Enantioselective Phase-Transfer Catalytic α -Benzylation and α -Allylation of α -*tert*-Butoxycarbonyllactones

Min Woo Ha,^a Heejin Lee,^a Hye Yeong Yi,^a Yohan Park,^b Sori Kim,^a Suckchang Hong,^a Myungmo Lee,^a Mi-hyun Kim,^a Taek-Soo Kim,^a and Hyeung-geun Park^{a,*}

^a College of Pharmacy, Seoul National University, 1Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea Fax: (+82)-2-872-9129; phone: (+82)-2-880-8264; e-mail: hgpk@snu.ac.kr

^b College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyeongnam 621-749, Korea

Received: November 7, 2012; Revised: January 17, 2013; Published online: February 22, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201200976.

Abstract: A new enantioselective α -benzylation and α -allylation of α -tert-butoxycarbonyllactones was devloped. α -Benzylation and α -allylation of α -tertbutoxycarbonylbutyrolactone and α -tert-butoxycarbonylvalerolactone under phase-transfer catalytic conditions (50% cesium hydroxide, toluene, -60 °C) in the presence of (S,S)-3,4,5-trifluorophenvl-NAS bromide (1 mol%) afforded the corresponding α -substituted α -tert-butoxycarbonyllactones in very high chemical yields (up to 99%) and optical yields (up to 99% ee). The synthetic potential of this method has been successfully demonstrated by the asymmetric synthesis of unnatural α quaternary homoserines, 3-alkyl-3-carboxypyrrolidine and 3-alkyl-3-carboxypiperidine.

Keywords: asymmetric allylation; asymmetric benzylation; enantioselectivity; phase-transfer catalysis

Malonate-type compounds are one of the most fundamental synthetic starting materials for C-C bond formation in organic synthesis.^[1] In addition, chiral α substituted malonates including α -carboxylactones and α -carboxylactams have been popularly employed for the construction of chiral quaternary carbon centers of biologically active natural products and pharmaceuticals.^[2,3] The construction of chiral quaternary carbon centers by enantioselective α -alkylation of carbonyl systems^[4] and β -keto ester systems,^[5] and chiral induction of β -position to malonate by asymmetric conjugate addition or palladium-catalyzed allylation of malonates^[6] have been widely developed to date. However, the enantioselective direct α -alkylation of malonate type compounds has not yet been extensively studied.^[7]

Recently, we reported a new synthetic method for chiral α -mono-alkylmalonamide esters (2) by phasetransfer catalytic (PTC) mono- α -alkylation of N,N-diarylmalonamide esters (1) in the presence of (S,S)-3,4,5-trifluorophenyl-NAS bromide (8) and successfully proved its usefulness by applying to the synthesis of various chiral building blocks (Scheme 1).^[8] As a continuing study, we successfully further expanded the PTC alkylation to the malonate system. The enantioselective α -alkylation of diphenylmethyl *tert*-butyl α -alkylmalonates (3) under phase-transfer catalysis condition afforded α, α -dialkylmalonates (4) in high chemical and optical yields which could be readily converted to versatile chiral intermediates for the construction of quaternary carbon centers.^[9] With regard to lactones, a few cases were reported as part of studies, such as α -substitution of α -tert-butylcarboxybutyrolactone with cyclic sulfamidates,^[10] α -fluorination of α -tert-butylcarboxy-lactones via chiral Pd(II)-bisphospine catalysis^[11] and α -substitution of β ketobutyrolactone,^[12] However, there are no systematic studies on the asymmetric α -substitution of α -carboxy-lactones with high enantioselectivity. Based on

Scheme 1. Previous chiral phase-transfer catalysis of malonate type substrates.

WILEY I

Figure 1. Chiral phase-transfer catalysts.

