Alkyne-Coordinating Tridentate Ligands: Structural Properties and Reactivity of Their Rhodium Complexes

Kazuhiro Okamoto,* Yusuke Omoto, Hayato Sano, and Kouichi Ohe* Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan e-mail: kokamoto@scl.kyoto-u.ac.jp; ohe@scl.kyoto-u.ac.jp

Supporting Information

I. General. NMR spectra were recorded on a JEOL EX-400 spectrometer at 25 °C (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, and 162 MHz for ³¹P NMR). Chemical shifts are reported in δ ppm referenced to CDCl₃ (δ 7.26 for ¹H NMR and δ 77.00 for ¹³C NMR). IR spectra were recorded with an FT-IR spectrometer (JASCO FT/IR-460 Plus). Melting points (mp) are uncorrected. MALDI-TOF mass spectra were obtained with 1,8-Dihydroxy-9(10H)-anthracenone (DIT) as a matrix on a SHIMADZU KRATOS TOF MASS spectrometer AXIMA-CFR Plus. High-resolution mass spectra (HRMS) were recorded on a JEOL JMX-SX 102A spectrometer. Elemental analyses were not successful because of instability of a series of the rhodium complexes. CH₂Cl₂ and THF were purified by passed through a neutral alumina column under argon atmosphere. Hexane and benzene were distilled over sodium and benzophenone under nitrogen. [RhCl(cod)]₂⁻¹ and NaBArF (sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate)⁻² were prepared according to the literatures. All other materials were purchased and used without further purification.

II. Preparation of a ligand.

Bis(2-(diphenylphosphino)phenyl)acetylene (1) [CAS 345342-51-0]³

A typical procedure for the synthesis of ligands is shown below. To a stirred suspension of *t*-BuOK (6.06 g, 54.0 mmol) in hexane (66 mL) and THF (92 mL) was added *n*-BuLi (1.6 N in hexane solution, 28 mL, 44.0 mmol) dropwise at -78 °C over 15 min. After stirring for additional 15 min, diphenylacetylene (3.56 g, 20.0 mmol) dissolved in THF (20 mL) was added dropwise over 10 min. The mixture was stirred at -78 °C for 40 min, and then at -25 °C for 1.5 h. The

¹ J. Chatt, J. Chem. Soc. 1957, 4753.

² N. A. Yakelis and R. G. Bergman, Organometallics 2005, 24, 3579.

³ J. Kowalik and L. M. Tolbert, J. Org. Chem. 2001, 66, 3229.

resulting solution was cooled to -43 °C, and chlorodiphenylphosphine (8.26 mL, 46.0 mmol) was added dropwise over 10 min. The reaction mixture was warmed to room temperature over 5 h, and quenched with degassed water (10 mL). The organic layer was separated, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was recrystallized from hexane/CH₂Cl₂ to give 3.64 g of ligand **1** (6.66 mmol, 33% yield) as a white powder. Mp 142.2 °C (dec). ¹H NMR (CD₂Cl₂): δ 6.79–6.81 (m, 2H), 7.12–7.15 (m, 2H), 7.16–7.24 (m, 4H), 7.32–7.37 (m, 20H). ¹³C NMR (CD₂Cl₂): δ 95.3–95.4 (m), 127.9 (d, *J* = 30.1 Hz), 128.6 (d, *J* = 16.5 Hz), 128.899, 128.903 (d, *J* = 7.4 Hz), 129.2, 132.7, 132.8 (m), 134.4 (d, *J* = 20.7 Hz), 136.9 (d, *J* = 12.0 Hz), 140.7 (d, *J* = 13.1 Hz). ³¹P NMR (CD₂Cl₂): δ –8.6. HRMS (FAB) calcd for C₃₈H₂₈P₂ [M]⁺ 547.1745, found 547.1750.

