hr and hydrolyzed with 2.3 ml of water, 2.3 ml of a 15% solution of NaOH, and 7 ml of water. The precipitate formed was filtered and thoroughly washed with ether. After drying and evaporation of the ether, the amine was obtained as an oily residue. The **hydrochloride**, formed with an alcoholic solution of HCl, was recrystallized from absolute ethanol yielding 1.95 g (50%), mp 188-189°.

Anal. Calcd for C₁₅H₁₈ClNO: C, 68.31; H, 6.88; N, 5.31. Found: C, 68.08; H, 6.88; N, 5.11.

2-(5-Hydroxy-2-biphenylyl)ethylamine (8).—The hydrochloride (2.2 g) of 7 was refluxed with 33 ml of 48% HBr for 5 hr. After concentration under vacuum, the red oily residue was dissolved in a small amount of water and treated with a saturated solution of NaHCO₃. Continuous extraction with ether gave a solid material which was converted into the hydrochloride with an ethereal solution of HCl. After recrystallization from absolute ethanol-anhydrous ether, the hydrochloride presented mp 209° dec, yield 1.55 g (74%).

Anal. Calcd for C₁₄H₁₆ClNO: C, 67.34; H, 6.46; Cl, 14.20; N, 5.60. Found: C, 67.22; H, 6.30; Cl, 14.50; N, 5.40.

Ethyl 5-Methoxy-2-biphenylacetate.—Acid 1 (11.4 g) was transformed into the chloride by reaction with 10 g of oxalyl chloride in 30 ml of benzene. After the usual treatment, the acid chloride was dissolved in 30 ml of anhydrous benzene, and the solution was added dropwise with stirring in a cooled ethereal solution of excess diazomethane. The mixture was left overnight at room temperature and the solvents were evaporated under vacuum. The **diazo ketone** thus obtained, a yellow solid of mp $72-75^{\circ}$, was dissolved in 150 ml of absolute ethanol, the solution was heated at $55-60^{\circ}$, and an alcoholic suspension of Ag₂O (prepared from 2.5 g of AgNO₃ and 2 N NaOH) was added in portions. The mixture was then refluxed for 15 min, treated with charcoal, and filtered, and the solvent was evaporated. Distillation of the residue yielded 7.8 g of the **ester** (58% yield, based on the acid), bp 184° (2 mm).

Anal. Caled for C₁₇H₁₈O₃: C, 75.53; H, 6.71. Found: C, 75.39; H, 6.60.

Saponification of the ester with alcoholic NaOH afforded the corresponding **acid**, mp 114° (lit.¹⁰ mp 115-116°).

2-(5-Methoxy-2-biphenylyl)ethanol.—The above ester (12.7 g) was reduced in 150 ml of anhydrous ether with 4.8 g of LiAlH₄. After decomposition of the complex with water and 3% H₂SO₄, the organic phase was separated, the solvent was evaporated and the residue was distilled under reduced pressure yielding 8.95 g (84%) of the alcohol, bp 160° (1 mm).

Anal. Calcd for C₁₅H₁₆O₂: C, 78.92; H, 7.02. Found: C, 78.88: H, 7.20.

2-(5-Methoxy-2-biphenylyl)ethyl Bromide.—A solution of 1.4 ml of PBr₃ in 6 ml of benzene was added dropwise in a cooled solution of 8.9 g of 2-(5-methoxy-2-biphenylyl)ethanol in 8 ml of anhydrous benzene. The mixture was kept in an ice bath for 3 hr, then warmed at 60° for 3 hr, cooled, and poured into crushed ice. The organic layer was separated, washed successively with 10% NaOH, 10% HCl, and water, and dried, and the solvent was evaporated. The residue yielded on distillation 7 g (61%) of the bromide, bp 166° (1 mm).

Anal. Calcd for C₁₅Ĥ₁₅BrO: C, 61.86; H, 5.20; Br, 27.44. Found: C, 62.06; H, 5.09; Br, 27.10.

The method used to prepare the amines 9-12 (see Table I) is illustrated by the following procedure.

N,N-Diethyl-2-(5-methoxy-2-biphenylyl)ethylamine (9).— 2-(5-Methoxy-2-biphenylyl)ethyl bromide (3 g) in 20 ml of absolute ethanol was refluxed with 3.7 g of diethylamine for 4 hr. The ethanol was distilled, and the residue was taken up with saturated NaHCO₃ and extracted with ether. After washing, drying, and evaporating the ether, the yellow oil was converted into the **hydrochloride** with alcoholic HCl. The salt was recrystallized from absolute ethanol-anhydrous ether; yield 1.3 g of white needles (see Table I).

Acknowledgments.—The authors gratefully acknowledge support of this investigation by a research grant from the Scientific Committee of NATO. The authors are indebted to Professor P. Lechat, of the Pharmacology Institute of the University of Paris, for carrying out the pharmacological tests, and to the Microanalytical Laboratory of CIBA, Basel (Switzerland), for performing the microanalyses. P. F. JUBY, R. B. BABEL, G. E. BOCIAN, N. M. CLADEL,

J. C. GODFREY, B. A. HALL, T. W. HUDYMA, G. M. LUKE, J. D. MATISKELLA, W. F. MINOR, T. A. MONTZKA,

J. D. MATISKELLA, W. F. MINOR, T. A. MONTZKA, R. A. PARTYKA, R. T. STANDRIDGE, AND L. C. CHENEY

Research Division, Bristol Laboratories, Division of Bristol-Myers Company, Syracuse, New York 13201

Received January 27, 1967

Recently, Shimamoto and co-workers have described tbe pharmacology of a new bradykinin antagonist, 2,6-pyridinedimethanol bis(N-methylcarbamate) ($R_1 = R_2 = CH_3NHCO_2CH_2$ in the general structure of Table I), which exhibited powerful antiatherosclerotic properties when fed orally to rabbits.^{1,2} Further studies^{3,4} have led to the claim that the compound has beneficial effects on human vascular occlusive diseases associated with atherosclerosis, and that it is useful in the treatment of inflammatory disorders such as rheumatic fever and rheumatoid arthritis.

It should be noted that 2,6-pyridinedimethanol bis(N-methylcarbamate) and related compounds⁵ show structural resemblances to a series of substituted-propanol carbamates with antiinflammatory properties.⁶ Other pyridinemethanol carbamates have been tested for sedative and anticonvulsive activities.⁷

We have now prepared additional carbamate and urea analogs of 2,6-pyridinedimethanol bis(N-methylcarbamate) and these are listed in Tables I–VI. All the compounds were prepared by standard procedures.

