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Abstract: A novel domino sequence for the rapid assembly of 1,3-
syn-substituted oxazines is reported. Mechanistically, the one-pot
procedure is based on a three-step sequential process involving a
hemiaminalization and Tsuji–Trost reaction. The process generates
up to two new stereogenic centers in a concise and convergent fash-
ion from simple and readily available starting materials.
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As exemplified by the potent alkaloids sedamine (1a) and
pyrrolsedamine (1b, Scheme 1),2 the 1,3-hydroxylamine
functionality presents a prevalent structural feature in a
wide variety of biologically active natural products and
bioactive agents,3 which renders the development of effi-
cient synthetic procedures for their assembly an important
research goal from the perspective of medicinal chemistry
and drug discovery. Consequently, a wide variety of
methods have been reported to access this structural fea-
ture.4 Inspired by present targets in our group in combina-
tion with certain limitations of these existing methods, in
particular with respect to convergence and conciseness,
we desired a more direct and convergent procedure, rely-
ing on a readily available chiral alcohol functionality.
Herein, we report a novel process for the concise con-
struction of protected 1,3-syn-amino alcohols from readi-
ly available starting materials, based on a relay sequence
involving a tandem hemiaminalization and an intramolec-
ular allylic substitution reaction.

Inspired by previous sequential processes developed in
our group,5 our synthetic approach to access the protected
1,3-amino alcohol functionality was based on a three-step
sequential process, involving a hemiaminalization6 and
subsequent allylic substitution. As shown in Scheme 1,
homoallylic alcohol 4 would first add to a suitable imine
(5). Secondly, a π-allyl complex 3 would be generated,
which would be finally trapped in an intramolecular fash-
ion by an allylic substitution reaction, generating the de-
sired oxazine motif in a highly direct fashion. Along this
process, two new stereogenic centers are formed, demon-
strating a high increase in structural complexity from sim-

ple starting materials. A related sequence, as reported by
the groups of Campagne and Robiette,4l relies on the addi-
tion of homoallylic alcohols to tosyl isocyanate giving the
corresponding cyclic carbamates. Using their approach
the trans diastereomers may be obtained in useful yields,
in contrast to the results discussed herein giving access to
the syn diastereomers. The group of Hiemstra had report-
ed the attack of an hemiaminal derived from a sulfon-
amide and a glyoxylate to a double bond activated by
Pd(II) giving an allylic N,O-acetal.7

Scheme 1

To test our concept, readily available homoallylic alcohol
68 was treated with various tosylated aldimines9 in the
presence of allylpalladium(II) chloride dimer [{Pd(al-
lyl)Cl}2], triphenylphosphine and LHMDS as base (1.5
equiv) in accordance with similar conditions previously
developed in our group for related transformations (en-
tries 1–6).4

Gratifyingly, as shown in Table 1, the reaction worked in-
deed within expectation in good diastereoselectivities al-
beit low yield under these conditions (Table 1, entry 3).
During further optimization studies (entries 7–11) it was
then found that the amount of base was crucial for the pro-
cess. Considering that the tert-butoxide anion formed dur-
ing the Tsuji–Trost process10 may itself act as a base and
may then deprotonate the starting alcohol, we evaluated
whether the desired transformation could also be effectu-
ated with only catalytic amount of base (entries 7–11).
Furthermore, based on the excellent selectivities obtained
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with acetaldimine (entry 3), a variety of aldimines were
evaluated. It was found that the overall results of N-nosyl-
protected phenyl aldimine were not improved (entry 7).
Furthermore, no reaction occurred by utilizing N-Boc-
protected phenyl aldimine (entry 8). Improved yields were
observed by using N-tosyl-protected acetaldimine, how-
ever at the expense of diastereoselectivity (entries 9 and
11).

As shown in Table 2, this reaction was then further evalu-
ated with different catalysts and ligands. Low degrees of
conversion could also be observed in the complete ab-
sence of base, suggesting that the alcohol itself might be
nucleophilic enough to initiate this sequential process.12

Best yields were obtained with KHMDS as a base, toluene
as solvent while a similar result was observed with tetra-
hydrofuran as solvent. In contrast to related cyclizations
previously studied in our group,5b only a minor influence
of the solvent on the stereochemical outcome of the reac-
tion was observed. In a parallel fashion a variety of differ-
ent palladium sources and ligands were also evaluated
(entries 9–14); however, the overall efficiency of this
process could not be further increased. The best reagent
combination (entry 5) involved 30 mol% of triphe-

nylphosphine as ligand and 10 mol% load of {Pd(al-
lyl)Cl}2 as catalyst dissolved in toluene adding the base
(KHMDS, 10 mol%) at –78 °C and 15 minutes after addi-
tion warming the reaction mixture to room tempera-
ture.13,14

As shown in Figure 1, this protocol was readily applicable
for the synthesis of diverse 1,3-oxazines with good selec-
tivities considering the stereochemical complexity of the
process. As compared to aliphatic substrates better stereo-
selectivities were obtained with electron-rich aromatic
homoallylic substrates and were up to 10.1:1.0:2.7:2.8
(viz. 12) which confirms the preparative utility of the pro-
cess. The 1,3-syn diastereomer was preferentially ob-
tained.