Figure 2. Design of α -carboxylactones as substrates.

a series of our previous studies, we attempted to develop a new asymmetric synthetic method for α -quaternary lactone system. Here we reported a new and highly efficient enantioselective α - benzylation and α allylation of α -carboxy-lactones under phase-transfer catalytic conditions.^[13]

First, we needed to design an α -carboxy-lactone as a substrate for the initial study. Since the *tert*-butyl ester group and diphenylmethyl ester group are quite essential for high enantioselectivity in enantioselective PTC α -alkylations of the malonate system (3)^[9] in the presence of a catalyst 8, both ester groups were employed to α -carboxy-lactone substrates. For the preliminary study, α -diphenylmethoxycarbonylbutyrolactone (9) and α -*tert*-butoxycarbonylbutyrolactone (10) were prepared (Figure 2, Scheme 2).

Treatment of methoxycarbonyl anhydride with butyrolactone (11) under basic conditions with sodium trimethylsilylamide, followed by transesterification using sodium perborate as a catalyst, afforded 9 (53% in two steps). Compound 10 could be obtained by *tert*-butoxycarbonylation of butyrolactone (11) using Boc₂O under basic conditions with sodium trimethylsilylamide (63%). Their substrate efficiency was ex-

Scheme 2. Preparation of α -carboxylactones.

amined by α -benzylation under typical PTC conditions. The enantioselective PTC benzylation of **9** and **10** was performed in the presence of representative chiral PTC catalysts (**5–8**)^[14] (Figure 1), along with benzyl bromide (5.0 equiv.) and 50% aqueous KOH (5.0 equiv.) at 0°C in toluene (Table 1).

As shown in Table 1, α -*tert*-butoxycarbonylbutyrolactone (**10**, 90% *ee*) afforded quite high enantioselectivity with lower chemical yield than that of α -diphenylmethoxycarbonylbutyrolactone (**9**, 62% *ee*) in the presence of **8**, suggesting that the *tert*-butyl ester group is more efficient for enantioselectivity than the diphenylmethyl ester group. All of the *Cinchona*-derived catalysts (**5–7**) afforded quite low enantioselectivities compared to that of catalyst **8**, which was in accord with previous results.^[8,9] We chose α -*tert*-butoxycarbonylbutyrolactone (**10**) as an optimal lactone substrate for further study. Optimization of base and

Table 1. Optimization of substrates and catalys	and catalysts.	tes and	substrates	ot	ptimization	Op	L.	lable	
--	----------------	---------	------------	----	-------------	----	----	-------	--

Q́.		PTC cats O O PhCH2Br (5.0 equiv.) O O 50% KOH (5.0 equiv.) O O toluene, 0 °C Ph			
Entry	R	Cat.	Time [h]	Yield [%] ^[a]	ee [%] ^[b]
1	Ph ₂ CH (9)	8 (1 mol%)	2	94	62
2	<i>t</i> -Bu (10)	8 (1 mol%)	1.5	66	90
3	<i>t</i> -Bu (10)	5 (10 mol%)	0.2	80	19
4	<i>t</i> -Bu (10)	6 (10 mol%)	0.2	87	25
5	<i>t</i> -Bu (10)	7 (10 mol%)	90	85	18

^[a] Isolated yields.

^{b]} The enantiopurity was determined by HPLC analysis of α -benzylated product using a chiral column (Chiralcel OD-H or Chiralpak AD-H) with hexanes/2-propanol as eluents.

temperature conditions using substrate 10 was performed.

As shown in Table 2, PTC benzylation under various base conditions revealed that aqueous alkali base generally gave both higher chemical yield and enantioselectivity than did the corresponding solid alkali bases (entry 1–6), and lower temperatures afforded higher enantioselectivity with higher chemical yields (entry 6–10). We speculated that the lower chemical yield of solid bases might be due to hydrolysis of the lactone ring by their stronger basicity. Best enantioselectivity was observed in the case of 50% CsOH base conditions at -60 °C (entry 9, 94%, 99% *ee*), but the

Table 2. Optimization of bases and temperatures.

