LETTERS

Hydrogen-Bond-Mediated Aglycone Delivery: Focus on β -Mannosylation

Salvatore G. Pistorio, Jagodige P. Yasomanee, and Alexei V. Demchenko*

Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States

Supporting Information

ABSTRACT: *O*-Picoloyl groups at remote positions can mediate the course of glycosylation reactions by providing high facial selectivity for the H-bondmediated attack of the glycosyl acceptor. A new practical method for the stereoselective synthesis of β -mannosides at ambient temperature is presented.

T he vast majority of complex carbohydrates consist of monosaccharide residues connected via *O*-glycosidic linkages.^{1,2} Uncontrolled chemical *O*-glycosylations often lead to low yields and/or mixtures of anomers. The goal of stereocontrolling glycosylation has been a major inspiration and driving force of progress in the field. The synthesis of 1,2-*cis* glycosides, which cannot be assisted by conventional neighboring acyl group participation,³ is more challenging. Many factors affect the stereoselectivity of glycosylation, but none can guarantee complete 1,2-*cis* stereoselectivity.⁴ Therefore, all individual factors and combinations thereof are typically considered when glycosylations are attempted.

Among a variety of unconventional protecting groups that have been introduced in recent years to control the stereoselectivity of glycosylations,^{5–7} the neighboring 2-O-picolinyl group formally participates in glycosylation and provides 1,2*trans* products stereoselectively as a result of the *anti* attack by the glycosyl acceptor.^{8,9} Remarkably, when placed at remote positions (C-3, C-4, and C-6), picolinyl and similar picoloyl substituents also provide high selectivity but act via a different mode. All glycosylations proceed with stereoselectivity consistent with *syn* attack because the remote picolinyl moiety acts as an H-bond acceptor for the incoming nucleophile (Scheme 1).¹⁰ Therefore, since this remote protecting group assistance is not directly correlated with the orientation of the substituent at C-2, this approach should in principle be suitable for the assisted synthesis of either 1,2-*cis*- or 1,2-*trans*-linked glycosides.

For instance, as illustrated in Scheme 2, glycosidation of the 6picoloyl (Pico) glucosyl donor **1a** with acceptor **2** in the presence of dimethyl(methylthio)sulfonium triflate (DMTST)¹¹ afforded disaccharide **3a** in 92% yield and complete β -selectivity.¹⁰ A similar DMTST-promoted glycosylation with mannosyl donor **1b** was significantly less stereoselective ($\alpha/\beta = 1/4.5$) and afforded the corresponding disaccharide **3b** in 86% yield.¹⁰

Further screening of the reaction conditions showed that the NIS/TfOH promoter system provides a better environment for β -mannosylation with donor **1b**. Under these reaction conditions, disaccharide **3b** was obtained in 87% yield and enhanced β -selectivity ($\alpha/\beta = 1/9.5$, Table 1, entry 1).¹⁰ The synthesis of β -mannosides has been regarded as one of the greatest challenges of glycochemistry.^{12,13} Some promising methods have been established by Crich^{14–20} and others,^{21–23} but these are typically limited to specific types of glycosyl donor and require extreme reaction conditions or indirect methods^{24–26} to ensure that reactions proceed highly stereo-selectively. Building upon promising preliminary results, herein

Received: November 22, 2013 Published: January 28, 2014

(1. b:	donor 1b-1h 1 equiv.) $R_2 = R_3$ $R_2 = R_2$	$= \begin{array}{c} BnO \\ BnO$	promoter R_{e} (see Table) $R_{4}O$ 1,2-DCE R_{3} MS 3 or 4 Å ft 3b ft $R_{2} = R_{4} = Bn$;	$B_{nO} = B_{e} = Pico$
d: e:	$R_2 = R_3$ $R_2 = R_4$	= R_4 = Bn; R_6 = Bz = R_6 = Bn; R_3 = Pico	g : $\vec{R_2}$ = Bn; R_3 = h : R_2 = Bn; R_3 =	: Pico; R ₄ , R ₆ = >Ph : Pico; R ₄ = R ₆ = Bz
	entry	donor	promoter, time	product (yield, α/β ratio)
	1 ¹⁰	PicoO OBn BnO O BnO SEt	DMTST, 4 h NIS/TfOH, 2.5 h	3b (86%, 1/4.5) 3b (87%, 1/9.5)
	2	BnO OBn BnO OBn BnO SEt	DMTST, 72 h NIS/TfOH, 72 h	3c (65%, 1/1.4) 3c (67%, 1/1.0)
	3	BnO BnO BnO SnO SnO SEt	DMTST, 24 h NIS/TfOH, 24 h	3d (68%, 1/1.0) 3d (70%, 1/1.0)
	4	BnO OBn PicoO 1e SEt	DMTST, 30 min NIS/TfOH, 20 min	3e (92%, 1/7.0) 3e (89%, 1/8.0)
	5	PicoO OBn BnO OBn PicoO SEt	DMTST, 50 min NIS/TfOH, 3 h	3f (72%, 1/10.0) 3f (86%, 1/8.7)
	6	PhTO OBn OPicoO 1g SEt	DMTST, 40 min NIS/TfOH, 40 min	3g (73%, 1/5.7) 3g (73%, 1/6.5)
	7	BzO BzO PicoO 1h SEt	DMTST, 1.5 h NIS/TfOH, 1 h	3h (86%, 1/12.1) 3h (72%, 1/12.3)