Pharmacology.—All the compounds were found to be inactive when tested orally in rats for possible antiinflammatory activity, using the carrageenin-induced edema technique.⁸ Representative compounds of the various structural types were also tested for an inhibitory effect on the reversed passive cutaneous anaphylactic reaction in guinea pigs,⁹ with only compounds **29**, **50**, and **123** showing activity.

Experimental Section¹⁰

Unless indicated otherwise, the alcohols, thiols, amines, isocyanates, isothiocyanates, and carbamoyl chlorides used to prepare the carbamates and ureas in Tables I–VI were obtained from commercial sources.

Acyl Isocyanates.—Acetyl isocyanate was prepared from acetyl chloride and silver cyanate.¹¹ Chloroacetyl isocyanate, butyryl

- (1) T. Shimamoto, Asian Med. J., 6, 12 (1963).
- (2) T. Shimamoto, F. Numano, and T. Fujita, Am. Heart J., 71, 216 (1966).
- (3) T. Shimamoto and T. Atsumi, Japan. Heart J., 6, 407 (1965).

(4) T. Shimamoto, H. Maezawa, H. Yamazaki, T. Atsumi, T. Fujita, T. Ishioka, and T. Sunaga, Am. Heart J., 71, 297 (1966).

- (5)~M. Inoue, M. Ishikawa, H. Ishikawa, and T. Shimamoto, South African Patent 64/1679 (Oct 20, 1964).
- (6) (a) O. Büch, Arch. Intern. Pharmacodyn., 123, 140 (1959); (b) O. Büch, Arch. Exptl. Pathol. Pharmakol., 238, 92 (1960).
- (7) J.-C. Billiotte and A. Debay, *Chim. Therap.*, 164 (1966).
 (8) C. A. Winter, E. A. Risley, and G. W. Nuss, *Proc. Soc. Exptl. Biol. Med.*, 111, 544 (1962).

(9) D. H. Campbell, J. S. Garvey, N. E. Cremer, and D. H. Sussdorf, "Methods in Immunology," W A. Benjamin, Inc., New York, N. Y., 1963, p 216.

(10) Melting points were determined with a variety of equipment and are uncorrected.

(11) O. C. Billeter, Ber., 36, 3213 (1903).