	O ↓ O- <i>t</i> -Bu	8 (1 mol%) PhCH ₂ Br (5.0	equiv.)		O- <i>t</i> -Bu
<u>`_</u> /	_	base (5.0 equi toluene	v.)	└_/ `] Ph	
10				100	
Entry	Base	Temp. [°C]	Time [h]	Yield [%] ^[a]	ее [%] ^[b]
1	NaOH	0	2	31	27
2	КОН	0	1.5	30	37
3	CsOH	0	0.2	25	45
4	50% NaOH	0	1.5	61	75
5	50% KOH	0	0.2	66	90
6	50% CsOH	0	0.2	62	94
7		-20	0.5	70	96
8		-40	1.5	75	97
9		-60	3	94	99
10		-78	90	72	97

^[a] Isolated yields.^[b] The enantiopurity was determined by HPLC analysis of **10b** using a chiral column (Chiralcel OD-H or Chiralpak AD-H) with hexanes/2-propanol as eluents.

lower reaction temperature gave slightly lower enantioselectivity and chemical yield (entry 10, 72%, 97% *ee*) with quite longer reaction time (90 h).

The promising results with 5-membered lactone 10 encouraged us to expand the ring size to a 6-membered lactone. α -tert-Butoxycarbonylvalerolactone (14) was prepared by the same method (82%) as α -tert-butoxycarbonylbutyrolactone (10) and substrate efficiency was examined by benzylation in the presence of 8 (1 mol%) under the optimized PTC conditions (Table 2, entry 9). High enantioselectivity was observed along with a 5-membered lactone substrate (Table 3, entry 7; 93%, 96% ee).

The lactone substrates **10** and **14** were chosen for further investigation into the scope and limitations of our enantioselective PTC alkylation with various electrophiles (Table 3). Both lactone systems gave very high enantioselectivities with allylic and benzylic bromides, and generally butyrolactone gave slightly higher enantioselectivity compared to that of valerolactone. However, unactivated alkyl halide such as methyl iodide provided poor chemical yields (CH₃I, 40%, 89% *ee*). These very high enantioselectivities (up to 99% *ee*) indicate that this method is a very efficient enantioselective synthetic method for α -alkyl- α carboxylactones.

 α -Benzylated lactones **10b** (99% *ee*) and **14b** (96% ee) were converted to the corresponding amides by ammonolysis using saturated ammonia in methanol at room temperature (Scheme 3). The Hofmann rearrangement of amides 15 and 16 using lead tetraacetate in tert-butyl alcohol, followed by hydrolysis with 6N HCl provided unnatural amino acids 21 and 22. The absolute configuration of **21** { $[\alpha]_D^{23} = -24$ (*c* 1.0, H_2O was confirmed as S by comparison of the specific optical rotation value with reported value $\{(R)$ -**21**, $[\alpha]_{D}^{23}$: +25 (c 0.5, H₂O)}.^[15] α -Benzylated butyrolactone 10b (99% ee) and valerolactone 14b (96% ee) were also converted to pyrrolidine 27 and piperidine 28, respectively (Scheme 4). The selective reduction of 10b and 14b with NaBH₄ in the presence of CeCl₃ afforded diols 23 and 24.^[16] The dimesylation of diols, 23 and 24, followed by double N-alkylation with methylamine successfully provided pyrrolidine 27 and piperidine 28, respectively.

In conclusion, enantioselective synthetic methods of α -benzyl- and allyllactones were developed. The asymmetric PTC α -benzylation and allylation of α *tert*-butoxycarbonylbutyrolactone and α -*tert*-butoxycarbonylvalerolactone afforded the corresponding α substituted α -*tert*-butoxycarbonyllactones in high chemical (up to 99%) and optical yields (up to 99% *ee*). The synthetic potential of this method was successively demonstrated by the synthesis of unnatural α quaternary homoserines, pyrrolidine and piperidine derivatives. Our new catalytic systems provide attractive synthetic methods for lactone-based chiral inter-

COMMUNICATIONS

Table 3. Enantioselective	phase-transfer α -benz	vlation and α -ally	valation of 10 and 14	with various benzvl a	and allvl halides.
		j			