Table 1. Comparative Investigation of Mannosyl Donors 1b-1h

 Table 2. Investigation of S-Tolyl 4 and S-Phenyl 5 Glycosyl

 Donors

BzO PicoO donor (1.1 equiv.) 4: R = Tol 5: R = Ph		$\frac{\partial Bn}{\partial SR} + \frac{BnO}{BnO} + \frac{OH}{BnO} + \frac{OH}{SR} + \frac{OH}{BnO} + \frac{Cond}{(see} + \frac{1}{1,2})$		Hitions Table) -DCE Å or 4 Å BrO BnO BnO BnO BnO BnO BnO BnO Bn	
	entry	donor (concn)	conditions	time	yield, α/β ratio of 3h
	1	4 (5 mM)	DMTST, rt	2 h 50 min	89%, 1/9.5
	2	4 (5 mM)	NIS/TfOH, rt	12 h	86%, 1/9.5
	3	5 (50 mM)	DMTST, rt	7 h	73%, 1/5.0
	4	5 (50 mM)	NIS/TfOH, rt	1h 10 min	97%, 1/8.8
	5	5 (5 mM)	DMTST, rt	2 h 50 min	91%, 1/18.5
	6	5 (5 mM)	NIS/TfOH, rt	12 h	96%, 1/7.2
	7	5 (5 mM)	DMTST, -30 °C	5 h	87%, 1/17.6
	8	5 (1 mM)	DMTST, rt	2 h	80%, 1/14.0

we present our systematic study of H-bond mediated aglycone delivery reaction as applied to β -mannosylation.

As the starting comparison point, known per-O-benzylated glycosyl donor $1c^{27}$ was coupled with glycosyl acceptor 2 in the presence of DMTST or NIS/TfOH under high dilution reaction conditions that became the standard for O-picoloylated glycosyl donors: 5.0 mM concentration in 1,2-dichloroethane. Previously, we conducted all reactions at $-30 \rightarrow$ rt or $+42 \ ^{\circ}C.^{10}$ Herein, we observed no significant temperature dependence and conducted all reactions at rt. Thus, a glycosylation reaction between donor 1c and acceptor $2^{28,29}$ gave the corresponding disaccharide $3c^{30}$

in good yield, but no selectivity was observed in the case of either promoter (Table 1, entry 2). Similarly, glycosidation of 6-*O*benzoyl donor $\mathbf{1d}^{31}$ provided disaccharide $\mathbf{3d}$ with no stereoselection (entry 3). Since D-mannose has two remote substituents projecting above the pyranose ring (O-3 and O-6), we were curious to compare 6-*O*-picoloyl donor **1b** with its 3-*O*-picoloyl counterpart **1e**. Encouragingly, donor **1e** gave excellent yields (89–92%) and high β -stereoselectivity ($\alpha/\beta =$ 1/7-8, entry 4). Further screening of protecting groups included the 3,6-di-*O*-picoloyl donor **1f**, the 4,6-*O*-benzylidene donor **1g**, and the 4,6-di-*O*-benzoyl donor **1h**. Among this 3-*O*-picoloyl donor series, the best results were achieved with donor **1h**, which afforded the corresponding disaccharide **3h** in good yield and with high stereoselectivity ($\alpha/\beta > 1/12$, entry 7).

Having identified the most promising glycosyl donor **1h** of the ethyl thioglycoside series, we conducted further studies with similarly protected *p*-tolyl and phenyl thioglycoside series, **4** and **5**, respectively. In addition to studying the effect of the anomeric leaving groups, this in-depth study involved screening promoters (DMTST and NIS/TfOH), concentration (1–50 mM), and temperature (rt and -30 °C). Although all experiments summarized in Table 2 proceeded with high selectivity ($\alpha/\beta > 1/5$), the most beneficial conditions for β -mannosylation of acceptor **2** include glycosyl donor **5** (5 mM in 1,2-dichloromethane) activated with DMTST at rt. Resultantly, disaccharide **3h** was obtained in excellent yield and stereoselectivity (91%, $\alpha/\beta = 1/18.5$, entry 5).