As demonstrated in Scheme 2 for the conversion of 11, the
aminal tether can be readily cleaved with activated mag-
nesium powder,5b to deliver the N-benzyl-protected 1,3-
amino alcohol 19, demonstrating the usefulness of our ap-
proach for the synthesis of 1,3-syn-amino alcohols. Inter-
estingly, this transformation led to an increased
diastereomeric purity, possibly by a kinetic effect with the
syn isomer reacting faster.

Table 1  Tandem Hemiaminalization–Tsuji–Trost Reaction11

Entry Ar R1 R2 Base Solvent Yield (%) dr (a/b/c/d)

1 Ph Et Ts t-BuOKa THF 15 –

2 Ph 2-MeOC6H4 Ns LHMDSa THF 9 –

3 4-Tol Me Ts LHMDSa THF 8 17.8:3.6:1.0:–f

4 4-Tol Et Ts LHMDSa THF 10 9.2:1.0: 2.1:–f

5 4-Tol Ph Ts LHMDSa THF 16b 1.0:1.5:4.8:0.3

6 4-Tol i-Pr Ts LHMDSa THF n.r. –

7 4-MeOC6H4 Ph Ns KHMDSc toluene 39 2.6:1.4:2.4:1.0

8 4-MeOC6H4 Ph Boc KHMDSc toluene n.r. –

9 Ph Me Ts KHMDSc toluene 64 4.9:1.4:1.0:5.4

10 4-MeOC6H4 Me Ts –d THF 13 –d

11 4-MeOC6H4 Me Ts LHMDSe THF 41 5.0:1.0:1.0:6.3

a The amount of base used was 1.5 equiv.
b One of two fractions in which the mixtures of isomers were partially separated by chromatography.
c The amount of base used was 10 mol%.
d No base was used.
e Pd2dba3·CHCl3/P(i-PrO)3 was used as catalyst.
f Diastereomer d could not be detected by NMR of the crude product.
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In accordance with related cyclizations,5 the observed ste-
reoselectivity may arise from a Zimmerman–Traxler-type
transition state (20a, Scheme 3) giving 11a with all sub-
stituents in equatorial positions, in agreement with the ob-
served stereochemical outcome. Alternatively, attack
from the opposite side of the π-allyl system via 20c may
lead to the less favored isomer 11c with two of the three
substituents residing in equatorial positions.15

In summary, we have devised a novel method for the ste-
reoselective synthesis of 1,3-syn-oxazines. Mechanisti-
cally, the one-pot procedure is based on a tandem
hemiaminalization with Tsuji–Trost reaction and it en-
ables a rapid and highly convergent access to these hetero-
cycles from very simple and readily available starting
materials. 1,3-syn Diastereomers are obtained in good
yields and selectivities, considering the stereochemical
complexity of the process. The diastereomeric induction
is purely based on substrate-control, which adds to the ef-
fectiveness of the process. These results may find useful
applications in natural product synthesis or scaffold prep-
aration in medicinal chemistry.

Table 2  Optimization of Reaction Conditions11

Entry Pd catalyst/ligand Base, solvent Yield (%) dr (11a/11b/11c/11d)

1 {Pd(allyl)Cl}2/PPh3 NaH, THF n.r. –

2 {Pd(allyl)Cl}2/PPh3 LiHMDS, THF 31 2.8:1.0:1.6:1.5

3 {Pd(allyl)Cl}2/PPh3 KHMDS, THF 60 3.9:1.0:2.0:1.5

4 {Pd(allyl)Cl}2/PPh3 KHMDS, CH2Cl2 29 1.2:1.0:1.1:1.3

5 {Pd(allyl)Cl}2/PPh3 KHMDS, toluene 67 3.9:1.0:2.7:1.5

6 {Pd(allyl)Cl}2/PPh3 DBU, toluene 59 2.5:1.0:3.0:1.2

7 {Pd(allyl)Cl}2/PPh3 Cs2CO3, toluene 31 3.9:1.0:2.3:2.6

8 {Pd(allyl)Cl}2/PPh3 KOtBu, toluene 35 3.5:1.0:2.6:2.0

9 {Pd(dppf)Cl}2/dppf KHMDS, toluene 12 1.1:1.0:1.6:0.6

10 [Pd2(dba)3]·CHCl3/PPh3 KHMDS, toluene 48 2.7:1.0:1.8:0.1

11 Pd(PPh3)4/– KHMDS, toluene 39 0.9:1.0:1.1:0.2

12 {Pd(allyl)Cl}2/dppe KHMDS, toluene 38 0.7:1.0:2.0:–

13 {Pd(allyl)Cl}2/PCy3 KHMDS, toluene n.r. –

14 {Pd(allyl)Cl}2/P(i-PrO)3 KHMDS, toluene 46 0.9:1.0:2.0:0.6
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(12) A yield of 56% was obtained in the absence of base for the 
analogous reaction described in entry 5 (Table 2).

