Dalton Transactions

Cite this: Dalton Trans., 2012, 41, 14046

COMMUNICATION

Structural and reactivity comparison of analogous organometallic Pd(III) and Pd(IV) complexes[†]

Fengzhi Tang,^a Fengrui Qu,^a Julia R. Khusnutdinova,^a Nigam P. Rath^b and Liviu M. Mirica*^a

Received 14th September 2012, Accepted 3rd October 2012 DOI: 10.1039/c2dt32127k

The tetradentate ligands ^RN4 (^RN4 = N,N'-di-alkyl-2,11diaza[3,3](2,6)pyridinophane, R = Me or iPr) were found to stabilize cationic (^RN4)PdMe₂ and (^RN4)PdMeCl complexes in both Pd^{III} and Pd^{IV} oxidation states. This allows for the first time a direct structural and reactivity comparison of the two Pd oxidation states in an identical ligand environment. The Pd^{III} complexes exhibit a distorted octahedral geometry, as expected for a d⁷ metal center, and display unselective C–C and C–Cl bond formation reactivity. By contrast, the Pd^{IV} complexes have a pseudo-octahedral geometry and undergo selective non-radical C–C or C–Cl bond formation that is controlled by the ability of the complex to access a five-coordinate intermediate.

Introduction

The role of Pd⁰/Pd^{II} intermediates in palladium-catalyzed reactions has been studied extensively for the past four decades.¹ In addition, Pd^{IV} and Pd^{III} complexes have recently been proposed as catalytically active intermediates in various oxidative organic transformations that complement the conventional Pd^{0/II} catalysis.² In this context, development of ligand systems that can stabilize both Pd^{III} and Pd^{IV} complexes in a similar coordination environment can provide key insight into the mechanism of these important catalytic transformations,³ especially for systems in which either one or both oxidation states have been proposed to be responsible for the observed reactivity.⁴

We have recently reported the first mononuclear organometallic Pd^{III} complexes – stabilized by a tetradentate ligand *N*,*N'*di-*tert*-butyl-2,11-diaza[3,3](2,6)pyridinophane ($^{IBu}N4$), and studied their C–C bond formation reactivity.⁵ We have also investigated the involvement of Pd^{III} species in aerobicallyinduced C–C bond formation from Pd^{II} precursors⁶ and in Kharasch radical additions.⁷ Continuing our study of high valent Pd chemistry, herein we report the use of *N*-methyl ($^{Me}N4$) and *N*-isopropyl ($^{iPr}N4$) pyridinophane ligand analogs that lead to the isolation and characterization of analogous mononuclear Pd^{III} and Pd^{IV} complexes. Isolation of these complexes enabled a direct structural and reactivity comparison of the two Pd oxidation states in an identical ligand environment.

Results and discussion

Synthesis and properties of Pd^{III} and Pd^{IV} complexes

The ^{Me}N4 and ^{iPr}N4 ligands were synthesized using reported and slightly modified synthetic procedures⁸ and were used to prepare the Pd^{II} precursors (^{Me}N4)Pd^{II}MeCl (1), (^{iPr}N4)Pd^{II}MeCl (2), (^{Me}N4)Pd^{II}Me₂ (3), and (^{iPr}N4)Pd^{II}Me₂ (4) (Scheme 1).⁹ Cyclic voltammetry (CV) studies of complexes 1–4 in MeCN reveal two oxidation waves assigned to Pd^{II}/Pd^{III} and Pd^{III}/Pd^{IV} redox couples, respectively (Fig. 1 and Table 1).^{5,9,10} Interestingly, these oxidation potentials increase with the increasing steric bulk of the ligand from ^{Me}N4 to ^{iPr}N4 to ^{*t*Bu}N4. For example, the

Scheme 1 Synthesis of (^RN4)Pd^{III} and (^RN4)Pd^{IV} complexes.

Fig. 1 CVs of (a) ^RN4Pd^{II}MeCl and (b) ^RN4Pd^{II}Me₂ complexes. Conditions: 0.1 M Bu₄NClO₄–MeCN or CH₂Cl₂, 100 mV s⁻¹. The CV data for [(^{*H*}^{Bu}N4)Pd^{III}MeCl]⁺ were taken from ref. 5.

