimino)-5-methylindolin-2-one (1e): A yellow solid (0.97 g, 90% yield); m.p. 189–190 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 2.29 (s, 3 H), 4.37 (d, *J* = 5.2 Hz, 2 H), 5.23 (d, *J* = 10.0 Hz, 1 H), 5.24 (d, *J* = 17.2 Hz, 1 H), 5.79–5.88 (m, 1 H), 6.70 (d, *J* = 8.0 Hz, 1 H), 7.13 (d, *J* = 8.0 Hz, 1 H), 7.92 (s, 1 H), 11.2 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 20.9, 42.2, 109.0, 115.6, 117.8, 128.8, 131.1, 132.5, 132.8, 141.1, 144.4, 164.0 ppm. IR (CH₂Cl₂): \tilde{v} = 3282, 2904, 1716, 1616, 1456, 1328, 1195, 1076, 1041, 802, 729 cm⁻¹. MS (ESI): *m*/*z* = 217.1 [M + H]⁺. HRMS (ESI): calcd. for C₁₂H₁₂N₂O₂Na [M + Na]⁺ 239.0791; found 239.0794.

(*E*)-1-Allyl-5-bromo-3-(hydroxyimino)indolin-2-one (1f): A yellow solid (1.18 g, 85% yield); m.p. 237–238 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.31 (s, 2 H), 5.14 (d, *J* = 15.6 Hz, 1 H), 5.15 (d, *J* = 11.2 Hz, 1 H), 5.78–5.87 (m, 1 H), 6.94 (d, *J* = 8.4 Hz, 1 H), 7.55 (d, *J* = 8.4 Hz, 1 H), 8.05 (s, 1 H), 13.78 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 41.5, 111.6, 114.2, 116.9, 117.1, 129.0, 131.7, 134.3, 142.0, 142.6, 162.4 ppm. IR (CH₂Cl₂): \tilde{v} = 3143, 2857, 1725, 1603, 1559, 1430, 1369, 1329, 1263, 1039, 1011, 816, 712, 689 cm⁻¹. MS (ESI): *m/z* = 280.9 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₁₀O₂N₂Br [M + H]⁺ 280.9920; found 280.9921.

(*E*)-1-Allyl-5-chloro-3-(hydroxyimino)indolin-2-one (1g): A yellow solid (1.03 g, 87% yield); m.p. 188–190 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.33 (d, *J* = 4.4 Hz, 2 H), 5.15 (d, *J* = 16.8 Hz, 1 H), 5.16 (d, *J* = 10.4 Hz, 1 H), 5.78–5.88 (m, 1 H), 7.01 (d, *J* = 8.4 Hz, 1 H), 7.46 (dd, *J* = 8.4, 2.4 Hz, 1 H), 7.94 (d, *J* = 2.4 Hz, 1 H), 13.80 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 41.6, 111.2, 116.5, 117.2, 126.3, 126.6, 131.5, 131.7, 141.7, 142.8, 162.5 ppm. IR (CH₂Cl₂): \tilde{v} = 3298, 2982, 2926, 1723, 1606, 1467, 1436, 1324, 1191, 1069, 1042, 999, 924, 813 cm⁻¹. MS (ESI): *m*/*z* = 237.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₉N₂O₂ClNa [M + Na]⁺ 259.0245; found 259.0240.

(*E*)-1-Allyl-3-(hydroxyimino)-6-methylindolin-2-one (1h): A yellow solid (0.96 g, 89% yield); m.p. 227–229 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 2.33 (s, 3 H), 4.32 (d, *J* = 5.2 Hz, 2 H), 5.13 (d, *J* = 17.2 Hz, 1 H), 5.15 (d, *J* = 10.4 Hz, 1 H), 5.80–5.90 (m, 1 H), 6.84 (s, 1 H), 6.89 (d, *J* = 8.0 Hz, 1 H), 7.86 (d, *J* = 8.0 Hz, 1 H), 13.38 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 22.0, 41.4, 110.2, 113.0, 116.9, 123.3, 126.8, 132.0, 142.6, 143.2, 143.5, 163.3 ppm. IR (CH₂Cl₂): \tilde{v} = 2981, 2928, 1717, 1658, 1614, 1558, 1485, 1455, 1368, 1335, 1262, 1182, 1040, 978, 810, 730, 699 cm⁻¹. MS (ESI): *m/z* = 239.0 [M + Na]⁺. HRMS (ESI): calcd. for C₁₂H₁₂N₂O₂Na [M + Na]⁺ 239.0791; found 239.0789.

(*E*)-1-Allyl-5-bromo-3-(hydroxyimino)indolin-2-one (1i): A yellow solid (1.19 g, 85% yield); m.p. 190–191 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.34 (d, *J* = 4.8 Hz, 2 H), 5.15 (d, *J* = 16.4 Hz, 1 H), 5.16 (d, *J* = 11.2 Hz, 1 H), 5.79–5.88 (m, 1 H), 7.22–7.24 (m, 2 H), 7.88 (d, *J* = 7.6 Hz, 1 H), 13.65 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 41.5, 112.7, 114.4, 117.1, 125.1, 125.4, 128.2, 131.7, 142.8, 144.2, 162.8 ppm. IR (CH₂Cl₂): \tilde{v} = 3144, 2856, 1725, 1603, 1558, 1430, 1369, 1328, 1263, 1040, 1011, 817, 712, 689 cm⁻¹. MS (ESI): *m*/*z* = 281.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₁₀N₂O₂Br [M + H]⁺ 280.9920; found 280.9928.

(*E*)-1-Allyl-7-chloro-3-(hydroxyimino)indolin-2-one (1j): (1.04 g, 88% yield): a yellow solid; m.p. 226–228 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.63 (d, *J* = 1.6 Hz, 2 H), 4.99 (d, *J* = 17.6 Hz, 1 H), 5.12 (d, *J* = 10.4 Hz, 1 H), 5.92–6.01 (m, 1 H), 7.08 (t, *J* = 8.0 Hz, 1 H), 7.40 (d, *J* = 8.0 Hz, 1 H), 8.04 (d, *J* = 8.0 Hz, 1 H), 8.04 Hz, 1 H), 8.04 Hz, 1 Hz, 1

1 H), 13.83 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 42.8, 114.6, 115.5, 118.1, 124.2, 125.9, 133.6, 133.9, 138.6, 142.2, 163.4 ppm. IR (CH₂Cl₂): \tilde{v} = 2915, 2851, 1717, 1600, 1442, 1329, 1175, 1035, 931, 795, 729, 519 cm⁻¹. MS (ESI): *m/z* = 237.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₉N₂O₂ClNa [M + Na]⁺ 259.0245; found 259.0242.

(*E*)-1-Allyl-7-bromo-3-(hydroxyimino)indolin-2-one (1i): A yellow solid (1.16 g, 83% yield); m.p. 219–221 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.68 (d, *J* = 4.0 Hz, 2 H), 4.97 (d, *J* = 17.2 Hz, 1 H), 5.12 (d, *J* = 10.4 Hz, 1 H), 5.92–6.01 (m, 1 H), 7.00–7.04 (m, 1 H), 7.55 (d, *J* = 8.4 Hz, 1 H), 8.10 (dd, *J* = 8.4, 1.2 Hz, 1 H), 13.83 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 42.5, 102.1, 115.5, 118.4, 124.5, 126.4, 133.6, 137.2, 140.0, 142.1, 163.6 ppm. IR (CH₂Cl₂): \tilde{v} = 2920, 2856, 1723, 1595, 1558, 1440, 1365, 1338, 1261, 1178, 1041, 931, 729, 507 cm⁻¹. MS (ESI): *m*/*z* = 281.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₁₀N₂O₂Br [M + H]⁺ 280.9920; found 280.9926.

(*E*)-1-Allyl-7-fluoro-3-(hydroxyimino)indolin-2-one (11): A yellow solid (0.88 g, 80% yield); m.p. 220–222 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): $\delta = 4.39$ (d, J = 3.6 Hz, 2 H), 5.06 (d, J = 17.6 Hz, 1 H), 5.12 (d, J = 11.6 Hz, 1 H), 5.87–6.95 (m, 1 H), 7.06–7.11 (m, 1 H), 7.29–7.32 (m, 1 H), 7.86 (d, J = 7.6 Hz, 1 H), 13.77 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): $\delta = 43.3$ (d, $J_{C-F} = 4.8$ Hz), 116.1, 118.0 (d, $J_{C-F} = 3.0$ Hz), 120.0 (d, $J_{C-F} = 19.8$ Hz), 123.3, 123.9 (d, $J_{C-F} = 6.0$ Hz), 129.2 (d, $J_{C-F} = 8.4$ Hz), 132.9, 142.8, 146.6 (d, $J_{C-F} = 242.0$ Hz), 162.7 ppm. ¹⁹F NMR (376 MHz, [D₆]DMSO, CFCl₃): $\delta = -130.065$ to -130.027 (m, 1 F) ppm. IR (CH₂Cl₂): $\tilde{v} = 3207$, 2936, 2851, 1724, 1622, 1447, 1340, 1197, 952, 937, 797, 726 cm⁻¹. MS (ESI): m/z = 221.1 [M + H]⁺. HRMS (ESI): calcd. for C₁₁H₉N₂O₂FNa [M + Na]⁺ 243.0540; found 243.0540.