TABLE 1

Pyridine Derivatives

			Mp or bp	Crystn				aled, G		1	ound,	(j
No.	R	R	(mm), °C		$-Method^{h}$	Formula	('	Н	N	C	11	N
			Stando	S. 1	ed Carban							
i	II	CH ₄ NHCO ₂ CH ₂	7778	$A \sim B$	1	$C_{S}H_{10}N_{2}O_{2}\cdot N^{d}$	53, 24		8.28	53,40		8 42
2	El	$(CH_3)_{2}NCO_2CH_2$	74-75(0.01)		1	$C_9 H_{12} N_2 O_2$			15.55	59,70	6.65	15,80
- 3	H	3-C ₅ H ₄ NNHCO ₂ CH ₂ °	130, 5 - 132, 5	('	3	$C_{12}H_{11}N_3O_2$			18/33	63.09	5,00	18, 68
1	CH:	$\rm CH_8NHCO_2CH_2$	139 - 141	DC	1	$C_9H_{12}N_2O_2 \cap HC^{1}$		6.05			6.02	
ā	CH:	$(CH_8)_2NCO_2CH_2$	108-112(0.5)		l	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{2}$	61.83			61.80	7.10	
6	CH:	$C_2H_6NHCO_2CH_2$	123 - 124.5	Α	I	$C_{10}H_{14}N_2O_2 \cdot HC1$			12.15	52.25	6.75	12.35
7	CHa	$(C_2H_5)_2NCO_2CH_2$	101 - 102		1	$C_{12}H \propto N_2O_2$	64.81	8 16		64.51	8.28	
			(0.05)									
8	CHs	$C_6H_5NHCO_2CH_2$	108 - 109.5	E	1	$\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{2}$	69.40			69.50	5/82	11.78
9	CH	$CH_3NHC(S)OCH_2$	108 - 109.5	F	$\frac{2}{2}$	$C_9H_{12}N_2OS$		6.16		55.40		14-48
10	CHa	$C_2 \Pi_5 NHC(S)OCH_2$	201 - 201.5	G	2	$C_{10}H_{14}N_2OS \cdot HC^1$	48.67	6 13	11.36	48.75	6.20	11.52
11	CHa	$C_{\epsilon}H_{\delta}NHC(S)OCH_{c}$	106.5 - 108	[]~~]]	2	$C_{14}H_{14}N_2OS$			10,85			10.60
12	$C_3H_5NHCO_2CH_2^e$	C₃H₅NHCO₂CH₂ ^e	126-127	C	3	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{NaO_4}$	59.00		13.76	59, 18		13.87
13	$C_2H_5O_1CCH_2NHCO_2$ -	C2H5O2CCH2NHCO	85-86.5	- ('	1	$C_{17}H_{28}N_{2}O_{8}$	51/38	5 83		51,40	6.11	
	CH_{π}	CH_2										
11	$CH_3(CH_2)_3O_2CCH_{2*}$	$CH_3(CH_3)_3O_2CCH_2$	101-104	A-B	l	$C_{21}H_{31}N_3O_8 \cdot HC1$	51-46	6.59	8.57	51 - 50	6 - 49	8.73
	NHCO ₂ CH ₂	$\rm NHCO_2CH_2$										
15		m-ClC ₆ H ₄ NHCO ₅ CH ₅	111-112	D	I	$C_2(H_0C_2N_0O_1)$			11 12			9 32
16	p-CIC ₆ H ₄ NHCO ₂ CH ₂	p-ClC ₆ H ₄ NHCO ₂ CH ₂	175 - 176.5	G	1	$C_{21}H_{17}Cl_2N_3O_3$	56.51		9-42	56.23	1 16	9.64
17	-5 -C4H3N \circ NHCO ₂ CH \sim ¹		234235 dec	1-11	13	$C_{17}H_{16}N_7O_4$	53.56		25.72	53.80	1.12	25.90
18		2-C ₄ H ₈ N ₂ NHCO ₂ CH ₂ ^g	235 - 237	I1)	В.	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{N}_7\mathrm{O}_4$		3 97 -	25.72	53.55	4 18	25.73
19	HOCH ₂	$CH_3NHCO_2CH_2$	91-92	E.	1 %	$C_{9}H_{12}N_{2}O_{2}$		6 17	14.28	55,30	6.27	14,45
20	$(CH_3)_{2}NCO_2CH_2$	$CH_3NHCO_2CH_2$	114~115.5	E-J	17	$C_{12}H_{17}N_3O_4$	53.92	6.41	15.72	54.05	6.44	15.81
21	$C_6H_5NHCO_2CH_2$	$CH_8NHCO_2CH_2$	88-90	E	17	$C_{16}H_{17}N_3O_4$	60.94	5.43	$13 \ 33$	61.26	5.42	13 50
22	$\mathrm{C_6H_{11}NHCO_2CH_2}^{j}$	$CH_8NHCO_2CH_7$	136 - 137	1)…H	1.	$C_{16}H_{23}N_3O_4$	59.79	7.21	13 08	59.80	7.23	$13 \ 32$
23	-3 - C_{5} H ₄ NNHCO ₂ CH ₂ c	$\rm CH_3NHCO_2CH_2$	170 - 172	D	37	$C_{15}H_{16}N_4O_4$	56.96	5.10	17.71		5.25	17.71
24	-5-C ₄ H ₃ N ₅ NHCO ₂ CH ₂ ^f		167 - 169	G	37	$C_{14}H_{15}N_5O_4$			22 - 07	53, 15	4.79	21.97
25	-2-C ₄ H ₃ N ₂ NHCO ₂ CH ₂ g	$CH_8NHCO_8CH_7$	156 - 157	G	13.1	$C_{4}H_{15}N_5O_4$	52/99	4 77 3	$22 \ 07$	53, 25	4.88	22.02
				Aeyl Carb	amates							
		C U CONTICO CU	98.5-101	Е	1	(1, 11, N, 0)	115 Juni		10.00			
26	H CU CONDO CU	C ₆ H ₅ CONHCO ₂ CH ₂	180-181		1	$C_{14}H_{12}N_2O_3$ $C_{13}H_{15}N_3O_2$	$65.62 \\ 50.48$		10.93	65.35		10,90
27	CH3CONHCO2CH2 CICH2CONHCO2CH2	CH3CONHCO2CH2 ClCH2CONHCO2CH2	215-216 dec	G I⊴H	1			4189 3146	10.09	50.30		13.65