Table 3	. Enantioselec	tive phase-transfer α -benzylation 0 0 $80 0 -t-Bu \frac{F}{5}to$	a and α-allylation of (1 mol%) RX (5.0 equiv.) 0% CsOH (5.0 equiv.) Dluene, –60 °C		O O R O- <i>t</i> -Bu	us benzyl and al	lyl halides.
Entry	Substrate	RX	Product		Time [h]	Yield [%] ^[a]	ee [%] ^[b]
1	10	allyl bromide (a)	O-t-Bu	10a	8	85	98 (+)
2		BnBr (b)	O- <i>t</i> -Bu	10b	3	94	99 $(R)^{[c]}(+)$
3		4-MeC ₆ H ₄ CH ₂ Br (c)	O O O-t-Bu Me	10c	6	98	98 (+)
4		$4\text{-}\mathrm{FC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{Br}\left(\boldsymbol{d}\right)$	O O F	10d	5	98	99 (+)
5		2-bromomethylnaphthalene (e) O- <i>t</i> -Bu	10e	24	99	96 (+)
6 ^[d]	14	allyl bromide (a)	O O O-t-Bu	14 a	24	88	86 (+)
7		BnBr (b)	O O O-t-Bu	14b	24	93	96 (+)
8		$4-\text{MeC}_6\text{H}_4\text{CH}_2\text{Br}(\mathbf{c})$	O O O-t-Bu	14c	24	94	95 (-)
9		$4\text{-}\mathrm{FC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{Br}\left(\mathbf{d}\right)$	O O O F	14d	24	99	92 (+)

Table 3. (Continued)

Entry	Substrate	RX	Product		Time [h]	Yield [%] ^[a]	ee [%] ^[b]
10		2-bromomethylnaphthalene (e)	O O O-t-Bu	14e	24	89	93 (+)

^[a] Isolated yields.

^[b] The enantiopurity was determined by HPLC analysis of α -alkylated products (**10a–e** to **14a–e**) using a chiral column (Chiralcel OD-H or Chiralpak AD-H) with hexanes/2-propanol as eluents.

^[c] The absolute configuration was confirmed as R by comparison of the specific optical rotation value of the derivatized compound **21** from **10d** with reported value.

^[d] The reaction temperature was -40 °C.

Scheme 3. Conversion of 10b and 14b to amino acids 21 and 22.

Scheme 4. Conversion of 10b and 14b to pyrrolidine 27 and piperidine 28.

mediates including quaternary carbon centers. Further applications are now under investigation.

Experimental Section

For details on the synthesis of **10b**, see the Supporting Information.

Typical Procedure for the Enantioselective Phase-Transfer Catalytic α -Benzylation and α -Allylation of *tert*-Butoxycarbonyl- γ -butyrolactone (10) under Phase-Transfer Conditions (Benzylation)

To a toluene solution (0.9 mL) of *tert*-butoxycarbonyl- γ -butyrolactone (**10**) (50 mg, 0.27 mmol), (*S*,*S*)-3,4,5-trifluorophenyl-NAS bromide (2.46 mg, 0.0027 mmol) and 50% CsOH (117 μ L, 1.34 mmol), benzyl bromide (160 μ L, 1.34 mmol) was added at -60 °C. The reaction mixture was stirred vigorously for 3 h. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (10 mL), washed with water (5 mL × 2), dried over anhydrous magnesium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (silica gel, hexane : EtOAc=30:1) to afford **10b** as a white solid; yield: 69.8 mg (94%); $[\alpha]_D^{23}$: +34.22 (*c* 1.0, CHCl₃). The enantioselectivity was determined by chiral HPLC analysis (DAICEL Chiralcel AD-H, hexane : 2-propanol=98.0:2.0, flow rate = 1.0 mLmin⁻¹, 23 °C, λ =217 nm): retention time; *S* isomer (major) 10.7 min, *R* isomer (minor) 12.7 min, 99.0% *ee*.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2012-002956) and the National Research Foundation (NRF) grant funded by the Korean government (MEST) (No. 201000017).

References

- [1] W. Carruthers, I. Coldham, *Modern Methods of Organic Synthesis* Cambridge, **2004**, Chapter 1.
- [2] For recent reports, see: a) A. G. Schultz, L. Pettus, J. Org. Chem. 1997, 62, 6855; b) M. A. Toczko, C. H. Heathcock, J. Org. Chem. 2000, 65, 2642; c) D. B. C.