Following this, we decided to investigate whether these mannosyl donors would also be suitable for stereoselective couplings with the secondary glycosyl acceptors **6**, **8**, and **14**. Concerning glycosyl donors of the ethyl thioglycoside series, the best results for glycosylation of primary glycosyl acceptor **2** were obtained with **1e**, **1f**, and **1h** (see Table 1). Unfortunately, when applied to glycosylations of secondary acceptors **6** and **8**,¹⁹ none of these donors performed up to our expectations (Table 3, entries 1–4). Although the corresponding disaccharides 7 and **9–11** were obtained in respectable yields of 72–87%, stereoselectivity was much lower ($\alpha/\beta = 1/2.9-5.2$, Table 3) in comparison to that achieved with the primary acceptor **2**.

In contrast, the glycosyl donor **1g**, which was not very effective with the primary acceptor **2**, showed respectable results in coupling reactions with the secondary glycosyl acceptors. Thus, coupling of the donor **1g** with the 4-OH acceptor **6** afforded disaccharide **12** in good yields 71–83% and commendable β -stereoselectivity ($\alpha/\beta \sim 1/10$, entry 5). Similar results were obtained in glycosylations of acceptors **8** and **14**, which led to the formation of disaccharides **13** and **15**, respectively, in 71–88% yield with high stereoselectivity ($\alpha/\beta = 1/6-10$, entries 6 and 7). Similarly protected *S*-tolyl **16** and *S*-phenyl **17** donors provided disaccharide **12** with even higher yields (80–96%) albeit with lower stereoselectivity ($\alpha/\beta = 1/5.4-8$, entries 8 and 9) in comparison to that obtained with their *S*-ethyl counterpart **1g**.

Having investigated the synthesis of both primary and secondary β -mannosides, we felt well equipped to evaluate an oligosaccharide synthesis to probe the protecting/leaving group combinations and conditions. For this purpose, we obtained disaccharide **3h** (91%, $\alpha/\beta = 1/18.5$) using the best conditions for primary glycosyl acceptor **2**: *S*-phenyl donor **5** activated with DMTST at rt. The β -linked disaccharide was separated and subjected to selective removal of 3'-O-picoloyl group, which was selectively affected in the presence of copper(II) acetate to give the 3'-OH derivative **18** (Scheme 3). The latter was glycosylated with donor **1g**, which was found the most suitable for

Table 3. Glycosylation of Secondary Glycosyl Acceptors 6, 8, and 14

entry	donor	acceptor	promoter, time	product	yield, α/β ratio
1	BnO OBn BnO PicoO SEt	HO COBN BNO BNO OMe 6	NIS/TfOH, 30 min	BnO OBn BnO OBn PicoO BnO OBn BnO Me	80%, 1/2.9
2	1e	Bno Bno HooMe 8	NIS/TfOH, 30 min	Picco Bno 9 Bno 9 Bno O Bno O Bno O Bno O Bno O Bno O Bno O Bno D O Bno Bno Bno Bno D O Bno Bno Bno Bno Bno Bno Bno Bno Bno Bno	78%, 1/4.9
3	PicoO OBn BnO O PicoO SEt	6	DMTST, 2 h NIS/TfOH, 3 h	PicoO PicoO PicoO BnO BnO BnO BnO BnO BnO BnO Me	73%, 1/2.9 87%, 1/2.9
4	BZO PicoO Ih	6	DMTST, 1.5 h NIS/TfOH, 1.5 h	BzO Picco 11 BzO BnO BnO BnO BnO BnO BnO BnO BnO BnO Bn	86%, 1/5.2 72%, 1/3.5
5	Ph O OBn PicoO SEt	6	DMTST, 40 min NIS/TfOH, 2 h	Ph TO OBh BhO O DO BhO Picco BhO BhO BhO BhO Me	71%, 1/10.0 83%, 1/9.8
6	1g	8	DMTST, 1.5 h	Picco Ph. Jo John 13	78%, 1/7.3
7	1g	Bno COBn HO BnO OMe 14	DMTST, 2 h NIS/TfOH, 2 h	Picco Picco Ph 20 OBn BnOOMe Ph 20 OBn 15	71%, 1/6.0 88%, 1/10
8	Ph TO OBn PicoO STol	6	DMTST, 24 h NIS/TfOH, 2 h ^b	12	80%, 1/5.4 96%, 1/8.0
9	Ph TO OBn OPicoO SPh	6	DMTST, 2.5 h NIS/TfOH, 12 h ^c	12	86%, 1/5.5 89%, 1/7.4

^aUnless noted otherwise, performed under standard conditions: 5 mM concentration of donor, 1,2-dichloroethane (10 mL), rt. ^bPerformed at 50 mM concentration of donor, lower stereoselectivity obtained at 5 mM.