(13) Experimental Procedure: Under an argon atmosphere, 
imine 10 (62.2 mg, 0.24 mmol), allylpalladium(II) chloride 
dimer (7.3 mg, 10 mol%) and triphenylphosphine (15.8 mg, 
30 mol%) were added to a well-dried Schlenk flask. Then, a 
solution of the respective carbonate (0.2 mmol) in anhyd 
toluene (0.33 M, 0.61 mL) was added to the flask and stirred 
until all solids were dissolved. After cooling to –78 °C, the 
potassium bis(trimethylsilyl)amide solution (0.5 M in 
toluene) was added dropwise (40 μL, 10 mol%). After 15 
min the reaction mixture was warmed to r.t. and stirred at 
this temperature until complete conversion. After addition of 
a sat. aq solution of NH4Cl (2 mL), the mixture was extracted 
with EtOAc (3 ×), washed with H2O and brine and dried over 
Na2SO4. The solvent was removed in vacuo and the residue 
was purified by column chromatography on silica gel with 
EtOAc–hexane (1:16) as eluent to afford the oxazines with 
the indicated yields and selectivities.

(14) All new compounds had spectroscopic data in support of the 
assigned structures. Oxazine 11a: 1H NMR (500.13 MHz, 
CDCl3): δ = 7.97 (d, J = 8.5 Hz, 1 H), 7.95 (d, J = 8.5 Hz, 1 
H) 7.63 (d, J = 8.2 Hz, 1 H), 7.58 (d, J = 8.2 Hz, 1 H), 7.29–
7.42 (m, 5 H), 7.12–7.19 (m, 2 H), 7.07 (d, J = 7.9 Hz, 1 H), 
7.00 (d, J = 7.9 Hz, 1 H), 6.75 (s, 1 H), 5.78 (ddd, J = 17.3, 

10.4, 7.7 Hz, 1 H), 5.02 (d, J = 17.3 Hz, 1 H), 4.96 (d, J = 
10.3 Hz, 1 H), 4.40 (ddd, J = 8.5, 8.2, 7.7 Hz, 1 H), 3.86 (dd, 
J = 10.2, 4.7 Hz, 1 H), 2.50 (s, 3 H), 2.35 (s, 3 H), 1.93 (ddd, 
J = 13.7, 10.2, 8.2 Hz, 1 H), 1.54 (ddd, J = 13.7, 8.5, 4.7 Hz, 
1 H). 13C NMR (125.76 MHz, CDCl3): δ = 143.93, 141.52, 
139.12, 137.74, 137.48, 137.36, 129.78, 129.19, 129.14, 
128.27, 128.02, 127.82, 127.63, 127.29, 126.81, 126.17, 
125.71, 115.73, 83.83, 73.15, 56.10, 33.62, 21.58, 21.08. 
HRMS (ESI): m/z [M + H]+ calcd for C26H28NO3S: 
434.17844; found: 434.17839. Oxazine 12a: 1H NMR 
(500.13 MHz, CDCl3): δ = 7.91–7.96 (m, 4 H), 7.71 (d, J = 
7.7 Hz, 2 H), 7.50 (d, J = 7.7 Hz, 2 H), 7.32–7.40 (m, 5 H), 
6.73 (s, 1 H), 5.78 (ddd, J = 17.3, 10.4, 6.6 Hz, 1 H), 5.02 (d, 
J = 17.3 Hz, 1 H), 4.94 (d, J = 10.4 Hz, 1 H), 4.50 (ddd, J = 
8.2, 8.0, 6.6 Hz, 1 H), 4.34 (dd, J = 11.5, 2.2 Hz, 1 H), 3.71 
(s, 3 H), 2.48 (s, 3 H), 2.07 (ddd, J = 13.7, 8.0, 2.2 Hz, 1 H), 
1.82 (ddd, J = 13.7, 11.5, 8.0 Hz, 1 H). 13C NMR (125.77 
MHz, CDCl3): δ = 155.85, 143.35, 141.45, 139.34, 131.19, 
129.72, 129.06, 128.57, 128.00, 127.90, 127.65, 126.89, 
126.29, 120.62, 115.46, 110.29, 84.36, 68.03, 55.78, 55.09, 
33.19, 21.54. HRMS (ESI): m/z [M + K]+ calcd for 
C26H27NO4SK: 488.12924; found: 488.12948.

(15) For a more detailed mechanistic discussion of a related 
cyclization, see ref. 4d.
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