Martin, C. D. Vanderwal, Angew. Chem. 2010, 122, 2893; Angew. Chem. Int. Ed. 2010, 49, 2830; d) C. Hirschhaeuser, J. S. Parker, M. W. D. Parker, M. F. Haddow, T. Gallagher, Org. Lett. 2010, 14, 4846; e) C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2010, 132, 4894; f) B. B. Liau, M. D. Shair, J. Am. Chem. Soc. 2010, 132, 9594; g) J. J. Davies, T. M. Krulle, J. W. Burton, Org. Lett. 2010, 12, 2738; h) T. A. Wenderski, M. A. Marshini, T. R. R. Pettus, Org. Lett. 2011, 13, 118; i) K. A. Volp, D. M. Johnson, A. M. Harned, Org. Lett. 2011, 13, 4486; j) D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nature 2012, 4, 130.

- [3] A direct search for use of chiral α -substituted malonate derivatives is possible in web-based public database http://pubchem.ncbi.nlm.nih.gov/search/; for example, a search on a α -carboxylactone (smiles: C1([C@H]-(CCCO1)C(=O)O)=O) resulted in 270 substructures containing biological activity or possessing similarity with biological active molecules.
- [4] For reviews, see: a) D. A. Evans, in: Asymmetric Synthesis, (Ed.: J. D. Morrison), Academic Press: New York, 1983, Vol. 3, Chapter 1, pp 83–110; b) A. I. Meyers, in: Asymmetric Synthesis, (Ed.: J. D. Morrison), Academic Press, New York, 1983, Vol. 3, Chapter 3, pp 213-274; c) D. Enders, in: Asymmetric Synthesis, (Ed.: J. D. Morrison), Academic Press, New York, 1983, Vol. 3, Chapter 4, pp 275-339; d) T. Hayashi, in: Catalytic Asymmetric Synthesis, (Ed.: I. Ojima), VCH Publishers, New York, 1993; e) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395-422; for other highly effective auxiliaries, see: f) J. K. Whitesell, M. A. Whitesell, J. Org. Chem. 1977, 42, 377; g) G. Helmchen, R. Wierzchowski, Angew. Chem. 1984, 96, 59; Angew. Chem. Int. Ed. Engl. 1984, 23, 60; h) W. Oppolzer, P. Dudfield, T. Stevenson, T. Godel, Helv. Chim. Acta 1985, 68, 212; i) Y. Kawanami, Y. Ito, T. Kitagawa, Y. Taniguchi, T. Katsuki, M. Yamaguchi, Tetrahedron Lett. 1984, 25, 857–860; j) A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511; for recent advances, see: k) K. E. Murphy, A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125, 4690; 1) A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2005, 127, 62; m) N. Vignila, B. List, J. Am. Chem. Soc. 2004, 126, 450.
- [5] a) K. Tomioka, K. Ando, Y. Takemasa, K. Koga, J. Am. Chem. Soc. 1984, 106, 2718; b) B. M. Trost, R. Radinov, E. M. Grenzer, J. Am. Chem. Soc. 1997, 119, 7879; c) T. Ooi, T. Miki, M. Taniguchi, M. Shiraishi, M. Takeuchi, K. Maruoka, Angew. Chem. 2003, 115, 3926; Angew. Chem. Int. Ed. 2003, 42, 3796; d) Z.-L. Wu, Z.-Y. Li, J. Org. Chem. 2003, 68, 2479; e) M. Bella, S. Kobbelgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 3670; f) T. Suzuki, T. Goto, Y. Hamashima, M. Sodeoka, J. Org. Chem. 2007, 72, 246; g) T. B. Poulsen, L. Bernardi, J. Aleman, J. Overgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2007, 129, 441; h) T. A. Moss, D. R. Fenwick, D. J. Dixon, J. Am. Chem. Soc. 2008, 130, 10076.