28			196-198	D	1	$C_{13}H_{13}C_{12}N_3O_6$			11.50	41.26		11,20
29	CH2(CH2)2CONH- CO2CH2	CH ₃ (CH ₂) ₂ CONH- CO ₂ CH ₂	190-198	17		$C_{17}H_{23}N_2O_f$	55-88	0.55	11 30	56 00	0.43	14.60
	C ₆ H ₅ CONHCO ₂ CH ₅	CsH5CONHCO2CH2	168.5-170.5	('-])	1	CasH ₁₀ NaO ₆	63.73	1.42	9-70		1. 200	
30	CaH ₅ CH ₂ CONHCO ₂ -	CeH5CH-CONHCO:-	225-227	[-H	t t	C %H 2N aOa		5.02	9.11	$64,00 \\ 65,30$	4 68	10,00
31	CH ₂	CH ₂		r		C	0.01	0.02	92. I U	00.00	5.07	9-00
32	CH3CONHCO3CH-	CH ₃ NHCO ₂ CH ₂	130-131	D	P	CigHisNaOs	51.24	5.98	14.94	51,33	5.90	15.03
33	CICH ₂ CONHCO ₂ CH ₂		154.5-155.5	Ď	12	CigHiaCiNaOa			13.30	45,75	1.47	13-12
34	CH2(CH2)-CONH-	CH ₈ NHCO ₂ CH ₂	133~134	D	1	C.4HaoNaO5	51.36		13, 50 13, 59	51,70		13 12 13 72
21 F	CO ₃ CH ₂	V TISKTIC OPC TIP	100-104	17	1	V 141130183025		0 13	100.000	01.40	0.20	10/72
35	ChH5CONHCO2CH	CH3NHCO2CH2	119-121	E	P	CerHerNaOs	59 47	4.99	12.24	59,46	5 12	11-95
36	CallaCH2CONHCO2	CH3NHCO2CH	155,5-156,5	D	i?	C ₁₈ H ₁₉ N±O ₅	60 49			60,75		11 78
	CH-			1,	,	A TATTANA WAS	00 10	.,	11.10	100.40	0.40	11 (2
				(lfony) Ca	rhumatos							
		2017 NOT 2017										
37	CeH ₅ SO ₂ NHCO ₂ CH ₂	CH ₈ NHCO ₂ CH ₂	78-80	H	1	C ₁₆ H ₁₇ N ₃ O ₄ S			11.08			10.91
38	CH ₂ SO ₂ NHCO ₂ CH ₂	CH ₂ SO ₂ NHCO ₂ CH ₂	182-184.5	D-H	1	CallaN3Os8-	34.64		11.02		4 12	11.29
39	$C_5H_5SO_7NHCO_2CH_1$	$C_{8}H_{5}SO_{8}NHCO_{7}CH_{2}$	169-171	G~B	1	CatH19NaOsS	46 54	o 72	7 75	46.77	1 07	7.92
						HCU						
				Fhiol Carl								
EO	11	$CH_2NHCS_2CH_2$	70-71	K	1	$C_{s}\Pi_{in}N_{2}S_{2}$	18.45			18.70		14, 15
11	11	CHaNHC(O)SCH ₃	148~150 dec	D+B	1	$C_{\rm M} H_{\rm B} N_2 OS \cdot HCL$			14.67^{k}	43.95		$11 \cdot 85^k$
12	11	$C_{\delta}H_{\delta}NHCS_{2}CH_{2}$	113-114.5	C	1	$C_{13}H_{12}N_2S_2$		4.65			4.73	
43	11	$C_6H_5NHC(O)SCH_2$	130 - 132	C	1	$C_{15}H_{15}N_2OS$		4.95		64.05	1.97	
44	CHE	$\rm NH_2C(O)SCH_2$	126 - 129	H	-1	$C_8H_{10}N_2OS$		5.53	15.38	52.75	5,46	15.38
45	CH	$CH_{8}NHCS_{2}CH_{2}$	133 - 135	\square	1	CaHarNaSc.			13.19	51.03	5/62	13 33
16	CH:	$CH_3NHC(O)SCH_2$	120 - 122.5	D	1	$C_9H_{12}N_2OS$			14.28		6 27	14, 48
17	$C11_{\mathbb{R}}$	$C_5H_5NHC(O)SCH_2$	104 - 106	K	1	$C_{14}H_{14}N_2OS$			10.85		5.52	10,95
48	$\rm CH_3NHCS_1CH_2$	$CH_3NHCS_2CH_2$	116-117	(`I	1	$C_{11}H_{15}N_3S_4$			13, 23	41.81	4.90	13,40
-19	$C_3H_5NHC(O)SCH_3^{\ell}$	$C_{3}H_{5}NHC(O)SCH_{2}^{c}$	146 - 148	D	3	C15H19N3O7S			19.00^{k}		5.68	18.82^{k}
50	CILNHC(0)SCU:	CH ₈ NHC(O)SCH ₂	120.5-122	C	1	C+H15NaO2S			14.72			14.95
51	C _d H ₅ NHC(0)SCH ₂	$C_2H_5NHC(O)SCH_2$	106-107	K-J	1	$C_{13}H_{19}N_3O_3S_3$			13.41	49,95		13.70
52	$C_6H_5NHC(O)SCH_2$	C ₆ H ₅ NHC(O)SCH ₂	177-179	D	1	CerH ₁₉ N ₃ O ₂ S ₂			10.26	61.70		10.12
53	$C_6H_5CONHC(O)$ -	C ₆ H ₅ CONHC(O)-	186 - 188.5	1~H	1	C_3H19N2O48-	59-33	4 11	9.03	59,27	4.40	8.85
	SCH-	SCH	-									
					Carbamat							
51	Н	CH ₂ NHCO ₂ CH ₂ CH ₂	105~105.5	L	1	$\mathrm{C_9H_{12}N_2O_2}{\circ}0.5Y^d$	55.45		11.76	55.65		11.90
55	11	C₅H₅NHCO₂CH₂CH₂ ^l	121 - 122.5	М	1	$C_{14}H_{14}N_2O_2$			11.56		5.88	11.55
56	11	CH ₈ NHCO ₂ CH-	152.5 - 153	М	1	$C_{12}H_{21}Cl_8N_{\rm C}O_2$	40.36	3 73	9.42	$10_{-}25$	3 64	9 55
		(CCla)CH ₂									_	
57	CH:	CH ₃ NHCO ₂ CH ₂ CH ₂	116-124	K A	1	CasHaNsOs HBr	43.65		10.18	43.60		10.30
58	C'Ha	C2H5NHCO2CH2CH2	125-128	- A	1	CuHaN:O-HBr	45.68		9.67	45.80		9.42
59	CH2	CrH5NHCO2CH-CH2	121–131 dec	X	1	$C_{15}H_{16}N_{2}O_{2} + HBT$	$53 \ 42$	a. U 8	8.31	53,40	ə 17	8 29