^aDepartment of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-489, USA. E-mail: mirica@wustl.edu ^bDepartment of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, USA

[†]Electronic supplementary information (ESI) available. CCDC 884994. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2dt32127k

 Table 1
 Spectroscopic properties of Pd^{III} complexes

	$E_{\rm pc}^{\rm III/II}, E_{\rm pa}^{\rm II/III}, E_{1/2}^{\rm III/IV} (\Delta E_{\rm p})^a ({\rm mV})$	UV-vis (MeCN), λ (nm) (ε , M ⁻¹ cm ⁻¹)	EPR, g_x , g_y , g_z $(A_N, G)^b$			
$ \frac{1^{+}}{2^{+}} \\ A^{+d} \\ 3^{+} \\ 4^{+} \\ B^{+e} $	$\begin{array}{c} -620/-135, -480/-20, ^{c}+205\ (130)\\ -535, +10, +428\ (65)\\ -464, +134, +587\ (63)\\ -1030, -520, -395\ (75)\\ -965, -420, -135\ (100)\\ -774, -341, +53\ (67) \end{array}$	606 (615), 475 (480), 316 (3550) 658 (810), 517 (580), 312 (4020) 723 (1100), 545 (490), 368 (3300) 620 (405), 490 (430), 365 (1500) 666 (623), 500 (500), 339 (4545) 741 (360), 560 (160), 350 (2300)	2.212, 2.101, 2.014 (23.0) 2.228, 2.115, 2.011 (21.3) 2.239, 2.134, 2.005 (19.5) 2.168 (16.0), 2.168 (16.0), 1.989 (22.5) 2.184 (15.0), 2.184 (15.0), 1.988 (20.4) 2.222 (12.0), 2.191 (13.8), 1.986 (18.0)			

^{*a*} Measured for Pd^{II} precursors by CV vs. Fc⁺/Fc in 0.1 M Bu₄NClO₄–MeCN or CH₂Cl₂, scan rate 100 mV s⁻¹; ΔE_p is the peak potential separation for the Pd^{III/IV} couple. ^{*b*} In 3 : 1 PrCN : MeCN, 77 K; A_N 's are superhyperfine coupling constants to the axial N atoms. ^{*c*} The duplicate $E_{pa}^{II/II}$ and $E_{pc}^{II/II}$ values are likely due to two conformations present in solution (ref. 5). ^{*d*} CV and UV-vis data for [(^{*t*Bu}N4)Pd^{III}MeCl]⁺ (**A**⁺) are from ref. 5. ^{*e*} UV-vis and EPR data for [(^{*t*Bu}N4)Pd^{III}Me₂]⁺ (**B**⁺) are from refs. 5 and 6, respectively.

 $E_{1/2}^{III/IV}$ values of ^{Me}N4 complexes **1** and **3** are ~400 mV lower than those for the analogous ^{*IBu*}N4Pd^{II} complexes (Table 1).⁵ The presence of such low Pd^{III/IV} oxidation potentials and an appreciable separation between the Pd^{III/III} and Pd^{III/IV} potentials suggest that both Pd^{III} and Pd^{IV} species can be stabilized by ^{Me}N4 and ^{*iPr*}N4 (*vide infra*).

One-electron oxidation of ^RN4Pd^{II}MeCl complexes 1 and 2 by controlled potential electrolysis (CPE) in 0.1 M Bu₄NClO₄-MeCN or chemical oxidation with 1 equiv. ferrocenium hexafluorophosphate $(Fc^+PF_6^-)$ generate the Pd^{III} species $[(^{Me}N4) Pd^{III}MeCl]^+$ (1⁺) and $[(^{IPr}N4)Pd^{III}MeCl]^+$ (2⁺), while oxidation of **3** and **4** with 1 equiv. $Fc^+PF_6^-$ yields $[(^{Me}N4)Pd^{III}Me_2]^+$ (**3**⁺) and $[(^{iPr}N4)Pd^{III}Me_2]^+$ (4⁺), respectively (Scheme 1).⁹ The X-ray structures of $[1^+]ClO_4$, $[2^+]ClO_4$, $[3^+]ClO_4$, and $[4^+]ClO_4$ all reveal the presence of the expected distorted octahedral geometry at the d⁷ Pd^{III} center (Fig. 2–4 and S33⁺).^{10,11} Moreover, the Pd– N_{axial} distances increase in ~0.05 Å steps when going from ^{Me}N4 to ^{iPr}N4 to ^{*i*Bu}N4 due to the increasing steric clash between the N-substituents and the equatorial ligands, as can be observed in the space filling models of the Pd^{III} complexes (Fig. S33-S34). The presence of the less bulky N-substituent also leads to a more symmetric structure for the Pd^{III} complexes. For example, while 3^+ exhibits a more symmetric C_{2v} geometry, 4^+ has a C_2 symmetry due to the bulkier ^{iPr}N4 ligand.⁶