III. Complexation with rhodium(I).

2

A solution of ligand **1** (109.3 mg, 0.20 mmol) and [RhCl(cod)]₂ (49.3 mg, 0.10 mmol) in dry CH₂Cl₂ (15 mL) was stirred at room temperature for 15 min, and then dry hexane (30 mL) was added to the reaction mixture. After the additional stirring for 1 h, the solvent was concentrated by nitrogen flow. The precipitate was filtered, washed with hexane, and dried under vacuum to give complex **2** as a red prism (119 mg, 0.17 mmol, 85%). Mp 85.0 °C (dec). ¹H NMR (CD₂Cl₂): δ 7.33–7.43 (m, 14H), 7.56 (t, *J* = 7.4 Hz, 2H), 7.60-7.64 (m, 2H), 7.74-7.80 (m, 8H), 8.05 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (CD₂Cl₂): δ 101.7 (d, *J*_{C-Rh} = 9.1 Hz), 128.1, 128.6 (virtual t, *J*_{C-P sum} = 10.0 Hz), 130.5, 131.4 (virtual t, *J*_{C-P sum} = 18.0 Hz), 131.8, 133.7, 134.0 (virtual t, *J*_{C-P sum} = 6.8 Hz), 134.2 (virtual t, *J*_{C-P sum} = 6.2 Hz), 138.2 (virtual t, *J*_{C-P sum} = 37.8 Hz), 149.0 (virtual t, *J*_{C-P sum} = 51.6 Hz). ³¹P NMR (CD₂Cl₂): δ 46.5 (d, *J*_{Rh-P} = 122 Hz). HRMS (FAB) calcd for C₃₈H₂₈ClP₂Rh [M]⁺ 684.0410, found 684.0415.

3

A solution of ligand **1** (10.9 mg, 20.0 µmol) and $[RhCl(cod)]_2$ (4.9 mg, 10.0 µmol) in dry benzene (1.5 mL) was stirred at 50 °C for 48 h (in the dark). The dark red crystal was filtered, washed with benzene, and dried under vacuum to give complex **3** as a dark red prism (12.0 mg, 8.6 µmol, 86%). Mp >250 °C. ¹H NMR (CDCl₃): δ 6.37–6.41 (m, 2H), 6.45–6.49 (m, 2H), 6.55–6.60 (m, 2H), 6.63–6.67 (m, 4H), 6.76–6.87 (m, 10H), 6.92–7.02 (m, 6H), 7.06–7.13 (m, 6H), 7.16–7.21 (m, 4H), 7.28–7.39 (m, 12H), 8.04–8.11 (m, 4H), 8.40–8.43 (m, 2H), 8.85–8.88 (m, 2H). ³¹P NMR (CDCl₃): δ 6.24 (dd, $J_{P-Rh} = 146$ Hz, $J_{P-P} = 396$ Hz), 22.74 (dd, $J_{P-Rh} = 146$ Hz, $J_{P-P} = 396$ Hz). HRMS (FAB) calcd for $C_{76}H_{56}Cl_2P_4Rh_2$ [M]⁺ 1368.0820, found 1368.0819.

4

A solution of complex **2** (35.0 mg, 50.0 µmol) and NaBArF (44.3 mg, 50.0 µmol) in dry CH₃CN (3.8 mL) was stirred at room temperature for 30 min, and then the mixture was filtered through Celite, washed with hexane, and dried under vacuum to give complex **4** as an orange solid (47.2 mg, 30.0 µmol, 60%). Mp 146-148 °C. ¹H NMR (CD₂Cl₂): δ 1.79 (s, 3H), 7.43-7.48 (m, 8H), 7.50-7.56 (m, 8H), 7.58 (s, 4H), 7.63–7.68 (m, 10H), 7.75 (s, 8H), 8.11 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (CD₂Cl₂) for characteristic peaks: δ 99.2 (alkyne, d, *J* = 9.3 Hz). ³¹P NMR (CD₂Cl₂): δ 53.2 (d, *J*_{Rh-P} = 116 Hz). MALDI-TOF-MS (DIT): *m*/*z* 690.3 ([M–BArF]⁺, C₄₀H₃₁NP₂Rh, calcd. 690.1); 863.5 ([BArF]⁻, C₃₂H₁₂BF₂₄, calcd. 863.1). HRMS (FAB) calcd for C₄₀H₃₁NP₂Rh [M–BArF]⁺ 690.0987, found 690.0988.

5-PF₆

A solution of ligand 1 (16.4 mg, 30.0 μ mol) and [RhCl(CO)₂]₂ (5.8 mg, 15.0 μ mol) in dry CH₂Cl₂ (1.0 mL) was stirred at room temperature for 15 min, and then AgPF₆ (7.6 mg, 30.0 μ mol) was added to the reaction mixture. After the additional stirring for 1 h, the reaction mixture was filtered through Celite, and then concentrated by nitrogen flow to give 22.7 mg of complex **5-PF₆**

as a yellow prism (27.6 µmol, 92%).