Notes

TABLE I (Continued)

	TABLE I (Communication)											
			Mp or bp	Crystn			(Caled,	%	~F	ound,	%
No.	$\mathbf{R}_{\mathbf{I}}$	\mathbf{R}_2	(mm), °C	solvent ^a	$Method^b$	Formula	С	н	N	С	н	N
					1 Center							
			-		ol Carbam							
60	Н	$CH_3NHCO_2(CH_2)_3$	67.5 - 69.5	С	1	$C_{10}H_{14}N_2O_2 \cdot 0.5Y^d$	57.13	6.39	11.11	57.20	6.40	11.22
61	Н	$C_6H_5NHCO_2(CH_2)_3^m$	79.5 - 80.5	G	1	$C_{15}H_{16}N_{2}O_{2}$	70.29	6.29	10.93	70.25	6.48	10.90
62	н	$C_6H_5NHCO_2(CH_2)_3^n$	150 - 151	K		$C_{28}H_{26}N_2O_5S$	62.42	5.92	6.33	62.44	6.08	6.12
	α -Substituted Derivatives											
63	Н	CH ₃ NHCO ₂ CH-	110-111	C–J	1	$C_{15}H_{16}N_2O_2$	70.29	6.29		70.30	6,26	
		$(CH_2C_6H_5)$										
64	Н	C6H5NHCO2CH-	84-85	C-J	1	$C_{20}H_{18}N_2O_2$	75.45	5.69	8.80	75.16	5.78	8.99
		$(CH_2C_6H_5)$										
65	H	$C_{2}H_{5}O_{2}CCH_{2}NHCO_{2}CH$	0		1	$C_{18}H_{20}N_2O_4$	65.84	6.14		66,00	6.37	
		1										
		C ₆ H ₅ CH	2									
66	н	$C_6H_5NHCO_2CH$	59 - 62	C–J	1	$C_{21}H_{19}N_{3}O_{4}$	66.83	5.07		67.10	5,21	
		$C_6H_5NHCO_2CH_2$										
67	Н	C ₂ H ₅ O ₂ CCH ₂ NHCO ₂ CH	0		1	$C_{17}H_{23}N_{3}O_{8}$	51.38	5.83	10.57	51.03	6.00	10.76
		$C_2H_5O_2CCH_2NHCO_2CH$										
68	CH3	$(C_{6}H_{5}NHCO_{2}CH_{2})_{2}CH$	146.5 - 147	С	1	$C_{23}H_{23}N_{3}O_{4}$			10.37			10.45
69	$CH_{3}NHCO_{2}CH(CH_{3})$	$CH_{3}NHCO_{2}CH(CH_{3})$	0		1	$\mathrm{C}_{13}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{4}\cdot$	53.78	6.94		53.45	7.27	
						$0.5 H_2 O$						
70	$CH_3NHCO_2C(CH_3)_2$	$CH_{3}NHCO_{2}C(CH_{3})_{2}$	163 - 164	C–J	1	$C_{15}H_{28}N_{3}O_{4}$	58.23	7.49	13.59	58.30		13.55
71	$C_6H_6NHCO_2C(CH_3)_2$	$C_6H_5NHCO_2C(CH_3)_2$	181-182	C-J	1	$C_{25}H_{27}N_{3}O_{4}$	69.26	6.28	9.70	69.30	6.31	9.52
72	$C_2H_5O_2CCH_2NHCO_2-$	$C_{2}H_{\delta}O_{2}CCH_{2}NHCO_{2}$ -	130 - 132	C–J	1	$\mathrm{C}_{^{91}}\mathrm{H}_{^{81}}\mathrm{N}_{^{3}}\mathrm{O}_{^{8}}$	55.62	6.89	9.09	55.35	7.02	9.34
	$C(CH_3)_2$	$C(CH_3)_2$										
-0	**		100 105	Urea		OT NO			00 / -			
73	н	CH ₃ NHCON(CH ₃)-	132-135		1	$C_9H_{13}N_3O$			23.45			23.70
	17	CH2	(0.2)	г		OUNO	37.39	5,02		27 70	5 00	
74	н	$CH_3NHCON(CH_3)$ - CH_2^p	127.5 - 130	F		$C_{10}H_{16}IN_{3}O$	91.99	ə.02		37.70	0.20	
	OU	-	152 - 153	3.4	1	CUNO	69.69	6.27	17.42	60 02	6 10	17 -5
75	CH ₃	C6H6NHCONHCH₂ o-ClC6H4NHCO-	152-155 162-163	M	1	C14H15N3O C14H14ClN3O	60.98	5.27 5.12	11.42	69.83 61.32	5.23	17.75
76	CH_3	NHCH ₂	102-105	А	1	CI41114CIIN3O	00.90	0.12		01.32	0.20	
77	CH_3	m-ClC6H4NHCO-	179-180	F	1	C14H14ClN3O			15.24			15.20
"	0113	NHCH2	179-180	r	1	0141114011180			10.24			10.20
78	CH3	p-ClC6H4NHCO-	177-178.5	D	1	C14H14ClN3O	60.98	5 12	15.24	61 10	5 17	15, 55
10	en	NHCH2	111 110.0	D	1	0141114011430	00.00	0.12	10.21	01.10	0.17	10.00
79	CH3	2,5-Cl2C6H3NHCO-	189,5-190	А	1	$C_{14}H_{13}Cl_2N_3O$	54,21	4 22		54.51	4 28	
10	0113	NHCH2	100,0 100		-	01411130121130	01.21	1.22		01.01	1,20	
80	NH ₂ CONHCH ₂	NH ₂ CONHCH ₂	238.5-240	н	5	$C_9H_{13}N_5O_2$			31,38			31.37
81	CH ₃ NHCONHCH ₂	CH ₃ NHCONHCH ₂	212.5-213.5	н	1	$C_{11}H_{17}N_{5}O_{2}$	52.57	6.82	27,87	52.50	6.88	28.00
82	CH3NHCSNHCH2	CH ₃ NHCSNHCH ₂	182.5-184	G	1	$C_{11}H_{17}N_bS_2$	46.63	6.05	24.72	46,61	6.38	24,80
83	C2H6NHCONHCH2	C ₂ H ₅ NHCONHCH ₂	224.5-225	<u></u> Д-Н	1	$C_{13}H_{21}N_5O_2$	55.89	7.58		56,00	7.55	21.00
84	C2H5NHCSNHCH2	C ₂ H ₅ NHCSNHCH ₂	96.5-98.5	č	1	$C_{13}H_{21}N_5S_2$	50.16	6.75	22.51	50,00	6.67	22.64
85	C6H6NHCONHCH2	C6H5NHCONHCH2	240-240,5	I-H	1	$C_{21}H_{21}N_5O_2$	67.18	5.64	18,66	67.50	5.57	18,95
86	C6H6NHCSNHCH2	C6H5NHCSNHCH2	192.5-194	I-H	1	$C_{21}H_{21}N_5S_2$	61.91	5.16	17.19	61.56	5.46	17.50
87	CH ₃ (CH ₂) ₂ CONH-	CH ₃ (CH ₂) ₂ CONH-	211-213	G	1	C17H25N5O4	56, 19	6.88	19.28	56.20	6.95	19,60
0.	CONHCH:	CONHCH2			-	0111111101				00.20	010.7	-0700
88	C6H6CONHCO-	C6H5CONHCO-	241 - 243.5	I–H	1	$C_{23}H_{21}N_5O_4$	64.03	4.87	16.24	63.80	4.92	16.43
	NHCH ₂	NHCH2			-					1.100		
			G	AVATRA CA	rbamates							
06	CH .	OH O ONHOU				OHNO HO			10.00			10.05
89	CH ₃	CH ₃ O ₂ CNHCH ₂	167-168	F	6	C9H12N2O2 · HCl	£1 00	7 07	12.93	01 -0	= 00	13.05
90	CH_3	$C_2H_5O_2CNHCH_2$	95-101		6	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{2}$	01.83	1.27	14.42	61.70	7.36	14.61
0.1	CHA CNHCH.	CH ₃ O ₂ CNHCH ₂	(0, 15)	E-N	6	C11H15N3O4	52.17	5.07	16.59	52.00	5 00	10 00
$91 \\ 92$	$CH_3O_2CNHCH_2$ $C_2H_6O_2CNHCH_2$	C ₂ H ₅ O ₂ CNHCH ₂	118.5-119.5 85-86.5	E-N E-N	6 6	$C_{13}H_{19}N_{3}O_{4}$	52.17 55.50		16.59 14.94	52.00 55.20	5.90 6.77	$16.83 \\ 15.25$
92 93	C ₆ H ₅ O ₂ CNHCH ₂	C ₆ H ₅ O ₂ CNHCH ₂	80-80.5 135-136	E-N G-H	6	$C_{21}H_{19}N_{3}O_{4}$			14.94 11.14			10.20 10.90
99	U611602U11110112	C011002C1111C112	100-100	0-11	U	021111919304	00.04	0.04	11.14	07.00	5.01	10.90

