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ABSTRACT

The total synthesis of (�)-ecklonialactone B as well as the 9,10-dihydro derivative by two different strategies is reported. The catalytic asymmetric
Claisen rearrangement of Gosteli-type allyl vinyl ethers delivered elaborated R-keto ester building blocks. Ring-closing metatheses, including a
notable diastereotopos-differentiating variant, a B-alkyl Suzuki�Miyaura cross-coupling reaction and a regio- and diastereoselective last-step
epoxidation are key contributors.

The oxylipins (�)-ecklonialactone A (1) and B (3) have
been isolated from the brown algae Ecklonia stolonifera
by Kurata et al. and Egregia menziessi by Gerwick et al.
(Figure 1).1,2 The constitution and configuration of (�)-1
was deduced fromNMR experiments, X-ray crystallogra-
phy, and analysis of the chiroptical properties of a deriva-
tive. The structural assignment of (�)-3was deduced from
the close similarity of the NMR data of (�)-1 and (�)-3
and further evidenced by the experimental observation
that hydrogenation of (�)-1 as well as (�)-3 afforded
(þ)-2.1 An initial report on the enantioselective synthesis
of the cyclopentanoid segment of (�)-3 by our group was
subsequently followed by the disclosure of the total synth-
eses of (�)-1 and (�)-3 by Hickmann, Alcarazo, and
F€urstner.3,4 F€urstner’s synthesis required a longest linear
sequence of 13 steps, avoided any protecting group trans-
formation, and relied on a ring-closing alkyne metathesis
for the formation of the 14-membered lactone.

Our retrosynthetic reasoning is summarized in Figure 1.
A last-step regio- and diastereoface-differentiating epox-
idationof thediene4was envisioned inorder to circumvent
the presence of the labile oxirane already at an early stage
of the synthetic sequence toward (�)-3.4 Subsequent retro-
synthetic dismantling of the 14-membered lactone of 4
leads to the chiral cyclopentenoid building block 5 which,
in turn, was envisioned to be accessible from the achiral
Gosteli-type allyl vinyl ether (E,Z)-6.5

The experimental realization of the planning is illu-
strated in Scheme1.Catalytic asymmetricGosteli�Claisen
rearrangement (CAGC)6�8 of (E,Z)-69 on gram scale
delivered the R-keto ester 8 which was subjected to highly
diastereoselective K-Selectride reduction to afford the
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R-hydroxy ester 9.10�12 Reductive homologation was ac-
complished by a two-pot reaction sequence: initial LAH
reduction afforded the corresponding diol which was
isolated and characterized and subsequently converted to
the corresponding oxirane using 1-tosyl imidazole (TsIm)
and NaH. In situ ring opening of the epoxide employing
MeMgBr andCuI, thereafter, provided the alcohol 10.13,14

Having assembled the unusual stereotriad of the acyclic
1,5-diene 10, subsequent ring-closing metathesis (RCM)
using the Grubbs catalyst 11a15 (0.005 equiv) delivered the
desired building block 5. Progressing to the bicyclic diene 4
then required assembly of the 14-membered lactone that
included the isolated Z-configured double bond.
Accordingly, the secondary hydroxyl group was pro-

tected,16 thebenzyl ether reductivelywas cleaved,17 theunpro-
tected primary alcohol was oxidized,18 and the resulting
aldehyde was subjected to a Wittig-type olefination19 to

afford the vinyl iodide 12 in excellent overall yield (4 steps,
88%) and a synthetically useful diastereoselectivity (Z:E>
10:1). Suzuki�Miyaura cross-coupling20 between the
vinyl iodide 12 and a B-alkyl borate complex, in situ
prepared from the alkyl bromide 13,21 t-BuLi, and
B-MeO-9-BBN, and subsequent silyl ether cleavage then
delivered the diol 14 in a robust 80%yield as aZ:E>10:1
mixture of double bond isomers. Regioselective two-step
oxidation22,23 of 14 provided the corresponding hydroxy
acid which was subjected to a Yamaguchi lactonization24

which furnished the desired 12,13-desepoxy ecklonialac-
tone 4.