The EPR spectra of complexes 1^+-4^+ reveal anisotropic signals corresponding to Pd^{III} centers with a d_z^2 ground state, as expected for a d⁷ ion (Table 1, Fig. S28–S32†).^{5,6,9,10} This is further supported by the presence of superhyperfine coupling to the two axial N atoms ($A_N = 12-23$ G) that are observed in glassing solvent mixtures at 77 K.⁹ Interestingly, the shorter Pd–N_{axial} distances due to the size of the N-substituents are also responsible for the increasing trend in the A_N superhyperfine coupling constants from $^{IBu}N4$ to $^{IPr}N4$ to $^{Me}N4$ (Table 1), suggesting that these EPR parameters can be used to approximate the strength of Pd–N_{axial} interactions in Pd^{III} complexes.⁹ In addition, the same ligand steric effects likely lead to a red shift of the visible absorption bands with the increasing size of the N-substituent in [(^RN4)Pd^{III}MeC1]⁺ and [(^RN4)Pd^{III}Me₂]⁺ complexes (Table 1 and Fig. S23–S24†).¹²

Further chemical oxidation of 1^+ and 2^+ with 1 equiv. nitrosonium tetrafluoroborate (NO⁺BF₄⁻) in MeCN generates [(^{Me}N4) Pd^{IV}MeCl]²⁺ (1^{2+}) and [(^{iPr}N4)Pd^{IV}MeCl]²⁺ (2^{2+}), while treatment of **3** and **4** with 2 equiv. Fc⁺PF₆⁻ yields the Pd^{IV} complexes [(^{Me}N4)Pd^{IV}Me₂]²⁺ (3^{2+}) and [(^{iPr}N4)Pd^{IV}Me₂]²⁺ (4^{2+})

Fig. 2 ORTEP representation (50% probability ellipsoids) of the cations of $[1^+]ClO_4$ (left) and $[1^{2+}](ClO_4)_2$ (right). Selected bond distances (Å) and angles (°): $[1^+]ClO_4$, Pd1–C1 2.021(1), Pd1–Cl1i 2.344(3), Pd1–N1 2.085(2), Pd1–N1 2.085(2), Pd1–N3 2.302(3), Pd1–N4 2.338(3), N3–Pd1–N4 149.12(1); $[1^{2+}](ClO_4)_2$, Pd1–C1 2.072(2), Pd1–Cl1 2.2917(6), Pd1–N1 1.966(2), Pd1–N2 2.063(2), Pd1–N3 2.098(2), Pd1–N4 2.105(2), N3–Pd1–N4 158.94(7).

Fig. 3 ORTEP representation (50% probability ellipsoids) of the cations of $[3^+]ClO_4$ (left) and $[3^{2+}](PF_6)_2$ (right). Selected bond distances (Å) and angles (°): $[3^+]ClO_4$, Pd1–C1 2.0432(10), Pd1–C1i 2.0433(10), Pd1–N1 2.1393(7), Pd1–N1i 2.1393(7), Pd1–N2 2.4013 (11), Pd1–N3 2.3506(12), N2–Pd1–N3 145.37(4); $[3^{2+}](PF_6)_2$, Pd1–C1 2.042(3), Pd1–C2 2.039(3), Pd1–N1 2.054(2), Pd1–N2 2.058(3), Pd1–N3 2.129(3), Pd1–N4 2.116(2), N3–Pd1–N4 156.70(10).