^a A = acetone, B = diethyl ether, C = ethyl acetate, D = ethanol, E = benzene, F = acetonitrile, G = methanol, H = water, I = dimethylformamide, J = Skellysolve B (bp 60-80°), K = 2-propanol, L = 95% ethanol, M = toluene, N = cyclohexane, O = 1-butanol. ^b See Experimental Section. ^c C₅H₄N = pyridyl. ^d X = p-toluenesulfonic acid, C₇H₈O₅S; Y = fumaric acid, 0.5C₄H₄O₄. ^e C₃H₅ = cyclopropyl. ^f C₄H₂N₂ = pyrimidinyl. ^g C₄H₃N₂ = pyrazinyl. ^h Product obtained from a reaction between 2,6-pyridinedimethanol in pyridine and insufficient methyl isocyanate for dicarbamate formation. Product obtained by treatment of 19 with the appropriate isocyanate, carbamoyl chloride, or acid azide. ${}^{j}C_{6}H_{11} = cyclohexyl.$ k Sulfur analysis. ${}^{l}E$. Profft and R. Schmuck, Arch. Pharm., **296**, 209 (1963). ${}^{m}K$. Winterfeld and E. Müller, *ibid.*, **284**, 269 (1951). n Methyl p-toluenesulfonate of **61**. o Noncrystalline product. ^p Methiodide of 73.

isocyanate,¹² bp 109-114° (760 mm), benzoyl isocyanate, and phenylacetyl isocyanate were prepared from the reaction of oxalyl chloride with the corresponding primary amides.¹³

Acid Azides.-Nicotinic acid azide, pyrimidine-5-carboxylic acid azide (mp 48-53°, characterized as the carbamates 17 and 24), pyrazine-2-carboxylic acid azide¹⁴ (characterized as the carbamates 18 and 25), and cyclopropanecarboxylic acid azide

(12) This product has not been reported previously but was too reactive toward atmospheric moisture for satisfactory elemental analyses. The product was characterized as the carbamates **29** and **34** and the urea **87**. (13) A. J. Speziale and L. R. Smith, J. Org. Chem., 28, 1805 (1963).

(14) The crude pyrazine-2-carboxylic acid azide was a semisolid material

(not isolated, but characterized as the carbamates 12 and 49) were prepared by the general procedure of Weinstock.¹⁵

Sulfonyl Isocyanates.--Methanesulfonyl isocyanate,¹⁶ bp 83-84° (16 mm), and benzenesulfonyl isocyanate,¹⁷ bp 110° (3.7 mm), were both prepared from the reaction of oxalyl chloride with methanesulfonamide and benzenesulfonamide, respectively, by methods similar to those described by Franz and Osuch.¹⁸

6-Methyl-2-pyridinemethanethiol, bp 49° (0.5 mm), was prepared from 2-chloromethyl-6-methylpyridine in a yield of 44.7%

(18) J. E. Franz and C. Osuch, J. Org. Chem., 29, 2592 (1964).

which could not be purified for satisfactory elemental analyses.

⁽¹⁵⁾ J. Weinstock, J. Org. Chem., 26, 3511 (1961).

⁽¹⁶⁾ O. C. Billeter, Ber., 38, 2013 (1905).
(17) O. C. Billeter, *ibid.*, 37, 690 (1904).

NOTES

TABLE H Pyridine N-ONIDE DERIVATIVES

RNHCO ₂ C	H_{z}
----------------------	---------

			Crystn			ويستعد الرا	Caled, %		· · · · · · · · · · · ·	bound, \mathbb{Q}_{ℓ}	
No.	R	Mp, °C	$\operatorname{solvent}^{a}$	$Method^{b}$	Formula	(`	11	N	C	Н	N
94	CH_3	129.5 - 130.5	E	1	$\mathrm{C}_{9}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{O}_{3}$	55,09	6.17	14.28	55.15	6.14	14.49
95	CeHa	167 - 168	G-H	1	$C_{14}H_{14}N_2O_3$	65.10	5,46	10,85	65.25	5.52	11.03
96	$3-C_5H_4N^c$	184-185	II	.)	$C_{13}H_{13}N_3O_3$	60.22	5 ()5	16.21	60.40	5/07	16.35

were See footnotes in Table I.

TABLE III NETROBENZENE DERIVATIVES

				$\mathbf{n}_{CO_{2}}$	C112								
	Crystn Caled, GCaled, G												
No.	R	$Mp_{*} \cong C$	solvent"	$Method^b$	Formula	C	11	N	C	11	N		
97	$\rm NH_2$	199.5 - 200.5	(¦	4	$\mathrm{C}_{13}\mathrm{H}_{11}\mathrm{N}_{3}\mathrm{O}_{6}$	44.61	4.12	15.61	44.65	4.18	15.75		
98	CH ₃ NH	144 - 145.5	Н	1	$\mathrm{C}_{12}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{6}$	48.48	5,09	14.14	48.75	5.18	14.30		
99	$(CH_3)_{2}N$	111-113	DH	i	$C_{14}H_{19}N_3O_6$	51.68	5,89	12.92	51.60	5.94	12.80		
100	$3-C_5H_4NNH^c$	$195 \cdot 196 \deg$	0	3	$\mathbf{C}_{20}\mathbf{H}_{17}\mathbf{N}_5\mathbf{O}_6$	56.73	4.05	16 - 54	57.00	4.28	16.55		

" See footnotes in Table I.