(*E*)-1-Allyl-3-(hydroxyimino)-7-(trifluoromethyl)indolin-2-one (1m): A yellow solid (1.08 g, 80% yield); m.p. 245–247 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.43 (d, *J* = 4.0 Hz, 2 H), 4.90 (d, *J* = 17.2 Hz, 1 H), 5.04 (d, *J* = 10.4 Hz, 1 H), 5.78–5.87 (m, 1 H), 7.21 (t, *J* = 8.0 Hz, 1 H), 7.66 (d, *J* = 8.0 Hz, 1 H), 8.35 (d, *J* = 8.0 Hz, 1 H), 14.02 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 43.7 (q, *J*_{C-F} = 3.4 Hz), 111.3 (q, *J*_{C-F} = 31.9 Hz), 115.2, 118.0, 122.8, 123.3 (q, *J*_{C-F} = 270.1 Hz), 129.0 (q, *J*_{C-F} = 5.9 Hz), 130.9, 132.3, 140.6, 141.1, 164.1 ppm. ¹⁹F NMR (376 MHz[D₆]DMSO, CFCl₃): δ = -49.83 ppm. IR (CH₂Cl₂): \tilde{v} = 3227, 3069, 2872, 1731, 1636, 1592, 1447, 1420, 1330, 1177, 1079, 811, 744, 701, 506 cm⁻¹. MS (ESI): *m*/*z* = 271.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₂H₁₀N₂O₂F₃ [M + H]⁺ 271.0689; found 271.0696.

(*E*)-1-Benzyl-3-(hydroxyimino)-5-methylindolin-2-one (1n): A yellow solid (1.14 g, 86% yield); m.p. 209–211 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 2.22 (s, 3 H), 4.94 (s, 2 H), 6.58 (d, *J* = 8.4 Hz, 1 H), 7.03 (d, *J* = 8.4 Hz, 1 H), 7.25–7.28 (m, 1 H), 7.30–7.31 (m, 4 H), 7.88 (s, 1 H), 11.06 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 20.8, 43.7, 109.1, 115.7, 127.3, 127.7, 128.8, 132.4, 132.8, 135.4, 141.0, 144.4, 164.4 ppm. IR (CH₂Cl₂): \tilde{v} = 3223, 2884, 1716, 1616, 1594, 1481, 1455, 1339, 1275, 1260, 1190, 949, 809, 749, 699 cm⁻¹. MS (ESI): *m*/*z* = 267 [M + H]⁺. HRMS (ESI): calcd. for C₁₆H₁₄O₂N₂Na [M + Na]⁺ 289.0946; found 289.0952.

(*E*)-1-Allyl-4-bromo-3-(hydroxyimino)indolin-2-one (10): A yellow solid (1.16 g, 83% yield); m.p. 211–213 °C. ¹H NMR (400 MHz, [D₆]DMSO, TMS): δ = 4.32 (s, 2 H), 5.13 (d, *J* = 10.4 Hz, 1 H), 5.14 (d, *J* = 16.8 Hz, 1 H), 5.78–5.87 (m, 1 H), 6.98–7.01 (m, 1 H), 7.25–7.27 (m, 2 H), 13.68 (s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, TMS): δ = 41.2, 108.7, 115.0, 117.1, 117.7, 126.9,

Cascade Reactions of Isatin-Derived Oximes with Allenic Esters

131.6, 131.7, 141.7, 143.8, 155.5 ppm. IR (CH₂Cl₂): $\tilde{v} = 3011$, 1675, 1605, 1444, 1350, 1247, 1216, 1170, 1101, 981, 948, 930, 791, 768 cm⁻¹. MS (ESI): $m/z = 281.0 \text{ [M + H]}^+$. HRMS (ESI): calcd. for C₁₁H₁₀N₂O₂Br [M + H]⁺ 280.9920; found 280.9926.

General Procedure for 4: A solution of 1a (25.2 mg, 0.10 mmol), ethyl 2,3-butadienoate (2a; 36 μ L, 0.30 mmol), and P(4-FC₆H₄)₃ (6.2 mg, 20 mol-%) in toluene (2.0 mL) was stirred at 50 °C for 3 h. The reaction was monitored by TLC. When 1a disappeared, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (pentane/EtOAc, 4:1) to give 4aa as a deep red oil (37.1 mg, 78% yield).

(2*E*,6*E*,*NE*)-*N*-(1-Benzyl-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4aa): A deep red oil (37.1 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.23 (t, *J* = 7.2 Hz, 3 H), 1.28 (t, *J* = 7.2 Hz, 3 H), 2.75–2.81 (m, 1 H), 3.10–3.18 (m, 1 H), 4.14 (q, *J* = 7.2 Hz, 2 H), 4.20 (q, *J* = 7.2 Hz, 2 H), 4.94 (d, *J* = 15.6 Hz, 1 H), 5.00 (d, *J* = 15.6 Hz, 1 H), 5.96 (d, *J* = 15.6 Hz, 1 H), 6.18 (d, *J* = 14.8 Hz, 1 H), 6.74 (d, *J* = 7.6 Hz, 1 H), 6.83–6.90 (m, 1 H), 7.06–7.14 (m, 3 H), 7.28–7.36 (m, 6 H), 8.35 (d, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.8, 43.8, 60.4, 60.8, 68.4, 108.9, 117.8, 123.3, 125.2, 125.3, 125.5, 127.2, 127.9, 128.9, 132.0, 134.3, 135.2, 140.3, 141.4, 141.8, 160.4, 165.3, 165.8 ppm. IR (CH₂Cl₂): \hat{v} = 2973, 2924, 1719, 1608, 1466, 1380, 1348, 1265, 1176, 1082, 1044, 878, 748, 697 cm⁻¹. MS (ESI): *m*/*z* = 477.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₈O₆N₂Na [M + Na]⁺ 499.1840; found 499.1844.

(2*E*,6*E*,*NE*)-*N*-(1-Benzyl-2-oxoindolin-3-ylidene)-1,8-bis(benzyl-oxy)-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ab): A deep red oil (43.2 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 2.73–2.80 (m, 1 H), 3.10–3.17 (m, 1 H), 4.93 (s, 2 H), 5.12 (s, 2 H), 5.17 (s, 2 H), 6.01 (d, *J* = 15.6 Hz, 1 H), 6.22 (d, *J* = 14.4 Hz, 1 H), 6.72 (d, *J* = 8.0 Hz, 1 H), 6.87–6.95 (m, 1 H), 7.04–7.15 (m, 3 H), 7.25–7.36 (m, 15 H), 8.33 (d, *J* = 8.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 34.8, 43.8, 66.2, 66.7, 68.3, 108.9, 117.7, 123.3, 125.0, 125.2, 127.2, 127.8, 128.07, 128.13, 128.3, 128.4, 128.49, 128.55, 128.9, 132.0, 134.3, 135.2, 135.5, 135.8, 140.3, 142.1, 142.3, 160.3, 165.1, 165.5 ppm. IR (CH₂Cl₂): $\tilde{\nu}$ = 3063, 3032, 2929, 1718, 1693, 1657, 1607, 1556, 1496, 1465, 1379, 1347, 1263, 1173, 1077, 972, 771, 735, 697 cm⁻¹. MS (ESI): *m*/*z* = 601.1 [M + H]⁺. HRMS (ESI): calcd. for C₃₇H₃₂O₆N₂Na [M + Na]⁺ 623.2153; found 623.2164.

(2*E*,6*E*,*NE*)-1,8-Diethoxy-*N*-(1-methyl-2-oxoindolin-3-ylidene)-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ba): A deep red oil (35.6 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.23 (t, *J* = 7.2 Hz, 3 H), 1.27 (t, *J* = 7.2 Hz, 3 H), 2.71–2.78 (m, 1 H), 3.10–3.17 (m, 1 H), 3.28 (s, 3 H), 4.13 (q, *J* = 7.2 Hz, 2 H), 4.18 (q, *J* = 7.2 Hz, 2 H), 5.95 (d, *J* = 15.6 Hz, 1 H), 6.15 (d, *J* = 14.8 Hz, 1 H), 6.80–6.87 (m, 2 H), 7.02–7.13 (m, 3 H), 7.40 (t, *J* = 7.6 Hz, 1 H), 8.33 (d, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 26.2, 34.5, 60.4, 60.8, 68.3, 107.9, 117.6, 123.2, 125.1, 125.2, 125.5, 132.1, 134.4, 141.1, 141.4, 141.8, 160.2, 165.3, 165.8 ppm. IR (CH₂Cl₂): \tilde{v} = 2981, 1718, 1655, 1609, 1559, 1471, 1374, 1330, 1022, 979, 852, 774, 730, 699, 543 cm⁻¹. MS (ESI): *m*/*z* = 423.0 [M + Na]⁺. HRMS (ESI): calcd. for C₂₁H₂₄N₂O₆Na [M + Na]⁺ 423.1527; found 423.1523.