(Scheme 1).⁹ The X-ray structures of $[1^{2+}](CIO_4)_2$, $[3^{2+}](PF_6)_2$, and $[4^{2+}](PF_6)_2$ confirm the presence of Pd^{IV} centers with a pseudo-octahedral geometry and reveal Pd–N_{axial} distances that are 0.24–0.27 Å shorter than those in the Pd^{III} analogs 1⁺, 3⁺, and 4⁺, respectively (Fig. 2–4), in line with the preferred octahedral geometry for a d⁶ Pd^{IV} center *vs.* the distorted geometry of a d⁷ Pd^{III} ion.^{10,11} Moreover, the ^{Me}N4 ligand can easily accommodate the shorter Pd–N_{axial} distances and the more compact structure of the octahedral Pd^{IV} centers, as seen in the

Fig. 4 ORTEP representation (50% probability ellipsoids) of the cations of $[4^+]ClO_4$ (left) and $[4^{2+}](PF_6)_2$ (right). Selected bond distances (Å) and angles (°): $[4^+]ClO_4$, Pd1–C1 2.033(4), Pd1–C2 2.042 (4), Pd1–N1 2.165(3), Pd1–N2 2.132(3), Pd1–N3 2.429(3), Pd1–N4 2.452(3), N3–Pd1–N4 145.61(11); $[4^{2+}](PF_6)_2$, Pd1–C1 2.057(11), Pd1–C2 2.028(11), Pd1–N1 2.034(9), Pd1–N2 2.048(9), Pd1–N3 2.177(9), Pd1–N4 2.182(9), N3–Pd1–N4 155.5(3).

Fig. 5 Space filling models of the cations of $[3^{2^+}](\text{PF}_6)_2$ and $[4^{2^+}]$ $(\text{PF}_6)_2.$

space filling models of 3^{2+} (Fig. 5). By contrast, the N-iPr groups of ^{iPr}N4 in 4^{2+} cause a distortion of the macrocyclic ligand and push the Me ligands out of the equatorial plane to accommodate the shorter Pd–N_{axial} distances of the Pd^{IV} center (Fig. 5 and S36–S37†).⁹ These structural properties also provide strong support for the observed trend of decreasing Pd^{III/IV} oxidation potentials from ^{*i*Bu}N4 to ^{*i*Pr}N4 to ^{Me}N4 (Fig. 1).¹³ Interestingly, $1^{2+}-4^{2+}$ are uncommon dicationic organometallic complexes and are expected to exhibit increased electrophilic reactivity.^{14,15}

Reactivity comparison of $\mathbf{Pd}^{\mathbf{III}}$ and $\mathbf{Pd}^{\mathbf{IV}}$ complexes

The involvement of Pd^{IV} and/or Pd^{III} intermediates in various catalytic reactions has recently been demonstrated or proposed.² In this regard, our ability to isolate Pd^{III} and Pd^{IV} complexes in an identical ligand environment provides a unique opportunity to systematically probe their reactivity in organometallic reactions. The (^RN4)Pd^{III}MeCl complexes 1^+ and 2^+ are stable in the solid state or in solution in the dark, yet they undergo unselective and low-yielding C–C and C–Cl bond formation reactions in the

$[({}^{Me}N4)Pd^{IV}MeCI]^{2+}$ 1^{2+}	70 °C, dark MeCN, 4h	MeCl + 22±2%	[Pd ^{II}] 68±4%
[(^{Me} N4)Pd ^{IV} MeCl] ²⁺ 1 ²⁺	2 eq Et ₄ NCI RT, dark, MeCN, 1h	MeCl + 99±1%	(^{Me} N4)Pd ^{II} Cl ₂ 99±1%
[(^{iPr} N4)Pd ^{IV} MeCI] ²⁺ 2 ²⁺	RT, dark MeCN, 10h	MeCI + 52±1%	[(^{iPr} N4)Pd ^{II} (MeCN) ₂] ²⁺ 39±1%