$$\begin{split} \text{Mp} &> 250 \text{ °C. } ^{1}\text{H NMR (CD}_{2}\text{Cl}_{2}\text{): } \delta \ 7.47-7.54 \text{ (m, 8H), } 7.55-7.74 \text{ (m, 16H), } 7.84 \text{ (t, } J = 7.8 \text{ Hz}\text{, } 2\text{H}\text{), } 8.22 \text{ (d, } J = 7.8 \text{ Hz}\text{, } 2\text{H}\text{). } ^{13}\text{C NMR (CD}_{2}\text{Cl}_{2}\text{) } \text{ for characteristic peaks: } \delta \ 106.3 \text{ (alkyne, d, } J = 5.8 \text{ Hz}\text{). } ^{31}\text{P NMR (CD}_{2}\text{Cl}_{2}\text{): } \delta \ -144.2 \text{ (sept, } J_{\text{F-P}} = 715 \text{ Hz}\text{), } 57.2 \text{ (d, } J_{\text{Rh-P}} = 104 \text{ Hz}\text{). } \text{ IR (nujol): } 2016 \text{ cm}^{-1} \text{ (v}_{\text{C-O}}\text{). } \text{MALDI-TOF-MS (DIT): } m/z \ 677.3 \text{ ([M-PF_6]^+, } C_{39}\text{H}_{28}\text{OP}_2\text{Rh, calcd. } 677.1\text{). } \text{HRMS (FAB) calcd for } C_{39}\text{H}_{28}\text{OP}_2\text{Rh} \text{ [M-PF_6]^+ } 677.0670\text{, found } 677.0666\text{.} \end{split}$$

5-BArF

5-BArF was prepared according to the similar procedure for **5-PF**₆. Yellow crystal. 96% yield. Mp 71.2-71.9 °C. ¹H NMR (CD₂Cl₂): δ 7.48–7.51 (m, 8H), 7.57–7.71 (m, 16H), 7.77 (t, *J* = 7.8 Hz, 2H), 8.37 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (CD₂Cl₂) for characteristic peaks: δ 106.3 (alkyne, d, *J* = 5.8 Hz). ³¹P NMR (CD₂Cl₂) δ 57.3 (d, *J*_{Rh-P} = 104 Hz). IR (nujol): 2028 cm⁻¹ (v_{C-O}). MALDI-TOF-MS (DIT): *m*/*z* 677.1 ([M–BArF]⁺, C₃₉H₂₈OP₂Rh, calcd. 677.1); 863.3 ([BArF]⁻, C₃₂H₁₂BF₂₄, calcd. 863.1). HRMS (FAB) calcd for C₃₉H₂₈OP₂Rh [M–BArF]⁺ 677.0670, found 677.0670.

IV. X-ray crystallographic analyses.

Empirical Formula	$C_{39.50}H_{31}Cl_4P_2Rh$
Formula Weight	812.34
Crystal Color, Habit	orange, prism
Crystal System	monoclinic
Lattice Parameters	
<i>a</i> (Å)	11.0023(10)
<i>b</i> (Å)	18.907(2)
<i>c</i> (Å)	17.537(2)
β (°)	105.272(5)
$V(\text{\AA}^3)$	3519.3(6)
Space Group	$P2_{1}/c$ (#4)
Z value	4
$D_{calc} (g \text{ cm}^{-3})$	1.533
F_{000}	1644.00
μ (MoKa) (cm ⁻¹)	9.072
Radiation	MoK ($\lambda = 0.71070$ Å)
	graphite monochromated
Temperature (°C)	-129.8
Max 2θ (°)	55.0
No. of Reflections Measured	Total: 27279
Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F ²
No. Observations (All reflections)	8035
No. Variables	579
Reflection/Parameter Ratio	13.88
Residuals: R_1 ; wR_2	0.0385; 0.0956
Goodness of Fit Indicator	1.073
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map (e Å ⁻³)	1.18
Minimum peak in Final Diff. Map (e $Å^{-3}$)	-0.63

 $Table \ S1. \ Crystallographic \ data \ of \ 2$

$C_{82}H_{68}Cl_2P_4Rh_2$
1526.12
red, prism
triclinic
11.810(4)
12.102(4)
13.653(4)
66.667(9)
72.108(11)
86.21(2)
1701.6(8)
P-1 (#2)
1
1.489
780.00
7.058
MoK ($\lambda = 0.71070$ Å)
graphite monochromated
-149.8
54.9
Total: 13769
Direct Methods (SIR92)
Full-matrix least-squares on F ²
7462
433
17.23
0.0938; 0.2355
1.121
0.000
2.42
-1.36