(2*E*,6*E*,*NE*)-1,8-Diethoxy-1,8-dioxo-*N*-(2-oxo-1-tritylindolin-3-ylidene)octa-2,6-dien-4-amine Oxide (4ca): A yellow solid (45.5 mg, 70% yield); m.p. 108–110 °C. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 1.23$ (t, J = 7.2 Hz, 3 H), 1.29 (t, J = 7.2 Hz, 3 H), 2.61–2.68 (m, 1 H), 3.02–3.10 (m, 1 H), 4.15 (q, J = 7.2 Hz, 2 H), 4.19 (q, J = 7.2 Hz, 2 H), 5.91 (d, J = 15.6 Hz, 1 H), 6.06 (d, J = 14.4 Hz, 1 H), 6.21–6.24 (m, 1 H), 6.79–6.86 (m, 1 H), 6.97–6.76 (m, 4 H),

Ε μ $_{of Organic Chemistry}^{UU}$ 7.20–7.30 (m, 9 H), 7.44–7.46 (m, 6 H), 8.40–8.42 (m, 1 H) ppm. 13 C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.6, 60.3, 60.7,

¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.6, 60.3, 60.7, 67.6, 74.9, 115.1, 118.7, 122.7, 124.4, 125.08, 125.13, 127.0, 127.7, 129.1, 130.7, 134.4, 140.7, 141.5, 141.7, 142.2, 161.4, 165.3, 165.7 ppm. IR (CH₂Cl₂): \tilde{v} = 2980, 2902, 2884, 1714, 1659, 1626, 1476, 1372, 1262, 1171, 1108, 1041, 992, 804, 700 cm⁻¹. MS (ESI): *m*/*z* = 651.2 [M + Na]⁺. HRMS (ESI): calcd. for C₃₉H₃₆O₆N₂Na [M + Na]⁺ 651.2466; found 651.2460.

(2E,6E,NE)-N-(1-Allyl-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8dioxoocta-2,6-dien-4-amine Oxide (4da): A yellow solid (38.3 mg, 90% yield); m.p. 108–110 °C. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 1.23$ (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.73–2.79 (m, 1 H), 3.08–3.16 (m, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 4.19 (q, J = 7.2 Hz, 2 H), 4.39–4.41 (m, 2 H), 5.25 (d, J = 16.8 Hz, 1 H), 5.26 (d, J = 11.2 Hz, 1 H), 5.81–5.91 (m, 1 H), 5.95 (d, J = 15.6 Hz, 1 H), 6.16 (d, J = 14.8 Hz, 1 H), 6.80–6.87 (m, 2 H), 7.03–7.12 (m, 3 H), 7.37 (t, J = 7.6 Hz, 1 H), 8.35 (d, J = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.09, 14.14, 34.7, 42.4, 60.3, 60.8, 68.3, 108.8, 117.8, 118.0, 123.2, 125.1, 125.3, 125.5, 130.9, 132.0, 134.3, 140.3, 141.4, 141.7, 159.9, 165.3, 165.7 ppm. IR (CH_2Cl_2) : $\tilde{v} = 2980, 2902, 2884, 1714, 1659, 1626, 1476, 1372, 1262,$ 1171, 1108, 1041, 992, 804, 700 cm⁻¹. MS (ESI): m/z = 427.2 [M + H]+. C23H26N2O6 (426.46): calcd. C 64.78, H 6.15, N 6.57; found C 64.05, H 6.28, N 6.41.

(2*E*,6*E*,*NE*)-*N*-(1-Allyl-7-chloro-2-oxoindolin-3-ylidene)-1,8diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ja): A deep red oil (40.1 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.24 (t, *J* = 7.2 Hz, 3 H), 1.28 (t, *J* = 7.2 Hz, 3 H), 2.72–2.79 (m, 1 H), 3.06–3.16 (m, 1 H), 4.14 (q, *J* = 7.2 Hz, 2 H), 4.20 (q, *J* = 7.2 Hz, 2 H), 4.80–4.81 (m, 2 H), 5.15 (d, *J* = 16.4 Hz, 1 H), 5.20 (d, *J* = 10.8 Hz, 1 H), 5.92–6.02 (m, 2 H), 6.15 (d, *J* = 14.8 Hz, 1 H), 6.79– 6.85 (m, 1 H), 7.01–7.11 (m, 3 H), 7.31 (d, *J* = 7.6 Hz, 1 H), 8.38 (d, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.7, 43.6, 60.4, 60.8, 68.9, 115.2, 116.8, 120.3, 123.5, 124.1, 125.3, 125.6, 132.4, 133.4, 134.1, 135.9, 141.1, 141.4, 160.4, 165.2, 165.6 ppm. IR (CH₂Cl₂): \tilde{v} = 2983, 2934, 1717, 1699, 1659, 1600, 1557, 1472, 1445, 1369, 1337, 1275, 1165, 1094, 1039, 983, 787, 750, 731 cm⁻¹. MS (ESI): *m*/*z* = 483.0 [M + Na]⁺. HRMS (ESI): calcd. for C₂₃H₂₅ClN₂O₆Na [M + Na]⁺ 483.1293; found 483.1291.

(2E,6E,NE)-N-(1-Allyl-7-bromo-2-oxoindolin-3-ylidene)-1,8diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ka): A deep red oil (40.6 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.24 (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.72–2.78 (m, 1 H), 3.06-3.13 (m, 1 H), 4.14 (q, J = 7.2 Hz, 2 H), 4.19 (q, J =7.2 Hz, 2 H), 4.85–4.86 (m, 2 H), 5.13 (d, J = 16.8 Hz, 1 H), 5.21 (d, J = 10.4 Hz, 1 H), 5.93 (d, J = 15.6 Hz, 1 H), 5.97–6.03 (m, 1 H), 6.15 (d, J = 14.4 Hz, 1 H), 6.78–6.85 (m, 1 H), 6.97 (t, J =8.0 Hz, 1 H), 7.01–7.10 (m, 2 H), 7.49 (d, J = 8.0 Hz, 1 H), 8.44 (d, J = 8.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.7, 43.1, 60.3, 60.8, 68.9, 102.1, 116.7, 120.6, 123.9, 124.4, 125.3, 125.6, 132.4, 133.2, 137.3, 137.5, 141.1, 141.4, 160.6, 165.1, 165.6 ppm. IR (CH₂Cl₂): $\tilde{v} = 2982, 2933, 1717, 1655, 1595, 1558,$ 1442, 1369, 1040, 964, 786, 730 cm⁻¹. MS (ESI): m/z = 507.0 [M + H]⁺. HRMS (ESI): calcd. for $C_{23}H_{25}N_2O_6BrNa [M + Na]^+$ 527.0788; found 527.0780.

(2*E*,6*E*,*NE*)-*N*-(1-Benzyl-5-methyl-2-oxoindolin-3-ylidene)-1,8diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4na): A deep red oil (43.2 mg, 88 % yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.23 (t, *J* = 7.2 Hz, 3 H), 1.28 (t, *J* = 7.2 Hz, 3 H), 2.31 (s, 3 H), 2.74– 2.81 (m, 1 H), 3.10–3.18 (m, 1 H), 4.12 (q, *J* = 7.2 Hz, 2 H), 4.19 (q, *J* = 7.2 Hz, 2 H), 4.90 (d, *J* = 15.6 Hz, 1 H), 4.98 (d, *J* = 15.6 Hz, 1 H), 5.97 (d, *J* = 16.0 Hz, 1 H), 6.18 (d, *J* = 14.4 Hz, 1

FULL PAPER

H), 6.62 (d, J = 8.0 Hz, 1 H), 6.83–6.91 (m, 1 H), 7.06–7.16 (m, 3 H), 7.27–7.35 (m, 5 H), 8.20 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 14.1$, 20.9, 34.7, 43.7, 60.3, 60.7, 68.1, 108.6, 117.6, 125.2, 125.4, 125.7, 127.1, 127.7, 128.8, 132.4, 132.9, 134.4, 135.3, 138.1, 141.4, 141.8, 160.3, 165.2, 165.6 ppm. IR (CH₂Cl₂): $\tilde{v} = 2929$, 1697, 1615, 1558, 1486, 1338, 1183, 1041, 978, 810, 698, 557 cm⁻¹. MS (ESI): m/z = 491.0 [M + H]⁺. HRMS (ESI): calcd. for C₂₈H₃₁N₂O₆ [M + H]⁺ 491.2177; found 491.2175.