Scheme 3 Reactivity of [(^RN4)Pd^{IV}MeC1]²⁺ complexes.¹⁹

presence of visible light to generate both ethane and methyl chloride in up to 17% and 21% yields, respectively (Scheme 2). Formation of the two products is suppressed completely in the presence of an effective alkyl radical trap, TEMPO,⁹ suggesting a radical mechanism.⁵ By contrast, the thermolysis of (^RN4)Pd^{IV}-MeCl complexes leads to selective formation of MeCl: 1^{2+} generates 22% MeCl in 4 h at 70 °C, while 2^{2+} undergoes reductive elimination even at RT to yield 52% MeCl (Scheme 3).¹⁶ The observed reactivity is not affected by TEMPO, indicative of a non-radical mechanism. Moreover, addition of 2 equiv. Cl- to 1²⁺ leads to quantitative formation of MeCl and (^{Me}N4)Pd^{II}Cl₂ in 1 h at RT, suggesting an S_N2 reductive elimination mechanism.¹⁷ The observed higher yield of MeCl for 2^{2+} vs. 1^{2+} is likely due to the greater steric bulk of the N-iPr vs. N-Me groups that facilitates formation of a five-coordinate intermediate via either chloride or axial amine dissociation.¹⁸ Overall, these reactivity studies suggest that preferential formation of Pd^{IV} vs. Pd^{III} species during oxidatively-induced reactions leads to a selective C-Cl bond formation, likely due to the increased electrophilicity of Pd^{IV} vs. Pd^{III} centers in $S_N 2$ reductive elimination.

Similar comparative reactivity studies were performed for the $[(^{R}N4)Pd^{III}Me_{2}]^{+}$ and $[(^{R}N4)Pd^{IV}Me_{2}]^{2+}$ species. Photolysis of the Pd^{III} complexes 3^+ and 4^+ produces ethane in ~30% yield (Scheme 4).¹⁶ Interestingly, the formation of ethane is only partially suppressed in the presence of TEMPO, suggesting the potential involvement of both radical and non-radical mechanisms (vide infra). By comparison, while almost no ethane is formed upon thermolysis of 3^{2+} at 70 °C, 4^{2+} generates up to 54% ethane via a non-radical mechanism (Scheme 5).⁹ This dramatic reactivity difference may be due to the symmetric geometry of 3^{2+} that does not favor formation of a 5-coordinate intermediate, whereas the bulkier N-iPr groups lead to a geometric distortion in 4^{2+} that promotes the formation of a 5-coordinate intermediate necessary for ethane elimination.^{18,20} In addition, photolysis of both 3^{2+} and 4^{2+} generates ethane in ~50% yield, both in the absence and presence of TEMPO, suggesting a non-radical mechanism of ethane formation. Therefore, we propose that a photo-induced dissociation of an axial N donor generates a 5-coordinate intermediate $[(\kappa^{3-R}N4)]$

```
hv, 0 °C
                                   Me-Me + CH<sub>4</sub> + [(<sup>Me</sup>N4)Pd<sup>II</sup>Me(MeCN)]<sup>4</sup>
                    MeCN. 6h
                                    30±3%
                                               13±1%
                                                                       47±3%
[(MeN4)PdIIIMe2]
         3+
                     TEMPO
                                   Me-Me + CH<sub>4</sub> + [(<sup>Me</sup>N4)Pd<sup>II</sup>Me(MeCN)]<sup>+</sup>
                                                                                              + TEMPO-Me
                     hv. 0 °C
                                                                       26±2%
                                                                                                     47±3%
                                    12±1%
                                                 7±2%
                    MeCN. 6h
                      hv. 0 °C
                                   Me-Me + CH<sub>4</sub> + [(<sup>iPr</sup>N4)Pd<sup>II</sup>Me(MeCN)]
                    MeCN, 6h
                                    28+1%
                                                                      73+2%
                                                  9+2%
[(<sup>iPr</sup>N4)Pd<sup>III</sup>Me<sub>2</sub>]
         A+
                                                                                                     MPO-Me
                                                                                                     64±5%
```

+	TEMPO	Me-Me +	CH4 +	[(^{iPr} N4)Pd ^{II} Me(MeCN)] ⁺	+ TE
	MeCN, 6h	19±1%	3±1%	45±8%	

Scheme 4 Reactivity of [(^RN4)Pd^{III}Me₂]⁺ complexes.¹⁹

[(^{Me} N4)Pd ^{IV} Me ₂] ²⁺ 3 ²⁺	MeCN, 6 h	Me-Me + CH ₄ + [Pd ^{II}] <1% 55±1% 88±2%
[(^{iPr} N4)Pd ^{IV} Me ₂] ²⁺ 4 ²⁺	70 °C MeCN, 64 h	Me-Me + CH_4 + $[({}^{ Pr}N4)Pd^{ }(MeCN)]_2^{2+}$ 54±1% 24±1% 19±1%
[(^{Me} N4)Pd ^{IV} Me ₂] ²⁺ 3 ²⁺	hv, 0 °C MeCN, 6 h	Me-Me + CH ₄ + [Pd ^{II}] 46±2% 6±1% 88±3%
[(^{iPr} N4)Pd ^{IV} Me ₂] ²⁺ 4 ²⁺	hv, 0 °C MeCN, 1 h	Me-Me + CH ₄ + $[({}^{iPr}N4)Pd^{ii}(MeCN)]_2^{2+}$ 54±1% 24±1% 45±2%