Scheme 3. Synthesis of Trisaccharide 19

glycosylation of secondary hydroxyls. This coupling was promoted in the presence of NIS and TfOH and resulted in

the formation of trisaccharide **19** in 76% yield and, to our delight, with complete β -stereoselectivity ($\alpha/\beta > 1/25$).

In conclusion, we have discovered that a remote 3-*O*-picoloyl group can effectively mediate β -mannosylation reactions with high facial *syn* selectivity for attack of the glycosyl acceptor. The applicability of this approach was demonstrated for the synthesis of an oligosaccharide containing both primary and secondary β -mannosidic linkages. Further application of this new stereo-selective glycosylation reaction to other targets and systems is currently underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

Additional experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: demchenkoa@umsl.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by an award from the NSF (CHE-1058112). We thank Dr. Rensheng Luo (UM—St. Louis) for aquiring spectral data using 600 MHz NMR spectrometer that was purchased thanks to the NSF (award CHE-0959360). Dr. Winter and Mr. Kramer (UM—St. Louis) are thanked for HRMS determinations.

REFERENCES

(1) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900–1934.

(2) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, 2008.

- (3) Goodman, L. Adv. Carbohydr. Chem. Biochem. 1967, 22, 109-175.
- (4) Demchenko, A. V. Curr. Org. Chem. 2003, 7, 35-79.

(5) Manabe, S.; Ito, Y. Curr. Bioact. Comp. 2009, 4, 258-281.

(6) Fraser-Reid, B.; Jayaprakash, K. N.; López, J. C.; Gómez, A. M.; Uriel, C. In ACS Symp. Ser. (Frontiers in Modern Carbohydrate Chemistry); Demchenko, A. V., Ed.; Oxford University Press: Oxford, 2007; Vol. 960, pp 91–117.

(7) Guo, J.; Ye, X. S. Molecules 2010, 15, 7235-7265.

(8) Smoot, J. T.; Demchenko, A. V. J. Org. Chem. 2008, 73, 8838-8850.

(9) Smoot, J. T.; Pornsuriyasak, P.; Demchenko, A. V. Angew. Chem., Int. Ed. 2005, 44, 7123–7126.

(10) Yasomanee, J. P.; Demchenko, A. V. J. Am. Chem. Soc. 2012, 134, 20097–20102.

(11) Ravenscroft, M.; Roberts, R. M. G.; Tillett, J. G. J. Chem. Soc., Perkin Trans. 2 1982, 1569–1972.

(12) Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1 2000, 1471–1491.

- (13) Crich, D. J. Carbohydr. Chem. 2002, 21, 667–690.
- (14) Crich, D. J. Org. Chem. 2011, 76, 9193–9209.
- (15) Crich, D. Acc. Chem. Res. 2010, 43, 1144-1153.
- (16) Crich, D.; Sharma, I. Org. Lett. 2008, 10, 4731-4734.
- (17) Crich, D.; Wu, B.; Jayalath, P. J. Org. Chem. 2007, 72, 6806-6815.
- (18) Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, 126, 14930-14934.
- (19) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435-436.
- (20) Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506-4507.
- (21) Baek, J. Y.; Choi, T. J.; Jeon, H. B.; Kim, K. S. Angew. Chem., Int. Ed. 2006, 45, 7436–7440.
- (22) El Ashry, E. S. H.; Rashed, N.; Ibrahim, E. S. I. Curr. Org. Synth. 2005, 2, 175–213.
- (23) De Meo, C.; Kamat, M. N.; Demchenko, A. V. *Eur. J. Org. Chem.* **2005**, 706–711.
- (24) Fairbanks, A. J. Synlett 2003, 1945–1958.
- (25) Ishiwata, A.; Lee, Y. J.; Ito, Y. Org. Biomol. Chem. 2010, 8, 3596–3608.
- (26) Barresi, F.; Hindsgaul, O. J. Am. Chem. Soc. 1991, 113, 9376–9377.

(27) Wang, C.; Sanders, B.; Baker, D. C. Can. J. Chem. 2011, 89, 959–963.

(28) Kuester, J. M.; Dyong, I. Justus Liebigs Ann. Chem. 1975, 2179–2189.

(29) Ranade, S. C.; Kaeothip, S.; Demchenko, A. V. Org. Lett. **2010**, *12*, 5628–5631.

(30) Chang, G. X.; Lowary, T. L. Org. Lett. 2000, 2, 1505–1508.

(31) Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L. J. Chem. Soc., Perkin Trans. 1 1998, 51–65.