(2*E*,6*E*,*NE*)-*N*-(1-Allyl-6-bromo-2-oxoindolin-3-ylidene)-1,8diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ia): A deep red oil (42.2 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.24 (t, *J* = 7.2 Hz, 3 H), 1.28 (t, *J* = 7.2 Hz, 3 H), 2.72–2.79 (m, 1 H), 3.07–3.15 (m, 1 H), 4.13 (q, *J* = 7.2 Hz, 2 H), 4.19 (q, *J* = 7.2 Hz, 2 H), 4.38–4.81 (m, 2 H), 5.25 (d, *J* = 17.2 Hz, 1 H), 5.29 (d, *J* = 10.8 Hz, 1 H), 5.80–5.89 (m, 1 H), 5.94 (d, *J* = 15.6 Hz, 1 H), 6.15 (d, *J* = 14.8 Hz, 1 H), 6.78–6.85 (m, 1 H), 6.97–7.07 (m, 3 H), 7.24 (d, *J* = 8.4 Hz, 1 H), 8.20 (d, *J* = 8.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.6, 42.4, 60.4, 60.8, 68.6, 112.2, 116.5, 118.3, 125.3, 125.6, 125.9, 126.1, 130.4, 133.6, 141.1, 141.2, 141.4, 159.7, 165.2, 165.6 ppm. IR (CH₂Cl₂): \hat{v} = 2984, 2932, 1716, 1558, 1478, 1462, 1244, 1039 cm⁻¹. MS (ESI): *m/z* = 507.0 [M + H]⁺. HRMS (ESI): calcd. for C₂₃H₂₅N₂O₆BrNa [M + Na]⁺ 527.0788; found 527.0779.

(2E,6E,NE)-N-(1-Allyl-5-methyl-2-oxoindolin-3-ylidene)-1,8diethoxy-1,8-dioxoocta-2,6-dien-4-amine oxide (4ea): A deep red oil (41.2 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 1.24$ (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.34 (s, 3 H), 2.72-2.79 (m, 1 H), 3.09-3.16 (m, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 4.19(q, J = 7.2 Hz, 2 H), 4.36-38 (m, 2 H), 5.23 (d, J = 16.8 Hz, 1 H),5.24 (d, J = 10.8 Hz, 1 H), 5.80–5.88 (m, 1 H), 5.95 (d, J = 15.6 Hz, 1 H), 6.15 (d, J = 14.4 Hz, 1 H), 6.73 (d, J = 8.0 Hz, 1 H), 6.79– 6.87 (m, 1 H), 7.03–7.08 (m, 2 H), 7.17 (d, J = 8.0 Hz, 1 H), 8.20 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 21.0, 34.7, 42.4, 60.3, 60.8, 68.2, 108.5, 117.6, 117.8, 125.2, 125.4, 125.7, 131.0, 132.4, 132.9, 134.5, 138.2, 141.4, 141.8, 159.9, 165.3, 165.7 ppm. IR (CH₂Cl₂): $\tilde{v} = 2981, 2927, 2386, 1719, 1655, 1614,$ 1560, 1486, 1038, 776, 734 cm⁻¹. MS (ESI): m/z = 441.1 [M +-H]⁺. HRMS (ESI): calcd. for C₂₄H₂₈N₂O₆Na [M + Na]⁺ 463.1840; found 463.1849.

(2E,6E,NE)-N-(1-Allyl-7-fluoro-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine oxide (4la): A deep red oil (42.0 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.24 (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.72–2.79 (m, 1 H), 3.07–3.12 (m, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 4.20 (q, J = 7.2 Hz, 2 H), 4.53 (d, J = 5.6 Hz, 2 H), 5.21 (d, J = 9.2 Hz, 1 H), 5.25 (d, J = 18.8 Hz, 1 H), 5.89–5.96 (m, 2 H), 6.16 (d, J = 14.4 Hz, 1 H), 6.78–6.86 (m, 1 H), 7.02–7.15 (m, 4 H), 8.19 (d, J = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.7, 44.1 (d, J_{C-F} = 4.9 Hz), 60.4, 60.8, 68.6, 117.5, 119.9 (d, J_{C-F} = 19.7 Hz), 120.3 (d, J_{C-F} = 4.1 Hz), 121.0 (d, J_{C-F} = 3.0 Hz), 123.9 (d, J_{C-F} = 6.0 Hz), 125.3, 125.6, 126.5 (d, J = 9.8 Hz), 131.6, 133.9, 141.1, 141.4, 146.7 (d, J_{C-F} = 243.1 Hz), 159.6, 165.2, 165.6 ppm. ¹⁹F NMR (CDCl₃, 400 MHz, CFCl₃): $\delta = -134.980$ to -134.985 (m, 1) F) ppm. IR (CH₂Cl₂): \tilde{v} = 2982, 2934, 1719, 1655, 1628, 1560, 1491, 1458, 1155, 1037, 981, 788, 727, 595 cm⁻¹. MS (ESI): m/z = 467.0 $[M + Na]^+$. HRMS (ESI): calcd. for $C_{23}H_{25}FN_2O_6Na$ $[M + Na]^+$ 467.1589; found 467.1583.

(2*E*,6*E*,NE)-*N*-[1-allyl-2-oxo-7-(trifluoromethyl)indolin-3-ylidene]-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine Oxide (4ma): A deep red oil (39.6 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 1.24$ (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.73–2.79 (m, 1 H), 3.07–3.14 (m, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 4.20 (q, J = 7.2 Hz, 2 H), 4.61–4.62 (m, 2 H), 5.10 (d, J = 17.2 Hz, 1 H), 5.17 (d, J = 10.4 Hz, 1 H), 5.82–5.90 (m, 1 H), 5.94 (d, J = 16.0 Hz, 1 H), 6.16 (d, J = 14.8 Hz, 1 H), 6.78–6.85 (m, 1 H), 7.01–7.12 (m, 2 H), 7.19 (t, J = 8.0 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 1 H), 8.70 (d, J = 8.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 34.7, 44.6 (q, J_{C-F} = 4.6 Hz), 60.4, 60.9, 69.2, 112.5 (q, J_{C-F} = 33.0 Hz), 116.7, 120.1, 122.7, 123.1 (q, J_{C-F} = 270.1 Hz), 125.4, 125.8, 128.1, 129.4 (q, J_{C-F} = 6.1 Hz), 131.3, 132.6, 141.0, 141.3, 161.0, 165.2, 165.6 ppm. ¹⁹F NMR (400 MHz, CDCl₃, TMS): δ = -55.432 ppm. IR (CH₂Cl₂): \tilde{v} = 2983, 2928, 2855, 1731, 1660, 1592, 1557, 1451, 1429, 1327, 1176, 1124, 1080, 977, 804, 743, 704, 508 cm⁻¹. MS (ESI): m/z = 495.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₄H₂₆N₂O₆F₃ [M + H]⁺ 495.1738; found 495.1742.

(2E,6E,NE)-N-(1-Allyl-5-chloro-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine oxide (4ga): A deep red oil (41.1 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 1.24$ (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.72-2.79 (m, 1 H),3.08–3.15 (m, 1 H), 4.14 (q, J = 7.2 Hz, 2 H), 4.19 (q, J = 7.2 Hz, 2 H), 4.38-4.40 (m, 2 H), 5.23 (d, J = 16.8 Hz, 1 H), 5.27 (d, J =9.6 Hz, 1 H), 5.80–5.87 (m, 1 H), 5.95 (d, J = 15.6 Hz, 1 H), 6.16 (d, J = 14.8 Hz, 1 H), 6.76-6.84 (m, 2 H), 7.02-7.06 (m, 2 H), 7.33 $(dd, J = 8.0, 2.0 Hz, 1 H), 8.36 (d, J = 2.0 Hz, 1 H) ppm. {}^{13}C NMR$ $(100 \text{ MHz}, \text{ CDCl}_3, \text{ TMS}): \delta = 14.1, 34.6, 42.5, 60.4, 60.8, 68.7,$ 109.7, 118.2, 118.7, 124.8, 125.4, 125.7, 128.6, 130.6, 131.4, 133.6, 138.6, 141.1, 141.3, 159.5, 165.1, 165.6 ppm. IR (CH₂Cl₂): $\tilde{v} =$ 2982, 2932, 1717, 1655, 1608, 1558, 1465, 1443, 1369, 1326, 1275, 1184, 1040, 980, 812, 749, 682 cm⁻¹. MS (ESI): m/z = 483.0 [M + Na]⁺. HRMS (ESI): calcd. for C₂₃H₂₅ClN₂O₆Na [M + Na]⁺ 483.1293; found 483.1286.

(2E,6E,NE)-N-(1-Allyl-6-methyl-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine oxide (4ea): A deep red oil (38.3 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.23 (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.39 (s, 3 H), 2.72– 2.79 (m, 1 H), 3.08–3.15 (m, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 4.19 (q, J = 7.2 Hz, 2 H), 4.37-4.38 (m, 2 H), 5.24 (d, J = 17.6 Hz, 1 Hz)H), 5.25 (d, J = 9.6 Hz, 1 H), 5.81–5.91 (m, 1 H), 5.94 (d, J =15.6 Hz, 1 H), 6.15 (d, J = 14.8 Hz, 1 H), 6.65 (s, 1 H), 6.80–6.87 (m, 1 H), 6.91 (d, J = 8.0 Hz, 1 H), 7.00–7.10 (m, 2 H), 8.22 (d, J= 8.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 14.1, 22.4, 34.6, 42.2, 60.3, 60.7, 67.9, 109.6, 115.2, 117.7, 123.8, 125.0, 125.1, 125.3, 130.9, 134.2, 140.6, 141.5, 141.9, 143.2, 160.2, 165.3, 165.7 ppm. IR (CH₂Cl₂): v = 2983, 2930, 1717, 1616, 1558, 1457, 1376, 1276, 1040, 980, 817, 749, 707 cm⁻¹. MS (ESI): m/z = 441.1 $[M + H]^+$. HRMS (ESI): calcd. for $C_{24}H_{29}N_2O_6$ $[M + H]^+$ 441.2020; found 441.2030.