Scheme 5 Reactivity of [(^RN4)Pd^{IV}Me₂]²⁺ complexes.¹⁹

[(^{Me} N4)Pd ^{III} (CH ₃) ₂]¹ 3 ⁺ 1	· + :	[(^{Me} N4)Pd ^{III} (CD ₃) ₂]* 3 *-d ₆ 1	hv, 0°C CD ₃ CN 6h	CH ₃ CH ₃ 10±1% 1	+ :	CH ₃ CD ₃ 10±1% 1	+ :	CD ₃ CD ₃ [10%] [1]
[(^{Me} N4)Pd ^{IV} (CH ₃) ₂] ² 3 ²⁺ 1	²⁺ +	· [(^{Me} N4)Pd ^{IV} (CD ₃) ₂] ²⁴ 3 ²⁺ -d ₆ 1	hv, 0°C CD ₃ CN 6h	CH ₃ CH ₃ 23±2% 1	+	CH ₃ CD ₃ 0% 0	+	CD ₃ CD ₃ [23%] [1]

Scheme 6 Crossover experiments for the photolysis of 3^+ and 3^{2+} .

Pd^{IV}Me₂]²⁺, which is likely to undergo facile reductive elimination (vide infra).18,20

Crossover experiments were performed to gain insight into the possible mechanisms of ethane formation in the photolysis of $[(^{R}N4)Pd^{III}(Me)_{2}]^{+}$ and $[(^{R}N4)Pd^{IV}(Me)_{2}]^{2+}$ complexes. Photolysis of a 1 : 1 mixture of [(^{Me}N4)Pd^{III}(CH₃)₂]ClO₄, [3⁺]ClO₄, and $[(^{Me}N4)Pd^{III}(CD_3)_2]^+$, $[3^+-d_6]ClO_4$, leads to formation of both CH₃CH₃ and CH₃CD₃ in 10% yield. Given the typical yield of ~30% ethane upon photolysis of $[3^+]ClO_4$ under the same conditions, the result suggests a CH₃CH₃: CH₃CD₃: CD₃CD₃ ratio of 1:1:1 (Scheme 6). The observed ratio of ethane isotopologs is consistent with the formation of a $[(\kappa^{3-Me}N4)Pd^{IV}Me_3]^+$ intermediate (5^+) that undergoes a fast rearrangement of the Me groups and thus can reductively eliminate any two of three Me groups.⁶ In addition, the 1:1:1 ratio does not support a radical mechanism involving the coupling of two Me radicals or an S_H2-like mechanism involving a Me radical attacking the Me group of another Pd^{III}-Me molecule, as these mechanisms would lead to a 1:2:1 statistical ratio of ethane isotopologs.²¹ The proposed intermediate 5^+ can be generated through a radical

Scheme 7 Proposed mechanisms for the photo-induced ethane elimination from 3^+ (and 4^+).

Scheme 8 Proposed mechanism for the photo-induced ethane elimination from 3^{2+} (and 4^{2+}).

mechanism involving a homolytic cleavage of a Pd^{III}-Me bond to form a Me radical that can subsequently bind to the Pd^{III} center of another molecule of 3^+ (Scheme 7, path A).⁵ Alternatively, a non-radical dissociation of an axial Pd^{III} - N_{axial} bond upon irradiation can form a transient intermediate [($\kappa^{3-Me}N4$)] $Pd^{III}Me_2$, which can undergo Me group transfer *via* disproportionation with another molecule of 3^+ to yield 5^+ (Scheme 7, path B).^{6,22} The partial suppression of ethane formation by TEMPO suggests that both mechanisms may be operative during photolysis and can generate species 5^+ , which is responsible for ethane formation.²²