- [6] For the enantioselective conjugate addition of malonates, see: a) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906; b) D. A. Evans, D. Seidel, J. Am. Chem. Soc. 2005, 127, 9958; c) J. Wang, H. Li, L. Zu, W. Jiang, H. Xie, W. Duan, W. Wang, J. Am. Chem. Soc. 2006, 128, 12652; d) S. H. McCooey, T. McCabe, S. J. Connon, J. Org. Chem. 2006, 71, 7494; e) M. Agostinho, S. Kobayashi, J. Am. Chem. Soc. 2008, 130, 2430; f) D. Almasi, D. A. Alonso, E. Gómez-Bengoa, C. Náiera, J. Org. Chem. 2009, 74, 6163; g) P. Li, S. Wen. F. Yu, Q. Liu, W. Li, Y. Wang, X. Liang, J. Ye, Org. Lett. 2009, 11, 753; h) H. Fang, X. Wu, L. Nie, X. Dai, J. Chen, W. Cao, G. Zhao, Org. Lett. 2010, 12, 5366; i) Z. Mao, Y. Jia, W. Li, R. Wang, J. Org. Chem. 2010, 75, 7428; for the enantioselective palladium-catalyzed allylation of malonate, see: j) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 359; k) J. L. Garrido, I. Alonso, J. C. Carretero, J. Org. Chem. 1998, 63, 9406; 1) Y. Sato, Y. Oonishi, M. Mori, J. Org. Chem. 2003, 68, 9858; m) J. Dugal-Tessier, G. R. Dake, D. P. Gates, Org. Lett. 2010, 12, 4667.
- [7] The asymmetric α-alkylation of malonates using chiral auxiliary was reported; M. Ihara, M. Takahashi, H. Niitsuma, N. Taniguchi, K. Yasui, K. Fukumoto, J. Org. Chem. 1989, 54, 5413.
- [8] a) M.-h. Kim, S.-H. Choi, Y.-J. Lee, J. Lee, K. Nahm, B.-S. Jeong, H.-g. Park, S.-s. Jew, *Chem. Commun.* 2009, 782; b) Y. Park, Y. J. Lee, S. Hong, M.-h. Kim, M. Lee, T.-S. Kim, J. K. Lee, H.-g. Park, *Adv. Synth. Catal.* 2011, *353*, 3313.
- [9] S. Hong, J. Lee, M. Kim, Y. Park, C. Park, M.-h. Kim, S.-s. Jew, H.-g. Park, J. Am. Chem. Soc. 2011, 133, 4924.
- [10] T. A. Moss, B. Alonso, D. R. Fenwick, D. J. Dixon, Angew. Chem. 2010, 122, 578; Angew. Chem. Int. Ed. 2010, 49, 568.
- [11] D. S. Reddy, N. Shibata, J. N. S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. 2008, 120, 170; Angew. Chem. Int. Ed. 2008, 47, 164.
- [12] T. Ooi, T. Miki, K. Fukumoto, K. Maruoka, Adv. Synth. Catal. 2006, 348, 1539.
- [13] For recent reviews on the phase-transfer catalysis, see:
 a) K. Maruoka, T. Ooi, *Chem. Rev.* 2003, *103*, 3013;
 b) M. J. O'Donnell, *Acc. Chem. Res.* 2004, *37*, 506;
 c) B. Lygo, B. I. Andrews, *Acc. Chem. Res.* 2004, *37*, 518;
 d) T. Hashimoto, K. Maruoka, *Chem. Rev.* 2007, *107*, 5656;
 e) S.-s. Jew, H.-g. Park, *Chem. Commun.* 2009, 7090.
- [14] a) E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119, 12414; b) S.-s. Jew, M.-S. Yoo, B.-S. Jeong, H.-g. Park, Org. Lett. 2002, 4, 4245; c) H.-g. Park, B.-S. Jeong, M.-S. Yoo, J.-H. Lee, M.-k. Park, Y.-J. Lee, M.-J. Kim, S.-s. Jew, Angew. Chem. 2002, 114, 3162; Angew. Chem. Int. Ed. 2002, 41, 3036; d) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
- [15] T.-S. Kim, Y.-J. Lee, K. Lee, B.-S. Jeong, H.-g. Park, S.s. Jew, Synlett 2009, 671.
- [16] C. L. Martin, L. E. Overman, J. M. Rohde, J. Am. Chem. Soc. 2010, 132, 4894.

642