(2E,6E,NE)-N-(1-Allyl-5-bromo-2-oxoindolin-3-ylidene)-1,8-diethoxy-1,8-dioxoocta-2,6-dien-4-amine oxide (4fa): A deep red oil (41.8 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 1.24 (t, J = 7.2 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 2.73-2.78 (m, 1 H),3.07–3.13 (m, 1 H), 4.14 (q, J = 7.2 Hz, 2 H), 4.20 (q, J = 7.2 Hz, 2 H), 4.38–4.39 (m, 2 H), 5.25–5.28 (m, 2 H), 5.81–5.88 (m, 1 H), 5.95 (d, J = 15.6 Hz, 1 H), 6.15 (d, J = 14.8 Hz, 1 H), 6.72 (d, J =8.4 Hz, 1 H), 6.78-6.83 (m, 1 H), 7.01-7.07 (m, 2 H), 7.48 (dd, J = 8.4, 2.0 Hz, 1 H), 8.51 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3, \text{ TMS}): \delta = 14.1, 34.7, 42.5, 60.4, 60.9, 68.8,$ 110.2, 115.9, 118.2, 119.2, 125.4, 125.7, 127.6, 130.6, 131.4, 134.4, 139.1, 141.1, 141.4, 159.5, 165.2, 165.7 ppm. IR (CH₂Cl₂): \tilde{v} = 2984, 2931, 1716, 1655, 1608, 1558, 1462, 1443, 1369, 1326, 1244, 1184, 1040, 980, 812, 749 cm⁻¹. MS (ESI): $m/z = 507.0 [M + H]^+$. HRMS (ESI): calcd. for $C_{23}H_{25}N_2O_6BrNa [M + Na]^+ 527.0788;$ found 527.0789.

(*E*)-Ethyl 3-{[(*E*)-(1-Benzyl-2-oxoindolin-3-ylidene)amino]oxy}but-2enoate [(3aa), the *E*-configuration was determined by its analogue

Cascade Reactions of Isatin-Derived Oximes with Allenic Esters

3ca]: A yellow oil (30.9 mg, 85% yield). ¹H NMR (300 MHz, CDCl₃, TMS): $\delta = 1.29$ (t, J = 7.5 Hz, 3 H), 2.57 (s, 3 H), 4.18 (q, J = 7.2 Hz, 2 H), 4.95 (s, 2 H), 6.19 (s, 1 H), 6.75 (d, J = 7.8 Hz, 1 H), 7.07 (t, J = 7.8 Hz, 1 H), 7.27–7.37 (m, 6 H), 8.00 (d, J = 7.8 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃, TMS): $\delta = 14.3$, 16.1, 43.8, 59.8, 96.9, 109.9, 115.1, 123.4, 127.3, 127.9, 128.9, 129.0, 134.0, 134.9, 144.7, 146.6, 162.9, 167.4, 169.2 ppm. IR (CH₂Cl₂): $\tilde{v} = 2981$, 2902, 2884, 1713, 1625, 1511, 1451, 1378, 1258, 1104, 990, 821, 769 cm⁻¹. MS (ESI): m/z = 365.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₁H₂₀N₂O₄Na [M + Na]⁺ 387.1315; found 387.1327.

(*E*)-Ethyl 3-{[(*E*)-(1-Allyl-4-bromo-2-oxoindolin-3-ylidene)amino]oxy}but-2-enoate [(3oa), the *E*-configuration was determined by its analogue 3ca]: A yellow oil (33.1 mg, 80% yield). ¹H NMR (300 MHz, CDCl₃, TMS): δ = 1.31 (t, *J* = 7.2 Hz, 3 H), 2.54 (s, 3 H), 4.20 (q, *J* = 7.2 Hz, 2 H), 4.36 (d, *J* = 5.2 Hz, 2 H), 5.257 (d, *J* = 16.4 Hz, 1 H), 5.264 (d, *J* = 11.2 Hz, 1 H), 5.77–5.86 (m, 1 H), 6.14 (s, 1 H), 6.80 (d, *J* = 7.6 Hz, 1 H), 7.25 (t, *J* = 7.6 Hz, 1 H), 7.29 (t, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃, TMS): δ = 14.4, 16.1, 42.2, 59.7, 96.1, 108.3, 117.1, 118.4, 128.0, 130.3, 133.0, 144.7, 145.3, 155.7, 167.6, 170.0 ppm. IR (CH₂Cl₂): $\tilde{\nu}$ = 2928, 2902, 1718, 1643, 1595, 1449, 1332, 1270, 1248, 1170, 1126, 967, 697 cm⁻¹. MS (ESI): *m*/*z* = 393.0 [M + H]⁺. HRMS (ESI): calcd. for C₁₇H₁₇O₄N₂BrNa [M + Na]⁺ 415.0264; found 415.0254.

(*E*)-Ethyl 3-[(*E*)-2-Oxo-1-tritylindolin-3-ylideneaminooxylbut-2-enoate (3ca): A yellow solid; m.p. 180–182 °C. ¹H NMR (300 MHz, CDCl₃, TMS): $\delta = 1.25$ (t, J = 7.2 Hz, 3 H), 2.53 (s, 3 H), 4.14 (q, J = 7.2 Hz, 2 H), 6.13 (s, 1 H), 6.33 (d, J = 8.0 Hz, 1 H), 6.98 (t, J = 8.0 Hz, 1 H), 7.06 (t, J = 8.0 Hz, 1 H), 7.0–7.29 (m, 9 H), 7.44–7.46 (m, 6 H), 8.01 (d, J = 8.0 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃, TMS): $\delta = 14.3$, 16.0, 59.7, 75.1, 96.7, 116.0, 116.5, 122.8, 127.1, 127.8, 128.3, 129.3, 132.4, 141.4, 145.7, 146.3, 163.6, 167.5, 169.3 ppm. IR (EtOH): $\tilde{v} = 2919$, 2850, 2362, 1734, 1702, 1645, 1597, 1449, 1241, 1130, 1051, 958, 843, 784, 745 cm⁻¹. MS (ESI): m/z = 539.2 [M + Na]⁺. HRMS (ESI): calcd. for C₃₃H₂₈O₄N₂Na [M + Na]⁺ 539.1947; found 539.1944.

General Procedure for 3ac: Following the general procedure, the *E*/*Z* ratio (10:1) was determined by ¹H NMR spectroscopic analysis of the mixed product purified by column chromatography; a yellow oil (26.4 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃, TMS, for *E*-**3ac**): δ = 2.05 (d, *J* = 7.2 Hz, 3 H), 4.93 (s, 2 H), 5.23 (s, 2 H), 5.33 (s, 2 H), 6.69 (d, *J* = 7.2 Hz, 1 H), 6.94 (t, *J* = 7.2 Hz, 1 H), 7.18–7.42 (m, 12 H), 7.84 (d, *J* = 7.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS, for *E*-**3ac**): δ = 15.0, 43.6, 66.5, 70.2, 109.3, 115.8, 123.0, 127.3, 127.9, 128.0, 128.4, 128.8, 132.3, 135.3, 135.9, 143.5, 146.2, 163.5, 166.2 ppm. IR (CH₂Cl₂, for *E*-**3ac**): \hat{v} = 2955, 1713, 1651, 1604, 1464, 1454, 1346, 1242, 1138, 1092, 1028, 967, 843, 728, 694 cm⁻¹. MS (ESI, for *E*-**3ac**): *m*/*z* = 463.0 [M + Na]⁺. HRMS (ESI): calcd. for C₂₇H₂₄O₄N₂Na [M + Na]⁺ 463.1628; found 463.1618.

General Procedure for 5: Under an argon atmosphere, a solution of **4aa** (47.6 mg, 0.10 mol), Yb(OTf)₃ (20 mol-%), and 4 Å molecular sieves (100 mg) were added into a Schlenk tube, and then toluene (2.0 mL) was added. The mixture was stirred at 100 °C for 36 h, and the reaction was monitored by TLC. When **4aa** disappeared, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (pentane/EtOAc, 5:1) to give **4aa** as yellow solid (30.9 mg, 65% yield).