Scheme 1. Synthesis of 12,13-Desepoxy Ecklonialactone

Figure 1. Retrosynthesis.
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With the diene 4 in hand, opportunities for a regio- and
diastereoselective epoxidation of the C12/C13 double
bond were explored (Scheme 2). An initial attempt using
m-CPBA (1 equiv) was highly regioselective. However, the
undesired diastereomer 15 was obtained exclusively. This
outcome was not unexpected considering the result of
Hickmann who obtained the same (12Re,13Si)-diastereo-
face differentiation (dr = 7:1) using the corresponding
enyne.25 Taking advantage of the intrinsic (12Re,13Si)-
nucleophilicity of the diene 4, a two-step procedure was
then employed to finalize the synthesis. Thus, subjecting
the diene 4 to NBS (1 equiv) in aqueous acetone followed
by treatment of the isolated and purified bromohydrin
intermediate with Ag2O in toluene at reflux furnished
(�)-3whoseNMRdatamatched those reportedbyKurata
as well as F€urstner. At this point, we decided to carry the
syntheticmaterial toward the non-natural (þ)-9,10-dihydro
ecklonialactone B (2) whose partial synthesis from the
natural ecklonialactones A and B had been reported by
Kurata.26 Accordingly, (�)-3 was hydrogenated using
Adam’s catalyst27 to afford (þ)-2 whose spectroscopic
data were in accordance with those reported.
In pursuit of a streamlined synthetic sequence we next

implemented a revised retrosynthesis which hinged on the
success of a Z-selective RCM for the ring closure of the
macrolactone 4 from the triene 16 and a diastereotopos-
differentiating RCM28 for formation of the 1,2-trans-
disubstituted cyclopentenoid 17 from the R-hydroxy ester
18 (Figure 2); 18 would be accessible by a sequence of
enantio- and diastereoselective transformations from the
Gosteli-type allyl vinyl ether (E,E)-19.

The synthesis of the Gosteli-type allyl vinyl ether 19 by
an aldol condensation approach is outlined in Scheme 3.29

Etherification of 2,4-pentadienol 20 followed by carbo-
diimide-mediated esterification30 furnished the acetate 21
whichwas subjected to a stepwise aldol condensationusing
4-phenylselenylbutanal31 as a synthetic equivalent for
3-butenal to afford the phenylselenides 22 (Z:E = 3:2)
which were separated by preparative HPLC. Oxidation of
the selenides (E,E)- as well as (Z,E)-22 triggered elimina-
tion32 to provide the Gosteli-type allyl vinyl ethers (E,E)-
and (Z,E)-19. SubsequentCAGCof (Z,E)-19delivered the
R-keto ester (S)-23 which could serve as a building block
for the total synthesis of (þ)-ecklonialactone B.
The implementation of the projected nine-step synthetic

sequence from (E,E)-19 to (�)-ecklonialactone B (3) is
outlined in Scheme 4. CAGC of (E,E)-19 to the R-keto
ester (R)-23 and subsequent reduction by K-Selectride
afforded theR-hydroxy ester24. The crucial diastereotopos-
differentiating RCM was best performed using the
Hoveyda�Grubbs catalyst33 (11b, 0.01 equiv) at ambient
temperature; we were pleased to discover that the trans-
1,2-disubstituted cyclopentenoid 25 was thus isolated in
very good yield and diastereoselectivity (g95:5 according
to NMR analysis). Reductive homologation of 25 to the
corresponding secondary alcohol was followed by an
esterification using the Yamaguchi protocol which deliv-
ered the triene 26.We then turned our attention to devising
conditions that would enable the much desired Z-selective
RCM of 27 to afford 12,13-desepoxy ecklonialactone (4).
Disappointingly, however, and despite the screening of

Scheme 2. Regio- and Diastereoselective Epoxidation

Figure 2. Revised retrosynthesis based on diastereotopos-differ-
entiating RCM.
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different commercial Ru-based catalysts and conditions,
from which in our hands the Stewart�Grubbs catalyst34

(11c) was best-performing in terms of yield, the diene 4was
isolated as mixture of Δ9,10 double bond isomers (E:Z =
1�4:1, depending on the catalyst and conditions).35 Con-
version to the oxirane was then performed as described
above and proceeded without affecting the ratio of Δ9,10

double bond isomers. Subsequent hydrogenation of the
resulting E/Z-mixture of 3 delivered (þ)-2 whose spectral
properties matched those reported by Kurata and those of
the synthetic (þ)-2 from our initial synthesis (Scheme 2).
In conclusion, the catalytic asymmetric Claisen rearran-

gement of the Gosteli-type allyl vinyl ethers 6 and 19
allowed the strategic positioning of double bonds within
the chiral acyclic R-keto esters 8 and 23. Subsequent
RCM furnished the cyclopentenoid building blocks 5
and 17 whose availability enabled the total synthesis of

(�)-ecklonialactone B (3) (longest linear sequence of
23 steps, 2% overall yield) as well as of the non-natural
(þ)-9,10-dihydro ecklonialactone B (2) (protecting-group-
free, longest linear sequence of 17 steps, 4% overall yield)
via an E/Z-mixture of (�)-3.
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Scheme 3. Synthesis of Gosteli-Type Allyl Vinyl Ethers and
Catalytic Asymmetric Claisen Rearrangement

Scheme 4. Synthesis of (þ)-9,10-Dihydro Ecklonialactone B
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