Table S2. Crystallographic data of 3

Empirical Formula	C ₅₂ H ₄₄ F ₆ OP ₂ Rh
Formula Weight	1006.75
Crystal Color, Habit	vellow, prism
Crystal System	triclinic
Lattice Parameters	
<i>a</i> (Å)	11.129(4)
$b(\mathbf{A})$	14.638(5)
$c(\dot{A})$	15.649(5)
α (°)	98.691(5)
β (°)	90.116(3)
γ (°)	112.174(3)
$V(\dot{A}^3)$	2328.9(12)
Space Group	P-1 (#2)
Z value	2
$D_{calc} (g \text{ cm}^{-3})$	1.436
F_{000}	1028.00
μ (MoKa) (cm ⁻¹)	5.314
Radiation	MoK ($\lambda = 0.71070$ Å)
	graphite monochromated
Temperature (°C)	-129.8
Max 2θ (°)	54.9
No. of Reflections Measured	Total: 27643
Structure Solution	Direct Methods (SIR97)
Refinement	Full-matrix least-squares on F ²
No. Observations (All reflections)	10611
No. Variables	577
Reflection/Parameter Ratio	18.39
Residuals: R_1 ; wR_2	0.0691; 0.2025
Goodness of Fit Indicator	1.231
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map (e Å ⁻³)	3.16
Minimum peak in Final Diff. Map (e Å ⁻³)	-0.83

 Table S3. Crystallographic data of 5-PF₆

2			
Atom	Х	Y	Z
Rh	-0.1218695	-0.2297227	0.0000000
Cl	2.2616784	-0.6973241	0.0000000
Р	0.0379404	-0.0557087	2.3461969
С	-1.6799858	-0.0653337	3.0101535
С	-2.0797933	-0.1205368	4.3475429
С	-3.4386164	-0.1146633	4.6702832
С	-4.4011504	-0.0535814	3.6549184
С	-4.0166762	-0.0119932	2.3179628
С	-2.6489292	-0.0288209	1.9852757
С	-2.1750112	-0.0423064	0.6300000
С	0.9084326	-1.3506960	3.3181069
С	0.9887456	-2.6442002	2.7817408
С	1.5777688	-3.6738591	3.5157887
С	2.1017726	-3.4198760	4.7851190
С	2.0391600	-2.1310573	5.3188745
С	1.4473253	-1.0987050	4.5889767
С	0.7771664	1.5323969	2.9231695
С	2.1134001	1.8026731	2.5767365
С	2.7124169	2.9972957	2.9730034
С	1.9891860	3.9425593	3.7054960
С	0.6596538	3.6867628	4.0397581
С	0.0547700	2.4880205	3.6524956
Н	-1.3342419	-0.1772935	5.1355822
Н	-3.7487791	-0.1610881	5.7104201
Н	-5.4573028	-0.0488169	3.9104785
Н	-4.7615146	0.0202693	1.5284666
Н	-0.9805093	2.3051504	3.9204348
Н	0.0867836	4.4185009	4.6035961
Н	2.4584778	4.8750194	4.0082445
Н	3.7459648	3.1930859	2.6998888
Н	2.6692797	1.0849081	1.9807248
Н	0.6091446	-2.8287533	1.7814072
Н	1.6402628	-4.6713810	3.0893096
Н	2.5673997	-4.2213841	5.3526886
Н	2.4567994	-1.9259871	6.3011814
Н	1.4191109	-0.0950553	5.0035512
Р	0.0379404	-0.0557087	-2.3461969
С	-1.6799858	-0.0653337	-3.0101535
С	-2.0797933	-0.1205368	-4.3475429
С	-3.4386164	-0.1146633	-4.6702832
С	-4.4011504	-0.0535814	-3.6549184

V. Cartesian atomic coordinates for the optimized structure of complexes 2 and 5⁺ (LanL2DZ for rhodium and B3LYP/6-31G(d,p) for other atoms).

С	-4.0166762	-0.0119932	-2.3179628
С	-2.6489292	-0.0288209	-1.9852757
С	-2.1750112	-0.0423064	-0.6300000
С	0.9084326	-1.3506960	-3.3181069
С	0.9887456	-2.6442002	-2.7817408
С	1.5777688	-3.6738591	-3.5157887
С	2.1017726	-3.4198760	-4.7851190
С	2.0391600	-2.1310573	-5.3188745
С	1.4473253	-1.0987050	-4.5889767
С	0.7771664	1.5323969	-2.9231695
С	2.1134001	1.8026731	-2.5767365
С	2.7124169	2.9972957	-2.9730034
С	1.9891860	3.9425593	-3.7054960
С	0.6596538	3.6867628	-4.0397581
С	0.0547700	2.4880205	-3.6524956
Н	-1.3342419	-0.1772935	-5.1355822
Н	-3.7487791	-0.1610881	-5.7104201
Η	-5.4573028	-0.0488169	-3.9104785
Н	-4.7615146	0.0202693	-1.5284666
Н	-0.9805093	2.3051504	-3.9204348
Н	0.0867836	4.4185009	-4.6035961
Н	2.4584778	4.8750194	-4.0082445
Η	3.7459648	3.1930859	-2.6998888
Η	2.6692797	1.0849081	-1.9807248
Η	0.6091446	-2.8287533	-1.7814072
Η	1.6402628	-4.6713810	-3.0893096
Н	2.5673997	-4.2213841	-5.3526886
Н	2.4567994	-1.9259871	-6.3011814
Н	1.4191109	-0.0950553	-5.0035512