(1*R*,2*R*,3*R*,4*S*,6*S*)-Ethyl 1'-Benzyl-6-[(*E*)-3-ethoxy-3-oxoprop-1-en-1-yl]-2'-oxo-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'-indoline]-3-carboxylate (5aa): A yellow solid (30.9 mg, 65% yield); m.p. 160– 161 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 0.45 (t, *J* = 7.2 Hz, 3 H), 1.24 (t, *J* = 7.2 Hz, 3 H), 1.99–2.04 (m, 1 H), 2.34 (dd, *J* = 12.0, 8.0 Hz, 1 H), 3.32 (s, 1 H), 3.60 (q, J = 7.2 Hz, 2 H), 4.15 (q, J = 7.2 Hz, 2 H), 4.66 (d, J = 16.0 Hz, 1 H), 5.16 (dd, J = 12.0, 7.2 Hz, 1 H), 5.27 (d, J = 16.0 Hz, 1 H), 5.58 (d, J = 4.8 Hz, 1 H), 5.87 (d, J = 16.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 6.87 (dd, J = 16.0 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 7.16 (d, J = 7.6 Hz, 1 H), 7.27–7.34 (m, 5 H), 7.47 (d, J = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 13.1$, 14.2, 39.7, 44.2, 59.4, 60.3, 60.6, 60.7, 75.3, 82.4, 109.1, 121.4, 123.6, 125.8, 127.0, 127.8, 128.7, 129.2, 129.4, 134.9, 141.6, 147.6, 166.2, 168.6, 172.1 ppm. IR (CH₂Cl₂): $\tilde{v} = 2980$, 2902, 1707, 1653, 1612, 1493, 1471, 1374, 1351, 1260, 1185, 1094, 1040, 973, 868, 795, 690 cm⁻¹. MS (ESI): m/z = 477.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₉O₆N₂ [M + H]⁺ 477.2026; found 477.2024.

(1R,2R,3R,4S,6S)-Ethyl 6-[(E)-3-Ethoxy-3-oxoprop-1-en-1-yl]-2'oxo-1'-trityl-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'-indoline]-3-carboxylate (5ca): A white solid (37.7 mg, 65% yield); m.p. 160-162 °C. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 0.28$ (t, J = 7.2 Hz, 3 H), 1.27 (t, J = 7.2 Hz, 3 H), 1.90–1.95 (m, 1 H), 2.18–2.23 (m, 1 H), 3.21 (s, 1 H), 3.46-3.59 (m, 2 H), 4.15-4.26 (m, 2 H), 4.77-4.82 (m, 1 H), 5.51 (d, J = 5.2 Hz, 1 H), 5.93 (dd, J = 15.6, 1.2 Hz, 1 H), 6.25–6.27 (m, 1 H), 6.85–6.91 (m, 3 H), 7.20–7.28 (m, 10 H), 7.37-7.40 (m, 1 H), 7.45-7.47 (m, 6 H) ppm. ¹³C NMR (100 MHz, 82.5, 115.5, 121.5, 123.0, 125.0, 127.0, 127.7, 127.9, 129.2, 129.4, 141.6, 142.2, 147.8, 166.2, 168.8, 172.5 ppm. IR (CH₂Cl₂): \tilde{v} = 2980, 2902, 2884, 1714, 1659, 1626, 1476, 1372, 1262, 1171, 1108, 1041, 992, 804, 700 cm⁻¹. MS (ESI): $m/z = 629.2 [M + H]^+$. HRMS (ESI): calcd. for $C_{39}H_{36}O_6N_2Na [M + Na]^+ 651.2466$; found 651.2475.

(1R,2R,3R,4S,6S)-Ethyl 1'-Allyl-6-[(E)-3-ethoxy-3-oxoprop-1-en-1yl]-2'-oxo-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'-indoline]-3carboxylate (5da): A yellow liquid (30.7 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃, TMS): δ = 0.62 (t, J = 7.2 Hz, 3 H), 1.23 (t, J = 7.2 Hz, 3 H), 1.96–2.02 (m, 1 H), 2.31 (dd, J = 12.0, 8.4 Hz, 1 H), 3.25 (s, 1 H), 3.59-3.68 (m, 2 H), 4.14 (q, J = 7.2 Hz, 2 H), 4.19–4.25 (m, 1 H), 4.51–4.57 (m, 1 H), 5.10 (dd, J = 12.0, 7.6 Hz, 1 H), 5.23 (d, J = 9.6 Hz, 1 H), 5.26 (d, J = 16.4 Hz, 1 H), 5.56 (d, J = 5.2 Hz, 1 H), 5.81–5.88 (m, 1 H), 5.94 (d, J = 15.6 Hz, 1 H), 6.79 (d, J = 7.6 Hz, 1 H), 6.85 (dd, J = 15.6, 6.8 Hz, 1 H), 7.03 (t, *J* = 7.6 Hz, 1 H), 7.24–7.28 (m, 1 H), 7.47 (d, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 13.3$, 14.2, 39.6, 42.7, 59.3, 60.3, 60.6, 60.7, 75.3, 82.4, 108.8, 117.5, 121.4, 123.5, 125.8, 129.2, 129.4, 130.4, 141.8, 147.7, 166.2, 168.6, 171.7 ppm. IR (CH_2Cl_2) : $\tilde{v} = 2981, 2958, 1739, 1708, 1657, 1612, 1488, 1468, 1370,$ 1303, 1264, 1182, 1096, 926, 867, 754, 698 cm⁻¹. MS (ESI): m/z =449.2 $[M + Na]^+$. HRMS (ESI): calcd. for $C_{23}H_{26}O_6N_2Na$ [M +Na]+ 449.1689; found 449.1681.

(1*R*,2*R*,3*R*,4*S*,6*S*)-Ethyl 1'-Allyl-5'-chloro-6-[(*E*)-3-ethoxy-3-oxoprop-1-en-1-yl]-2'-oxo-7-oxa-1-azaspiro[bicyclo]2.2.1]heptane-2,3'indoline]-3-carboxylate (5ga): A yellow solid (31.3 mg, 68% yield); m.p. 127–129 °C. ¹H NMR (400 MHz, CDCl₃, TMS): δ = 0.72 (t, *J* = 7.2 Hz, 3 H), 1.24 (t, *J* = 7.2 Hz, 3 H), 1.98–2.03 (m, 1 H), 2.31 (dd, *J* = 11.6, 8.4 Hz, 1 H), 3.25 (s, 1 H), 3.70–3.77 (m, 2 H), 4.14 (q, *J* = 7.2 Hz, 2 H), 4.18–4.23 (m, 1 H), 4.51–4.56 (m, 1 H), 5.06 (dd, *J* = 11.6, 7.6 Hz, 1 H), 5.24 (d, *J* = 16.8 Hz, 1 H), 5.25 (d, *J* = 10.8 Hz, 1 H), 5.57 (d, *J* = 5.2 Hz, 1 H), 5.79–5.86 (m, 1 H), 5.95 (d, *J* = 15.6 Hz, 1 H), 6.73 (d, *J* = 8.4 Hz, 1 H), 6.84 (dd, *J* = 15.6, 6.8 Hz, 1 H), 7.24–7.26 (m, 1 H), 7.48 (d, *J* = 1.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 13.4, 14.2, 39.6, 42.8, 59.3, 60.3, 60.6, 61.0, 75.2, 82.5, 109.8, 117.7, 121.5, 126.2, 129.0, 129.3, 130.0, 130.7, 140.3, 147.2, 166.1, 168.2, 171.2 ppm. IR (CH₂Cl₂): \tilde{v} = 2981, 2902, 1710, 1658, 1611, 1484, 1433, 1368,

FULL PAPER

1351, 1261, 1180, 1096, 1037, 983, 852, 812, 720 cm⁻¹. MS (ESI): $m/z = 483.1 \text{ [M + Na]^+}$. HRMS (ESI): calcd. for $C_{23}H_{25}O_6ClN_2Na$ [M + Na]⁺ 483.1299; found 483.1286.

(1R,2R,3R,4S,6S)-Ethyl 1'-Allyl-6-[(E)-3-ethoxy-3-oxoprop-1-en-1yl]-6'-methyl-2'-oxo-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'indoline]-3-carboxylate (5ha): A white solid (28.6 mg, 65% yield); m.p. 132–134 °C. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 0.65$ (t, J = 7.2 Hz, 3 H), 1.23 (t, J = 7.2 Hz, 3 H), 1.95–2.00 (m, 1 H), 2.29 (dd, J = 11.6, 8.4 Hz, 1 H), 2.32 (s, 3 H), 3.22 (s, 1 H), 3.63– 3.70 (m, 2 H), 4.14 (q, J = 7.2 Hz, 2 H), 4.18–4.23 (m, 1 H), 4.49– 4.54 (m, 1 H), 5.09 (dd, J = 11.6, 6.8 Hz, 1 H), 5.23 (d, J = 10.4 Hz,1 H), 5.24 (d, J = 17.6 Hz, 1 H), 5.54 (d, J = 5.2 Hz, 1 H), 5.80– 5.89 (m, 1 H), 5.94 (d, J = 15.6 Hz, 1 H), 6.61 (s, 1 H), 6.83–6.88 (m, 2 H), 7.33 (d, J = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 13.3, 14.1, 21.6, 39.6, 42.6, 59.3, 60.2, 60.4, 60.7, 75.2, 82.4, 109.6, 117.2, 121.2, 124.0, 125.5, 126.2, 130.4, 139.7, 141.8, 147.8, 166.3, 168.7, 171.9 ppm. IR (CH₂Cl₂): \tilde{v} = 2981, 2902, 1708, 1657, 1620, 1503, 1449, 1378, 1345, 1266, 1183, 1117, 1038, 982, 867, 811, 701 cm⁻¹. MS (ESI): $m/z = 463.2 [M + Na]^+$. HRMS (ESI): calcd. for $C_{24}H_{28}O_6N_2Na [M + Na]^+ 463.1645$; found 463.1641.