Interestingly, crossover studies for the Pd^{IV} complexes yield different results. Photolysis of a 1:1 mixture of [(MeN4)-Pd^{IV}(CH₃)₂](PF₆)₂, [**3**²⁺](PF₆)₂, and [(^{Me}N4)Pd^{IV}(CD₃)₂](PF₆)₂, $[3^{2+}-d_6](PF_6)_2$, yields 23% of CH₃CH₃, and no crossover product CH₃CD₃ is formed (Scheme 6).⁹ Since the typical yield of ethane upon photolysis of 3^{2+} is ~46%, the result suggests a 1:0:1 ratio of CH₃CH₃, CH₃CD₃, and CD₃CD₃. The observed ratio is consistent with a non-radical mechanism involving a photo-induced dissociation of an axial N donor to give the 5-coordinate intermediate, followed by rapid concerted reductive elimination of ethane (Scheme 8).^{18,20} Overall, these reactivity studies suggest that, by contrast to Pd^{III} analogs, the Pd^{IV} complexes undergo selective C-C and C-heteroatom bond formation that most likely involve non-radical mechanisms.

Conclusion

In summary, we have successfully isolated and characterized analogous organometallic Pd^{III} and Pd^{IV} complexes stabilized by the tetradentate ligands ^{Me}N4 and ^{iPr}N4. The unprecedented isolation of both Pd^{III} and Pd^{IV} complexes with an identical ligand environment allowed a direct structural and organometallic reactivity comparison. The d⁷ Pd^{III} centers prefer a distorted octahedral geometry, while the $d^6 P d^{IV}$ centers adopt a more compact octahedral geometry. In addition, reactivity studies show that Pd^{III} centers lead to photo-induced radical formation and unselective C-C and C-Cl bond formation, although transient Pd^{IV} intermediates can also be involved. By comparison, Pd^{IV} centers undergo selective C-C or C-Cl bond formation through non-radical reductive elimination mechanisms. Overall, these studies suggest that both Pd^{III} and Pd^{IV} species could act as intermediates in various oxidatively-induced C-C and C-heteroatom bond formation reactions, while Pd^{IV} centers tend to exhibit a more selective and higher yielding reductive elimination reactivity. Our current research efforts aim to provide insight into the involvement of Pd^{III} and/or Pd^{IV} species in stoichiometric and catalytic organic transformations employing high-valent Pd intermediates.

Notes and references

- 1 (a) E. Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley & Sons, Hoboken, NJ, 2002; (b) P. W. N. M. van Leeuwen, Homogeneous Catalysis: Understanding the Art, Kluwer Academic Publishers, Dordrecht, 2004; (c) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2010.
- (a) A. Canty, Dalton Trans., 2009, 10409; (b) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094;
 (c) K. Muniz, Angew. Chem., Int. Ed., 2009, 48, 9412; (d) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147; (e) P. Sehnal, R. J. K. Taylor and I. J. S. Fairlamb, Chem. Rev., 2010, 110, 824;
 (f) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc. Rev., 2010, 39, 712; (g) D. C. Powers and T. Ritter, Top. Organomet. Chem., 2011, 35, 129.
- 3 D. C. Powers, E. Lee, A. Ariafard, M. S. Sanford, B. F. Yates, A. J. Canty and T. Ritter, *J. Am. Chem. Soc.*, 2012, **134**, 12002.
- 4 (a) W.-Y. Yu, W. N. Sit, K.-M. Lai, Z. Zhou and A. S. C. Chan, J. Am. Chem. Soc., 2008, 130, 3304; (b) T. S. Mei, X. S. Wang and J. Q. Yu, J. Am. Chem. Soc., 2009, 131, 10806; (c) K. M. Engle, T. S. Mei, X. S. Wang and J. Q. Yu, Angew. Chem., Int. Ed., 2011, 50, 1478.
- 5 J. R. Khusnutdinova, N. P. Rath and L. M. Mirica, J. Am. Chem. Soc., 2010, 132, 7303.