TABLE IV BENZENE DERIVATIVES

			Mp or bp	Crystn			·····	aled, (F	ound, '	
No.	\mathbf{R}_{1}	\mathbf{R}_{2}	(mm), °C	solven;"	$Method^{h}$	Formula	C	Н	N	С	Н	N
101	CHa	NH ₂ CO ₂ CH ₂	84-86	N	1	$C_{9}H_{11}NO_{2}$	65.44	6.71	8.48	65, 38	6.85	8,56
102	CH:	CHaNHCO ₂ CH ₂	92-97 (0.02)		1	$\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{NO}_2$	67.02	7.31	7.82	66,90	7.52	7 87
103	CH3	(CH ₈) ₂ NCO ₂ CH [*]	70-75 (0.01)		1	$C_{11}H_{1\delta}NO_2$	68.37	7 82	7.25	68.30	7.78	6.98
104	CHa	C ₆ H ₅ NHCO ₂ CH ₂	64-65.5	N	1	$C_{15}H_{15}NO_2$	74.66	6.27	5.81	74.41	6.28	5.97
105	CHa	3-C ₅ H ₄ NNHCO ₂ CH ₂ "	139 - 140	G-H	з	$C_{14}H_{14}N_2O_2$	69.40	5.83	11,56	69.41	6.05	11.77
106	NH2CO2CH2	NH ₂ CO ₂ CH ₂	150 - 152	G-H	-4	$C_{10}H_{12}N_2O_4$	53.57	5.39	12.50	53.70	5.37	12.58
107	CHaNHCO ₂ CH ₂	CH ₃ NHCO ₂ CH ₂	139 - 140	G	1	$C_{12}H_{16}N_2O_4$	57.13	6.39	11.11	57.00	6.56	11.36
107	C ₂ H ₅ NHCO ₂ CH ₂	C ₂ H ₅ NHCO ₂ CH ₂	134.5-135.5	G-H	1	$C_{14}H_{20}N_{2}O_{4}$	59.98	7.19	9.99	59,98	7.30	10.19
109	C ₆ H ₅ NHCO ₂ CH ₂	C6H5NHCO2CH2	132.5 - 134.5	G	1	$C_{22}H_{20}N_2O_4$	70.20	5.36	7.44	70.25	5.15	7.45
110	(CH ₃) ₂ NCO ₂ CH ₂	(CH ₃) ₂ NCO ₂ CH ₂	192 - 194		1	$C_{14}H_{29}N_2O_4$	59.98	7 19	9,99	60.20	7,40	10.18
110	((113)211((0))(11)		(0.02)									
111	3-C5H4NNHCO2CH2C	3-C₅H₄NNHCO₂CH₂ ^r	163 - 165	G-H	3	$C_{50}H_{18}N_4O_4$	63.48	4.80	14.81	63, 55	4,95	15,04
112	CallaNHC(S)OCH:	C ₆ H ₆ NHC(S)OCH ₂	136.5-137.5	Е	2	$C_{22}H_{20}N_2O_2S_2$	64.69	4.93	6.86	64.90	4,88	7.05
113	CH ₃ NHC(0)SCH ₂	CH ₃ NHC(0)SCH ₂	150 - 152	D	1	$C_{12}H_{16}N_2O_2S_2$	50.67	5.67	9,85	50.50	5,67	9.65
114	C ₆ H ₅ NHC(O)SCH ₂	C ₆ H ₅ NHC(O)SCH ₂	183 - 185	1-11	1	$C_{22}H_{20}N_2O_2S_2$	64, 69	4.93	6.86	64.65	5.05	6.88
115	CH3NHCONHCH2	CH ₈ NHCONHCH ₂	201.5-202.5	G	1	$C_{12}H_{18}N_4O_2$	57.58	7.25	22.39	57.65	7.34	22.25
116	(CH ₃) ₂ NCONHCH ₂	(CH ₃) ₂ NCONHCH ₂	147 - 149	C	1	$C_{44}H_{22}N_4O_2$	60.43	7.91	20.15	-60.13	7.87	19.90
117	C ₂ H ₅ NHCONHCH ₂	C ₂ H ₅ NHCONHCH ₂	195 - 196.5	G~B	1	$C_{14}H_{22}N_4O_2$	60.43	7.91	20.15	60.50	7 99	20_{-20}
118	C2H5O2CCH2-	C2H5O2CCH2-	200.5-202.5	D	1	$C_{18}H_{26}N_4O_6$	54(8)	6 64	14 21	54 80	6.86	14 52
1.1.1	NHCONHCH ₂	NHCONHCH ₂										
119	CH ₃ NHCSNHCH ₂	CH ₈ NHCSNHCH ₂	134, 5 - 137	G	1	$C_{12}H_{18}N_4S_2$	51.05	6.43		51,20	6.42	
120	C ₂ H ₅ NHCSNHCH ₂	C+H5NHCSNHCH9	163 - 165	G	1	$C_{14}H_{22}N_4S_2$	$54 \ 18$	7.15	18.05	54 - 50	7.27	18.32
120	C2H4O2CNHCH2	C ₂ H _b O ₂ CNHCH ₂	103.5 - 105	D-H	6	$\mathrm{C}_{14}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{3}$	59.98	7.19	9,99	59.80	7.03	10.18
121	C ₆ H ₅ O ₂ CNHCH ₂	C6H5O2CNHCH:	154 5-155	G	6	$C_{22}H_{20}N_2O_4$	$70^{-}21$	5/32	7.45	70.42	5.52	7 47
122												

" · See footnotes in Table I.

by the general procedure of Urquhart, et al.¹⁹ The thiol was characterized as the carbamates 44-47.

2,6-Pyridinedimethanethiol, bp 94–96° (0.35 mm), was prepared in 65.3% yield from 2,6-pyridinedimethanol by the general method of Frank and Smith.20 The dithiol was characterized as the carbamates 48-53.

(19) G. G. Urquhart, J. W. Gates, Jr., and R. Connor, "Organic Syntheses," Coll. Vol. III, John Wiley and Sons, Inc., New York, N. Y., 1955, p. 1989. 363.

(20) R. L. Frank and P. V. Smith, J. Am. Chem. Soc., 68, 2103 (1946).

 $2\hbox{-}[2\hbox{-}(6\hbox{-}Methylpyridyl)]ethanol, {}^{21}\ 2\hbox{-}[2\hbox{-}(6\hbox{-}methylpyridyl)]\hbox{-}$ 1,3-propanediol,²¹ and 1-(2-pyridyl)-3,3,3-trichloro-2-propanol²² were prepared according to known procedures. **2,6-Bis(aminomethyl)pyridine**,²³ bp 89–91° (0.15–0.2 mm),

⁽²¹⁾ R. Bodalski, J. Michalski, and K. Studniarski, Roczniki Chem., 38, 1337 (1964); Chem. Abstr., 62, 1627d (1965).

⁽²²⁾ C. W. Tullock and S. M. McElvain, J. Am. Chem. Soc., 61, 961 (1939).

⁽²³⁾ F. Lions and K. V. Martin, *ibid.*, 79, 2733 (1957).