(1R,2R,3R,4S,6S)-Ethyl 1'-Benzyl-6-[(E)-3-ethoxy-3-oxoprop-1-en-1-yl]-5'-methyl-2'-oxo-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'indoline]-3-carboxylate (5na): A yellow solid (34.3 mg, 70% yield); m.p. 150–151 °C. ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 0.47$ (t, J = 7.2 Hz, 3 H), 1.24 (t, J = 7.2 Hz, 3 H), 1.20–2.04 (m, 1 H), 2.45 (s, 3 H), 2.33 (dd, J = 12.0, 8.4 Hz, 1 H), 3.31 (s, 1 H), 3.58– 3.66 (m, 2 H), 4.15 (q, J = 7.2 Hz, 2 H), 4.65 (d, J = 16.0 Hz, 1 H), 5.16 (dd, J = 12.0, 7.6 Hz, 1 H), 5.58 (d, J = 5.2 Hz, 1 H), 5.96 (d, J = 16.0 Hz, 1 H), 6.55 (d, J = 7.6 Hz, 1 H), 6.88 (dd, J = 16.0, J = 16.07.2 Hz, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 7.26–7.33 (m, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): δ = 13.1, 14.2, 21.0, 39.6, 44.2, 59.4, 60.3, 60.6, 60.7, 75.4, 82.4, 108.8, 121.4, 126.4, 127.0, 127.7, 128.7, 129.1, 129.6, 133.2, 135.0, 139.2, 147.7, 166.2, 168.6, 172.0 ppm. IR (CH₂Cl₂): \tilde{v} = 2980, 2955, 1739, 1708, 1657, 1619, 1496, 1454, 1370, 1350, 1302, 1269, 1190, 809, 698 cm⁻¹. MS (ESI): $m/z = 513.2 \text{ [M + Na]}^+$. HRMS (ESI): calcd. for C₂₈H₃₀O₆N₂Na [M + Na]⁺ 513.2002; found 513.2000.

One-Pot Procedure for 5ba: A solution of **1b** (88.0 mg, 0.50 mmol), ethyl 2,3-butadienoate (**2a**; 0.18 mL, 1.50 mmol), and P(4-FC₆H₄)₃ (30.1 mg, 20 mol-%) in toluene (10.0 mL) was stirred at 50 °C for 3 h. Without purification, Yb(OTf)₃ (20 mol-%) and 4 Å molecular sieves (300 mg) were added to the reaction mixture, and after heating the reaction temperate to 100 °C, the reaction mixture was stirred for another 36 h. Then the reaction mixture was cooled to room temperature and the solvent was quickly removed under reduced pressure. The residue was purified by flash chromatography on silica gel (pentane/EtOAc, 4:1) to give **5ba** as a yellow oil (114.0 mg, 57% yield).

(1*R*,2*R*,3*R*,4*S*,6*S*)-Ethyl 6-[(*E*)-3-Ethoxy-3-oxoprop-1-en-1-yl]-1'methyl-2'-oxo-7-oxa-1-azaspiro[bicyclo[2.2.1]heptane-2,3'-indoline]-3-carboxylate (5ba): A yellow oil (114.0 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃, TMS): $\delta = 0.62$ (t, *J* = 7.2 Hz, 3 H), 1.23 (t, *J* = 7.2 Hz, 3 H), 1.96–2.01 (m, 1 H), 2.31 (dd, *J* = 12.0, 8.4 Hz, 1 H), 3.21 (s, 1 H), 3.27 (s, 3 H), 3.62 (dq, *J* = 7.2, 2.4 Hz, 2 H), 4.14 (q, *J* = 7.2 Hz, 2 H), 5.10 (dd, *J* = 12.0, 7.6 Hz, 1 H), 5.55 (d, *J* = 5.2 Hz, 1 H), 5.94 (d, *J* = 16.0 Hz, 1 H), 6.85 (dd, *J* = 16.0, 7.2 Hz, 2 H), 7.05 (t, *J* = 7.6 Hz, 1 H), 7.30 (t, *J* = 7.6 Hz, 1 H), 7.46 (d, *J* = 7.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃, TMS): $\delta = 13.3$, 14.2, 26.8, 39.6, 59.3, 60.3, 60.4, 60.6, 75.4, 82.3, 107.9, 121.3, 123.6, 125.7, 129.1, 129.6, 142.6, 147.6, 166.2, 168.6, 171.8 ppm. IR (CH₂Cl₂): $\tilde{v} = 2980$, 2904, 1708, 1658, 1612, 1493, 1471, 1374, 1351, 1260, 1185, 1094, 1038, 981, 868, 795, 694 cm⁻¹. MS (ESI): $m/z = 423.2 \text{ [M + Na]}^+$. HRMS (ESI): calcd. for $C_{21}H_{24}O_6N_2Na \text{ [M + Na]}^+$ 423.1532; found 423.1556.

Supporting Information (see footnote on the first page of this article): Spectroscopic data and NMR spectra; X-ray crystal data of 1a, 3ca, 4da, and 5ca; detailed experimental procedures.

Acknowledgments

We thank the Shanghai Municipal Committee of Science and Technology (11JC1402600), National Basic Research Program of China (973)-2010CB833302, the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (21072206, 20872162, 20672127, 20732008, 21121062 and 20702013) for financial support.

- a) A. Y. Sukhorukov, S. L. Ioffe, *Chem. Rev.* 2011, *111*, 5004– 5041; b) D. A. Alonso, C. Nájera, *Chem. Soc. Rev.* 2010, *39*, 2891–2902; c) F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, *J. Am. Chem. Soc.* 2005, *127*, 210–216; d) K. Narasaka, M. Kitamura, *Eur. J. Org. Chem.* 2005, 4505–4519; e) K. Narasaka, *Pure Appl. Chem.* 2002, *74*, 143–150.
- [2] Selected papers on dehydration reactions of oximes to produce nitriles: a) J. K. Augustine, R. N. Atta, B. K. Ramappa, C. Boodappa, *Synlett* 2009, 3378–3382; b) J.-L. Zhu, F.-Y. Lee, J.-D. Wu, C.-W. Kuo, K.-S. Shia, *Synlett* 2007, 1317–1319; c) E. Choi, C. Lee, Y. Na, S. Chang, *Org. Lett.* 2002, *4*, 2369–2371; d) L. De Luca, G. Giacomelli, A. Porcheddu, *J. Org. Chem.* 2002, *67*, 6272–6274; e) E. Wenkert, B. F. Barnett, *J. Am. Chem. Soc.* 1960, *82*, 4671–4675.
- [3] Selected papers on the Beckmann rearrangement of oximes to prepare amides: a) R. S. Ramón, J. Bosson, S. Díez-González, N. Marion, S. P. Nolan, J. Org. Chem. 2010, 75, 1197–1202; b) N. C. Ganguly, P. Mondal, Synthesis 2010, 3705–3709; c) C. Ramalingan, Y.-T. Park, J. Org. Chem. 2007, 72, 4536–4538; d) M. Hashimoto, Y. Obora, S. Sakaguchi, Y. Ishii, J. Org. Chem. 2008, 73, 2894–2897; e) B. B. Lampert, F. G. Bordwell, J. Am. Chem. Soc. 1951, 73, 2369–2370; f) R. L. Augustine, J. Am. Chem. Soc. 1959, 81, 4664–4667; g) Y. Ogata, M. Okano, K. Matsumoto, J. Am. Chem. Soc. 1955, 77, 4643–4646; h) N. A. Owston, A. J. Parker, J. M. J. Williams, Org. Lett. 2007, 9, 3599–3601.
- Selected papers on oximes as precursors of 1,3-dipolar: a) K. [4] Gutsmiedl, D. Fazio, T. Carell, Chem. Eur. J. 2010, 16, 6877-6883; b) D. R. Kelly, S. C. Baker, D. S. King, D. S. Silva, G. Lord, J. P. Taylor, Org. Biomol. Chem. 2008, 6, 787-796; c) B. C. Sanders, F. Friscourt, P. A. Ledin, N. E. Mbua, S. Arumugam, J. Guo, T. J. Boltje, V. V. Popik, G.-J. Boons, J. Am. Chem. Soc. 2011, 133, 949-957; d) M. P. Bourbeau, J. T. Rider, Org. Lett. 2006, 8, 3679-3680; e) S. Yamago, M. Nakamura, X. Q. Wang, M. Yanagawa, S. Tokumitsu, E. Nakamura, J. Org. Chem. 1998, 63, 1694–1703; f) É. Frank, G. Schneider, Z. Kádár, J. Wölfling, Eur. J. Org. Chem. 2009, 3544-3553; g) S. Liu, L. S. Liebeskind, J. Am. Chem. Soc. 2008, 130, 6918-6919; h) S. Liu, Y. Yu, L. S. Liebeskind, Org. Lett. 2007, 9, 1947-1950; i) Z. Zhang, Y. Yu, L. S. Liebeskind, Org. Lett. 2008, 10, 3005-3008; j) T. Gerfaud, L. Neuville, J. Zhu, Angew. Chem. 2009, 121, 580-585; Angew. Chem. Int. Ed. 2009, 48, 572-577; k) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688-5691; 1) Y. Tan, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 3676-3677.
- [5] a) R. W. Lang, H.-J. Hansen, Org. Synth. 1984, 62, 202–207;
 b) H. Lu, D. Leow, K.-W. Huang, C.-H. Tan, J. Am. Chem. Soc. 2009, 131, 7212–7213 and references cited therein.
- [6] T. J. Martin, V. G. Vakhshori, Y. S. Tran, O. Kwon, Org. Lett. 2011, 13, 2586–2589.