- 6 J. R. Khusnutdinova, N. P. Rath and L. M. Mirica, J. Am. Chem. Soc., 2012, 134, 2414.
- 7 J. R. Khusnutdinova, N. P. Rath and L. M. Mirica, *Angew. Chem., Int. Ed.*, 2011, **50**, 5532.
- 8 (a) F. Bottino, M. Di Grazia, P. Finocchiaro, F. R. Fronczek, A. Mamo and S. Pappalardo, *J. Org. Chem.*, 1988, **53**, 3521; (b) C. M. Che, Z. Y. Li, K. Y. Wong, C. K. Poon, T. C. W. Mak and S. M. Peng, *Polyhedron*, 1994, **13**, 771.
- 9 See ESI.†
- 10 L. M. Mirica and J. R. Khustnutdinova, Coord. Chem. Rev., 2012, 256, DOI: 10.1016/j.ccr.2012.04.030.
- (a) A. J. Blake, A. J. Holder, T. I. Hyde and M. Schröder, *J. Chem. Soc., Chem. Commun.*, 1987, 987; (b) A. J. Blake, L. M. Gordon, A. J. Holder, T. I. Hyde, G. Reid and M. Schröder, *J. Chem. Soc., Chem. Commun.*, 1988, 1452; (c) A. R. Dick, J. W. Kampf and M. S. Sanford, *J. Am. Chem. Soc.*, 2005, **127**, 12790.
- 12 The detailed characterization of the observed spectroscopic trends for complexes 1⁺-4⁺ is ongoing and will be reported elsewhere.
- 13 The Pd^{IV} species [(^{Bu}N4)Pd^{IV}MeC1]²⁺ can be generated electrochemically at low temperatures, yet it is unstable at RT (ref. 6).
- 14 Only one other dicationic organometallic complex has been reported to date: W. Oloo, P. Y. Zavalij, J. Zhang, E. Khaskin and A. N. Vedernikov, *J. Am. Chem. Soc.*, 2010, 132, 14400.
 15 While a few monoaryl Pd^{IV} complexes have been isolated to date
- 15 While a few monoaryl Pd^{IV} complexes have been isolated to date (T. Furuya and T. Ritter, *J. Am. Chem. Soc.*, 2008, **130**, 10060; N. D. Ball and M. S. Sanford, *J. Am. Chem. Soc.*, 2009, **131**, 3796; P. L. Arnold, M. S. Sanford and S. M. Pearson, *J. Am. Chem. Soc.*, 2009, **131**, 13912; Ref. 14), only one other monoalkyl Pd^{IV} complex has been reported: D. Shabashov and O. Daugulis, *J. Am. Chem. Soc.*, 2010, **132**, 3965.
 16 Thermolysis in the dark of Pd^{III} complexes leads to unspecific decompo-
- 16 Thermolysis in the dark of Pd^{III} complexes leads to unspecific decomposition and formation of methane. In addition, photolysis or thermolysis of Pd^{II} precursors leads to formation of methane and Pd black, along with small amounts of ethane or MeCl.
- 17 (a) S. S. Stahl, J. A. Labinger and J. E. Bercaw, Angew. Chem., Int. Ed., 1998, **37**, 2181; (b) B. S. Williams and K. I. Goldberg, J. Am. Chem. Soc., 2001, **123**, 2576.
- 18 (a) J. M. Racowski, A. R. Dick and M. S. Sanford, J. Am. Chem. Soc., 2009, **131**, 10974; (b) J. M. Racowski and M. S. Sanford, *Top. Organomet. Chem.*, 2011, **35**, 61.
- 19 During the reactivity studies for ^RN4Pd^{III}/Pd^{IV} complexes, the ^RN4Pd^{II}Me(solv) or ^RN4Pd^{II}(solv)₂ products are unstable and lead to formation of methane and other Pd^{II} products (see ESI[†]).
- 20 (a) J. Procelewska, A. Zahl, G. Liehr, R. van Eldik, N. A. Smythe, B. S. Williams and K. I. Goldberg, *Inorg. Chem.*, 2005, 44, 7732; (b) D. M. Crumpton and K. I. Goldberg, *J. Am. Chem. Soc.*, 2000, 122, 962.
- 21 M. P. Lanci, M. S. Remy, W. Kaminsky, J. M. Mayer and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 15618.
- 22 We have independently synthesized the $[(\kappa^{3-Me}N4)Pd^{IV}Me_3]^+$ species **5**⁺ and shown its involvement in aerobically-induced ethane elimination: F. Tang, Y. Zhang, N. P. Rath and L. M. Mirica, *Organometallics*, 2012, **31**, 6690–6696.