5+

Atom	Х	Y	Z
Rh	0.0412229	-0.2014839	0.000000.0
Р	-0.0549100	-0.0465604	2.3818488
Р	-0.0549100	-0.0465604	-2.3818488
0	-2.9687920	-0.4511775	0.000000.0
С	-1.8220903	-0.3385432	0.000000.0
С	2.2408161	-0.2398490	0.6225216
С	2.6436163	-0.2641265	2.0010843
С	1.6605972	-0.1988074	3.0065621
С	2.0304258	-0.2561288	4.3526676
С	3.3787620	-0.3632828	4.6978591
С	4.3587041	-0.4141497	3.6998728
С	4.0018476	-0.3661617	2.3551811
С	-1.0315497	-1.3096547	3.2776309
С	-1.1410852	-2.5925957	2.7172072
С	-1.8144938	-3.6030021	3.4031202
С	-2.3891072	-3.3399608	4.6487392
С	-2.2883200	-2.0648351	5.2093367
С	-1.6118170	-1.0506320	4.5302231
С	-0.6677626	1.5878961	2.9433189
С	0.2144767	2.5927391	3.3678988
С	-0.2742641	3.8520380	3.7217722
С	-1.6417514	4.1196811	3.6545498
С	-2.5256059	3.1242756	3.2286823
С	-2.0441245	1.8667653	2.8692726
Н	5.4061410	-0.4986146	3.9732052
Н	1.2719424	-0.2239742	5.1289838
Н	-1.5504882	-0.0594961	4.9690127
Н	4.7599424	-0.4148151	1.5802358
Н	-1.8961604	-4.5922863	2.9624187
Н	-0.7005797	-2.7964078	1.7445810
Н	1.2803569	2.3983061	3.4282824
Н	3.6664523	-0.4098861	5.7437145
Н	-2.9191087	-4.1256166	5.1792718
Н	-2.7441890	1.1032797	2.5417346
Н	-2.0192784	5.0992736	3.9327513
Н	-2.7394318	-1.8563912	6.1751106
Н	-3.5914664	3.3262019	3.1760282
Н	0.4172548	4.6213052	4.0529524
С	2.2408161	-0.2398490	-0.6225216
С	2.6436163	-0.2641265	-2.0010843
С	1.6605972	-0.1988074	-3.0065621
С	2.0304258	-0.2561288	-4.3526676
С	3.3787620	-0.3632828	-4.6978591
С	4.3587041	-0.4141497	-3.6998728
С	4.0018476	-0.3661617	-2.3551811

С	-1.0315497	-1.3096547	-3.2776309
С	-1.1410852	-2.5925957	-2.7172072
С	-1.8144938	-3.6030021	-3.4031202
С	-2.3891072	-3.3399608	-4.6487392
С	-2.2883200	-2.0648351	-5.2093367
С	-1.6118170	-1.0506320	-4.5302231
С	-0.6677626	1.5878961	-2.9433189
С	0.2144767	2.5927391	-3.3678988
С	-0.2742641	3.8520380	-3.7217722
С	-1.6417514	4.1196811	-3.6545498
С	-2.5256059	3.1242756	-3.2286823
С	-2.0441245	1.8667653	-2.8692726
Н	5.4061410	-0.4986146	-3.9732052
Н	1.2719424	-0.2239742	-5.1289838
Н	-1.5504882	-0.0594961	-4.9690127
Н	4.7599424	-0.4148151	-1.5802358
Н	-1.8961604	-4.5922863	-2.9624187
Н	-0.7005797	-2.7964078	-1.7445810
Н	1.2803569	2.3983061	-3.4282824
Н	3.6664523	-0.4098861	-5.7437145
Н	-2.9191087	-4.1256166	-5.1792718
Н	-2.7441890	1.1032797	-2.5417346
Н	-2.0192784	5.0992736	-3.9327513
Н	-2.7394318	-1.8563912	-6.1751106
Н	-3.5914664	3.3262019	-3.1760282
Н	0.4172548	4.6213052	-4.0529524

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

.

Ļ

