Formation of Ketone Ions Upon the Loss of CH₂O from Ionized Esters

Thomas Lin, Charles E. Hudson and David J. McAdoo[†]

Marine Biomedical Institute and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 200 University Boulevard, Galveston, Texas 77550, USA

Unimolecular and collision-induced decompositions of the products of CH₂O loss from propyl propanoate and butyl butanoate demonstrate that the respective products are the 3-pentanone and 4-heptanone ions.

INTRODUCTION

Fragmentations involving losses of interior portions of ionized esters take place,^{1,2} but are not well understood. One of these reactions is the very weak loss (0.5-1%) of base peak intensity) of $C_nH_{2n}O$ neutrals containing the oxygen plus the first carbon and its substituents from the alcohol moiety.¹ McFadden and coworkers¹ speculated that the retained alkyl portion of the alcohol migrates to the oxygen, while Budzikiewicz *et al.*³ suggested that ketone ions are formed. Because of the novelty of the reaction, we sought to determine the structures of the ionic products. We concluded that loss of CH₂O from ionized aliphatic esters produces ketone ions.

RESULTS AND DISCUSSION

 $[C_5H_{10}O]^{+\cdot}$ ions from propyl propanoate (1) and ionized 3-pentanone (2) have matching collisioninduced (Table 1) and metastable (Table 2) spectra indicating that the two ions are the same. Ions from propyl propanoate with a deuterium in one methyl

Table 1. Collision-induced massspectra of [C5H10ions from propyl pro			
	anoate	(1) and	
(3-pentance	Intensities	
m/z	1	Intensities 2	
26	1	2	
27	5	5	
28	3	2	
29	11	12	
39	1	1	
41	1	1	
42	1	1	
43	1	1	
53	1	1	
55	1	1	
56	32	29	
57	100	100	

Table 2. Third field free region	metastab	le fragmen	tations
of [C ₅ (H,D) ₁₀ O] ⁺⁻ ions			
Precursor compound	Product m/z		
	56	57	58
Propyl propanoate (1)	100	34	

Propyl propanoate (1)	100	34	
3-Pentanone (2)	100	30	
4-Ethyl-3-heptanone	6	100	
Propyl propanoate-3-d1 (1a)	83	100	5
Propyl-3-d1 propanoate (1b)	81	100	7

group or the other formed m/z 56 products 81–83% as often as m/z 57 products. Correcting the m/z 57 intensities for C₂H₄D contributions, by assuming that the C_2H_4D loss was 92% of the C_2H_5 loss due to an isotope effect based on a secondary isotope effect on the loss of ethyl from 3-pentanone ions observed elsewhere,⁴ gives a $-C_2H_6/-C_2H_5D$ ratio of 1.14 for 1a and 1.16 for 1b. We conclude from the identity of these ratios that the imbalance in $[C_3H_4O]^+$ and $[C_3H_3DO]^+$ intensities is entirely due to an isotope effect, and that the ethanes lost from the intermediate $[C_5H_{10}O]^+$ ions have equal probabilities of containing the stationary and migrating ethyls. Therefore, the two ethyls are equivalent, further indicating that the intermediate $[C_5H_9DO]^+$ ions are 3-pentanone ions. CH₃CH₂C(=OH)CHCH₃, CH₃CH₂CHÖHCH=CH₂, CH₃CH₂C(=OH)CH₂CH₂, CH₃CH₂CH₂CHC(=OH)-H, CH₃CH₂CH₂CH₂CH[†]Oand CH₂CH₂CH₂CH₂CH[†]OH all isomerize to 3-pentanone ions to some degree in their metastable decompositions and, as illustrated in Table 2 for $CH_3CH_2C(=OH)CHCH_3$, all of these isomerizations are followed by much more intense losses of ethyl than of ethane.⁴⁻⁶ Formation of predominantly one of these $[C_5H_{10}O]^+$ isomers by CH_2O loss from ionized propyl propanoate is, therefore, ruled out, so we conclude that the 3-pentanone ion is the direct product of the loss of CH₂O from ionized propyl propanoate. The metastable propyl propanoate ion loses H and C₃H₅, but not CH₂O.