Notes

	$RNHCO_2CH_2 \xrightarrow{N} Calcd, \% Found, $												
No.	R			thod ^b	Formula	С	н	Ν	С		н	N	
123	CH_3	94.5-95	B-J	L C1	$_2\mathrm{H}_{12}\mathrm{N}_2\mathrm{O}_2$	66.65	5.60		66.73	55.	70		
124	C_6H_5	129.5 - 130.5	C–J	L C1	$_7\mathrm{H}_{14}\mathrm{N}_2\mathrm{O}_2$	73.36	5.07	10.07	73.1	1 - 5.	13	10.25	
a ,b S	see footnotes i	n Table I.											
				TAE	sle VI								
			,	l'hiophene	DERIVATIV	ves (
				R_1									
				1									
				S									
				R_2									
				Crystn				Caled, %		——-F	ound. %	é	
No.	\mathbf{R}_1	R_2	Mp, °C	solvent ^a	$\operatorname{Method}^{\flat}$	Formula	С	Н	N	сÎ	Н	N	
125	Н	CH ₈ NHCONHC		E	1	$\mathrm{C_7H_{10}N_2OS}$	49.40	5.92	16.46	49.36	6.00	16,60	
126	CH ₃ NHCO ₂ C			G-B	1	$C_{10}H_{14}N_2O_4S$		5.42	10.85	46.75	5.54	10.88	
127	$C_2H_bNHCO_2C$	H ₂ C ₂ H ₆ NHCO ₂ CH	2 98-100	Λ -J	1	$C_{12}H_{18}N_2O_4S$	50.35	6.28	9.79	50.40	6.37	9.58	

a,b See footnotes in Table I.

was prepared from 2,6-bis(chloromethyl)pyridine²⁴ in 56% yield by the Gabriel method.²⁵

6-Methyl-2-pyridinemethanol N-oxide, mp 111-113°, was prepared from 6-methyl-2-pyridinemethanol by the method of Furukawa.²⁶

2-Nitro-1,3-benzenedimethanol.—1,3-Dimethoxycarbonyl-2nitrobenzene²⁷ was reduced with NaBH₄ and AlCl₃ in diethyleneglycol dimethyl ether by a general method for the reduction of esters to alcohols in the presence of nitro groups.²⁸ The lightsensitive 2-nitro-1,3-benzenedimethanol was recrystallized from water to give yellow needles, mp 101.5–102° (32.5% yield).

Anal. Caled for $C_8H_9NO_4$: C, 52.46; H, 4.95; N, 7.65. Found: C, 52.30; H, 5.05; N, 7.74.

3-Methylbenzyl alcohol²⁹ and **1,3-benzenedimethanol**³⁰ were prepared by the reductions of methyl *m*-toluate and dimethyl isophthalate, respectively, with LiAlH₄ in tetrahydrofuran solutions.

1,3-Benzenedimethanethiol³¹ was prepared from 1,3-benzenedimethanol according to the general procedure of Frank and Smith.²⁰

2.5-Thiophenedimethanol, bp 123–125° (0.05 mm), was prepared from thiophene by the method of Griffing and Salisbury.³²

General Methods for the Preparation of Carbamates and Ureas. Method 1.—A solution of an alcohol, thiol, or amine in an appropriate solvent such as pyridine, benzene, toluene, acetone, or ether was treated with an isocyanate, acyl isocyanate, sulfonyl isocyanate, isothiocyanate, or carbamoyl chloride at temperatures ranging from room temperature to the reflux temperature of the solution for 0.5–108 hr. Reactions using the more volatile isocyanates, such as methyl isocyanate, were conducted in glass pressure bottles.

Method 2.—A solution of an alcohol and potassium *t*-butoxide in *t*-butyl alcohol was treated with an isothiocyanate at room temperature.³³

Method 3.—A solution of an alcohol in benzene or pyridine was heated under reflux with an acid azide.

- (32) J. M. Griffing and L. F. Salisbury, J. Am. Chem. Soc., 70, 3416 (1948).
- (33) A. Streitwieser, Jr., and J. R. Wolfe, Jr., ibid., 79, 903 (1957).

Method 4.—Primary carbamates were prepared from the reaction of an alcohol with sodium cyanate and trifluoroacetic acid in methylene chloride.³⁴

Method 5.—A monosubstituted urea was prepared by heating an aqueous solution of an amine hydrochloride and KCNO on a steam bath for 45 minutes.³⁵

Method 6.—A solution of an amine in a solvent such as benzene or ether was treated with an alkyl or aryl chloroformate in the presence of a base such as pyridine or triethylamine.

Acknowledgment.—The authors are particularly grateful to Dr. Max E. Bierwagen and his staff for all of the pharmacological test results and for helpful comments during the preparation of this manuscript. Thanks are also due to Mr. J. C. Heffernan for technical assistance and to the analytical and spectroscopic departments for their services.

(34) B. Loev and M. F. Kormendy, J. Org. Chem., 28, 3421 (1963).
 (35) P. Ruggli and B. Prijs, Helv. Chim. Acta, 28, 674 (1945).

2-Acylimino-1,1-dimethylphenethylamines and Related Compounds. Anorectic Agents

JOHN KRAPCHO AND JOHN P. HIGH

The Squibb Institute for Medical Research, New Brunswick, New Jersey

Received December 8, 1966

Numerous substituted phenethylamines exhibit central nervous system stimulation and anorectic activity.¹ We found that 1-(2-imino-1,1-dimethyl-2-phenylethyl)piperidine (I), when administered to mice by the oral route caused significant CNS stimulation and depres-

 $\underset{\underset{\scriptstyle I}{\scriptstyle II_{\delta}CC(CH_{\delta})_{2}}{\scriptstyle N}(CH_{2})_{5}\cdot HCl}{\scriptstyle NR}$

I,
$$R = H$$

II, $R = COCH_3$

(1) R. A. McLean in "Medicinal Chemistry," A. Burger Ed., Interscience Publishers, Inc., New York, N. Y., 1960, Chapter 29, p 592.

⁽²⁴⁾ W. Baker, K. M. Buggle, J. F. W. McOmie, and D. A. M. Watkins, J. Chem. Soc., 3594 (1958).

⁽²⁵⁾ J. C. Sheehan and W. A. Bolhofer, *ibid.*, **72**, 2786 (1950).

⁽²⁶⁾ S. Furukawa, Yakugaku Zasshi, **78**, 957 (1958); Chem. Abstr., **53**, 3219h (1959).

⁽²⁷⁾ A. Wohl, Ber., 43, 3474 (1910).

⁽²⁸⁾ H. C. Brown and B. C. Subba Rao, J. Am. Chem. Soc., 77, 3164 (1955).

⁽²⁹⁾ Br. Radziszewski and P. Wispek, Ber., 15, 1743 (1882).

⁽³⁰⁾ C. Mettler, ibid., 39, 2933 (1906).

⁽³¹⁾ A. Kötz, *ibid.*, **33**, 729 (1900).