Additions of Sulphonyl Iodides to Acetylenes and Allenes

By W. E. TRUCE* and G. C. WOLF

(Department of Chemistry, Purdue University, West Lafayette, Indiana 47907)

Although free-radical additions of sulphonyl halides to olefins have been investigated,1-3 similar additions to acetylenes have received little attention,4 and there are no reports of such additions to allenes. We now report a method for preparing $\alpha\beta$ -unsaturated- β -iodosulphones by the addition of toluene-p-sulphonyl iodide to acetylenes, as well as the first instance of the addition of a sulphonyl halide to an allene.

Equimolar amounts of the acetylene and toluene-psulphonyl iodide (1-6 hr., anhydrous Et₂O, 250 w heat lamp ca. 2 ft. away) gave excellent yields of 1:1 adducts.

$$R^{1}C:CR^{2} + Me$$
 $SO_{2}I \longrightarrow R^{2}IC:CR^{2}\cdot O_{2}S \longrightarrow Me$
 (II)

The stereochemistry of (II) has not been proven rigorously, but spectral evidence indicates that the sulphonyl iodide adds in a trans-manner. The products from various acetylenes are listed in the Table. All adducts have

Products (II) from the addition of toluene-p-sulphonyl iodide to acetylenes

\mathbb{R}^1				\mathbb{R}^2	M.p.	Yield (%)
(a)	Ph			H	8384	87
(b)	$\operatorname{Bu}^{\mathbf{t}}$			H	70-105*	84
(c)	cyclo-C	6H11		H	108.5 - 109.5	64
(d)	PhCO			Н	160 - 161	83
(e)	Et			Et	6667	84
(f)	Ph			Cl	149 - 150	79
(g)	Ph			Ph	192193	35

* This is the only case where both the cis- and trans-isomers were obtained. They were partially separated by sublimation. elemental compositions and i.r. and n.m.r. spectra consistent with the suggested structures. Adducts (IIa--c) have been dehydrohalogenated under relatively mild conditions to give the corresponding acetylenic sulphones in good yields.

Toluene-p-sulphonyl iodide also reacts extremely rapidly with allenes. Under the same conditions as employed with the acetylenes, phenylpropadiene and penta-2,3-diene gave 80% and 45%, respectively of 1:1 adducts. Propa-1,2diene also gives a 1:1 adduct (31%), as well as a smaller amount (13%) of a product the elemental analysis of which was consistent with the molecular formula for C17H18S2O4. Spectral evidence suggests the following structure for this compound:

$$\begin{array}{c} \text{CH}_2\text{-}\text{O}_2\text{S} \\ \text{O}_2\text{S} \\ \end{array} \begin{array}{c} \text{Me} \\ \text{(III)} \end{array}$$

From elemental analysis and spectral considerations, the 1:1 adducts have been assigned the structure:

$$R^{1}\text{CH:CI-CHR2-O$_{2}$S} \\ \boxed{\hspace{1cm}} \text{Me} \qquad \begin{array}{ll} (\text{IVa}) & R^{1} = \text{Ph}, R^{2} = \text{H} \\ (\text{IVb}) & R^{1} = R^{2} = \text{Me} \\ (\text{IVc}) & R^{1} = R^{2} = \text{H} \end{array}$$

We thank the National Institutes of Health for financial support.

(Received, December 3rd, 1968; Com. 1654.)

M. Asscher and D. Vofsi, J. Chem. Soc., 1964, 4962.
 C. Goralski, Ph.D. Thesis, Purdue University, 1969.

³ J. McNamara, Ph.D. Thesis, Pennsylvania State University, 1956.

⁴ V. Amiel Abstracts of Papers, Second Organic Sulphur Symposium

. Amiel, Abstracts of Papers, Second Organic Sulphur Symposium, Groningen, The Netherlands, 1966.

⁵ P. Eaton and C. Stubbs, J. Amer. Chem. Soc., 1967, 89, 5722.