Third field free region unimolecular dissociations of 4-heptanone (4) ions and of m/z 114 generated from ionized butyl butanonate (3) (Table 3) were identical, both undergoing losses of CH₃, C₂H₄, C₃H₇ and C₃H₈. Thus loss of CH₂O from ionized butyl butanoate probably forms the 4-heptanone ion.

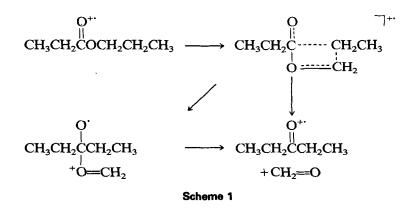
The loss of CH₂O from ionized esters can be represented as occurring by concerted ejection of CH₂O

[†] Author to whom correspondence should be addressed.

CCC-0030-493X/85/0020-0002\$01.00

Table 3. Third field free region metastable fragmenta- tions of $[C_7H_{14}O]^+$ ions from butyl butanoate (3) and 4-heptanone (4)				
Product m/z	· I	Intensities		
	3	4		
70	4	4		
71	6	7		
86	100	100		
99	4	5		

or as transfer of the alkyl group from the alcohol to the carbonyl carbon to form an intermediate which then loses CH_2O (Scheme 1). Our data do not permit choosing between these possibilities.


EXPERIMENTAL

Unimolecular and collision-induced decomposition spectra^{7,8} were determined in the third field free region of an MS 50 TA mass spectrometer.⁹ Helium was used as a collision gas at a pressure which gave a 40%

reduction in beam intensity. Propyl propanoate was prepared by adding a slight excess of propionic anhydride and a trace of sulfuric acid to 1-propanol, washing the product with a sodium bicarbonate solution and distilling out the ester. Butyl butanoate was prepared by adding a slight excess of butanoic acid and a trace of sulfuric acid to n-butanol at reflux temperatures. Benzene was added and the water distilled out as an azeotrope. Propyl propanoate-3- d_1 was prepared by reduction of ethylene oxide with LiAlD₄, conversion of the alcohol to the bromide with HBr/H₂SO₄, carboxylation of the Grignard to form propanoic acid-3 d_1 , conversion to the acid chloride with SOCl₂, and formation of the ester by reaction with propanol. Propyl-3- d_1 propanoate was prepared by reducing propanoic acid-3- d_1 (see above) with LiAlH₄ and esterification of the resulting alcohol with propionic anhydride.

Acknowledgements

We thank the Robert A. Welch Foundation (Grant H-609) for financial support, Professor Michael Gross and the Midwest Center for Mass Spectrometry (NSF Grant 78-18572) for use of the MS 50 TA mass spectrometer and Debbie Pavlu for typing the manuscript.

- 1. D. R. Black, W. H. McFadden and J. W. Corse, J. Phys. Chem. 68, 1237 (1964).
- R. Ryhage and E. Stenhagen, in *Mass Spectrometry* of Organic lons, ed. by F. W. McLafferty, p. 399, Academic Press, New York (1963).
- H. Budzikiewicz, C. Djerassi and D. H. Williams, in Mass Spectrometry of Organic Compounds, p. 187, Holden-Day, San Francisco (1967).
- D. J. McAdoo and C. E. Hudson, Org. Mass Spectrom. 18, 159 (1983).
- D. J. McAdoo, W. Farr and C. E. Hudson, J. Am. Chem. Soc. 102, 5165 (1980).
- C. E. Hudson and D. J. McAdoo, Org. Mass Spectrom. 19, 1 (1984).
- F. W. McLafferty, P. F. Bente, R. Kornfeld, S. C. Tsai and I. Howe, J. Am. Chem. Soc. 95, 2120 (1973).
 F. W. McLafferty, R. Kornfeld, W. F. Haddon, K. Levsen, I.
- F. W. McLafferty, R. Kornfeld, W. F. Haddon, K. Levsen, I. Sakai, P. F. Bente, S. C. Tsai and H. D. R. Schuddemage, J. Am. Chem. Soc. 95, 3886 (1973).
- M. L. Gross, E. K. Chess, P. A. Lyon and F. W. Crow, Int. J. Mass Spectrom. Ion Phys. 42, 243 (1982).

Received 16 September 1983; accepted 8 March 1984