Cascade Reactions of Isatin-Derived Oximes with Allenic Esters

- [7] Selected papers on phosphorus-containing Lewis base catalyzed reactions of allenoates: a) C. Zhang, X. Lu, J. Org. Chem. 1995, 60, 2906–2908; b) Y. Du, X. Lu, Y. Yu, J. Org. Chem. 2002, 67, 8901–8905; c) Y. Du, X. Lu, J. Org. Chem. 2003, 68, 6463–6465; d) Y. S. Tran, O. Kwon, J. Am. Chem. Soc. 2007, 129, 12632–12633; e) X.-F. Zhu, C.-E. Henry, O. Kwon, J. Am. Chem. Soc. 2007, 129, 6722–6723; f) V. Sriramurthy, G. A. Barcan, O. Kwon, J. Am. Chem. Soc. 2007, 129, 6722–6723; f) V. Sriramurthy, G. A. Barcan, O. Kwon, J. Am. Chem. Soc. 2007, 129, 12928–12929; g) T. Dudding, O. Kwon, E. Mercier, Org. Lett. 2006, 8, 3643–3646; h) S. M. M. Lopes, B. S. Santos, F. Palacios, T. M. V. D. Pinho e Melo, ARKIVOC 2010, v, 70; i) Y. S. Tran, O. Kwon, Org. Lett. 2005, 7, 4289–4291; j) X.-C. Zhang, S.-H. Cao, Y. Wei, M. Shi, Org. Lett. 2011, 13, 1142–1145; k) Z. Xu, X. Lu, J. Org. Chem. 1998, 63, 5031–5041; l) X.-F. Zhu, A.-P. Schaffner, R. C. Li, O. Kwon, Org. Lett. 2005, 7, 2977–2980.
- [8] For reviews: a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535–544; b) B. J. Cowen, J. S. Miller, Chem. Soc. Rev. 2009, 38, 3102–3116; c) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035; d) Y. Wei, M. Shi, Acc. Chem. Res. 2010, 43, 1005–1018; e) C. Nising, S. Bräse, Chem. Soc. Rev. 2008, 37, 1218–1228; f) L.-W. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 2008, 37, 1140–1152; g) A. Marinetti, A. Voituriez, Synlett 2010, 174–193; h) Q.-Y. Zhao, Z. Lian, Y. Wei, M. Shi, Chem. Commun. 2012, 48, 1724–1732.
- [9] Selected papers on chiral phosphane catalyzed asymmetric reactions of allenoates: a) Y.-Q. Fang, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 5660-5661; b) G. Zhu, Z. Chen, Q. Jiang, D. Xiao, P. Cao, X. Zhang, J. Am. Chem. Soc. 1997, 119, 3836-3837; c) H. Xiao, Z. Chai, C.-W. Zheng, Y.-Q. Yang, W. Liu, J.-K. Zhang, G. Zhao, Angew. Chem. 2010, 122, 4569-4672; Angew. Chem. Int. Ed. 2010, 49, 4467-4672; d) J. E. Wilson, G. C. Fu, Angew. Chem. 2006, 118, 1454-1457; Angew. Chem. Int. Ed. 2006, 45, 1426-1429; e) Y.-K. Chung, G. C. Fu, Angew. Chem. 2009, 121, 2259-2261; Angew. Chem. Int. Ed. 2009, 48, 2225-2261; f) R. P. Wurz, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 12234-12235; g) A. Voituriez, N. Pinto, M. Neel, P. Retailleau, A. Marinetti, Chem. Eur. J. 2010, 16, 12541-12544; h) H. Miyamoto, Y. Okawa, A. Nakazaki, S. Kobayashi, Angew. Chem. 2006, 118, 2332-2335; Angew. Chem. Int. Ed. 2006, 45, 2274-2277; i) E. Vedejs, O. Daugulis, J. Am. Chem. Soc. 1999, 121, 5813-5814; j) S. A. Shaw, P. Aleman, E. Vedejs, J. Am. Chem. Soc. 2003, 125, 13368-13369; k) A. Voituriez, A. Panossian, N. Fleury-Brégeot, P. Retailleau, A. Marinetti, J. Am. Chem. Soc. 2008, 130, 14030-14031; 1) M. Sampath, T.-P. Loh, Chem. Sci. 2010, 1, 739-742; m) S. R. Gilbertson, S. E. Collibee, A. Agarkov, J. Am. Chem. Soc. 2000, 122, 6522-6523; n) B. J. Cowen, S. J. Miller, J. Am. Chem. Soc. 2007, 129, 10988-10989.

- Eurjoc etomanijournal
- [10] Reviews on cycloaddition reactions of nitrones: a) A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, vol. 1; b) A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, vol. 2; c) K. B. G. Torssell, Natural Product Chemistry, VCH, Weinheim, 1988; d) A. Padwa, W. H. Pearson (Eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Wiley, Hoboken, NJ, 2002; e) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863-910; f) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49-92; g) A. Goti, F. M. Cordero, A. Brandi, Top. Curr. Chem. 1996, 178, 1; h) A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem. Rev. 2003, 103, 1213-1270; i) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887-2902; j) K. V. Gothelf in Cycloaddition Reactions in Organic Synthesis (Eds.: S. Kobayashi, K. A. Jørgensen), Wiley-VCH, Weinheim, 2001, p. 211; k) H. Pellissier, Tetrahedron 2007, 63, 3235-3285.
- [11] a) R. E. Looper, R. M. Williams, Angew. Chem. 2004, 116, 2990–2993; Angew. Chem. Int. Ed. 2004, 43, 2930–2933; b) R. E. Looper, M. T. C. Runnegar, R. M. Williams, Angew. Chem. 2005, 117, 3947–3949; Angew. Chem. Int. Ed. 2005, 44, 3879–3881; c) P. Merino, V. Mannucci, T. Tejero, Eur. J. Org. Chem. 2008, 3943–3959; d) P. Gębarowski, W. Sas, Chem. Commun. 2001, 915–916; e) D. Yang, G. C. Micalizio, J. Am. Chem. Soc. 2011, 133, 9216–9219; f) A. C. Flick, M. J. Arevalo Caballero, H. I. Lee, A. Padwa, J. Org. Chem. 2010, 75, 1992–1996; g) F. A. Davis, N. Theddu, R. Edupuganti, Org. Lett. 2010, 12, 4118–4121; h) N. Saha, T. Biswas, S. K. Chattopadhyay, Org. Lett. 2011, 13, 5128–5211; i) A. C. Flick, M. J. Arevalo Caballero, A. Padwa, Org. Lett. 2008, 10, 1871–1874.
- [12] CCDC-850473 (for 4da) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [13] CCDC-860057 (for 5ca) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [14] These are average value based on two deuterium labeling experiments. For details, see the Supporting Information.
- [15] a) Y. Liang, S. Liu, Y. Xia, Y. Li, Z.-X. Yu, *Chem. Eur. J.* 2008, 14, 4361–4371; b) Y. Xia, Y. Liang, Y. Chen, M. Wang, L. Jiao, F. Huang, S. Liu, Y. Li, Z.-X. Yu, *J. Am. Chem. Soc.* 2007, 129, 3470–3471; c) E. Mercier, B. Fonovic, C. Henry, O. Kwon, T. Dudding, *Tetrahedron Lett.* 2007, 48, 3617–3620. Received: April 19, 2012

Published Online:

FULL PAPER

Tandem Reactions

Phosphorus containing Lewis base catalyzed cascade reactions of isatin-derived oximes with allenic esters afford the corresponding functionalized nitrones. Further Lewis acid catalyzed highly regioselective intramolecular [3+2] cyclizations give the corresponding bridged cycloadducts. A combined "one-pot" reaction is also feasible for the above two catalytic reactions.

C.-K. Pei, Y. Jiang, M. Shi* 1-12

Phosphorus-Containing Lewis Base Catalyzed Cascade Reactions of Isatin-Derived Oximes with Allenic Esters and Further Transformations

Keywords: Lewis bases / Domino reactions / Heterocycles / Allenes / Cyclization