inorganic compounds

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

New oxyfluorotellurates(IV): $MTeO_3F$ ($M = Fe^{III}$, Ga^{III} and Cr^{III})

Jean Paul Laval,* Nefla Jennene Boukharrata and Philippe Thomas

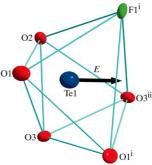
Science des Procédés Céramiques et de Traitements de Surface, UMR-CNRS, 6638, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060. France

Correspondence e-mail: jean-paul.laval@unilim.fr

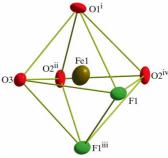
Received 13 November 2007 Accepted 23 November 2007 Online 12 January 2008

The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO₃F, gallium(III) oxyfluorotellurate(IV), GaTeO₃F, and chromium(III) oxyfluorotellurate(IV), CrTeO₃F, consist of zigzag chains of MO_4F_2 distorted octahedra alternately sharing O–O and F–F edges and connected via TeO₃ trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te^{IV} cation is stereochemically active.

Comment


In recent years, a systematic investigation of tellurium(IV) fluorides and oxyfluorides has been performed in our laboratory in order to develop our knowledge in four directions: (i) synthesis of new phases of potential interest for their nonlinear optical properties; (ii) characterization of new structure types in order to determine the influence of the electronic lone pair of Te^{IV} atoms (E) on their structural framework, especially in fluorides and oxyfluorides, compounds very sensitive to the stereochemical activity of this electronic lone pair; (iii) determination of the main rules governing the O/F anionic long-range or short-range ordering in oxyfluorides; and (iv) crystal growth in hydrofluoric acid medium of tellurates and oxyfluorotellurates(IV), which could be promising for nonlinear optics.

Following on from the structural characterization of the $TeOF_2$ (Guillet *et al.*, 1999), $Te_2O_3F_2$ (Ider *et al.*, 1996) and KTe_3O_6F (Laval *et al.*, 2002) phases, this paper deals with the syntheses and crystal structure determination of a new isomorphous series of oxyfluorides, $MTeO_3F$, with $M = Fe^{III}$, Ga^{III} and Cr^{III} .


The Te atom is bonded to three O atoms at distances of ca 1.9 Å (Tables 1 and 2). It occupies the center of a trigonal pyramid with the stereochemically active electronic lone pair E pointing in the direction of the fourth corner (Fig. 1). If three weak extra bonds with lengths of ca 2.7 Å are considered, the anionic polyhedron can be described as a distorted

octahedron. The lone pair E occupies the volume formed between the Te atom and the weakly bonded anions. The M atom is sixfold coordinated, slightly shifted from the center of a distorted MO_4F_2 octahedron (Fig. 2, and Tables 1 and 2). Bond-valence calculations (Brown, 1981) are consistent with the description $M^{\rm III}{\rm Te}^{\rm IV}({\rm O}^{2-})_3{\rm F}^-$ showing a full O/F ordering (Tables 3 and 4).

FeTeO₃F, GaTeO₃F and CrTeO₃F [with lattice parameters refined on the basis of powder X-ray diffraction data of a = $5.028 (1) \text{ Å}, b = 5.073 (1) \text{ Å}, c = 12.307 (2) \text{ Å} \text{ and } \beta =$ 97.40 (4)°, using the refinement program CHEKCELL (Laugier & Bochu, 2000)] are isomorphous, with 'zigzag' chains of MO_4F_2 ($M = Fe^{III}$, Ga^{III} and Cr^{III}) distorted octahedra sharing alternately O-O and F-F edges and interconnected via TeO₃ trigonal pyramids (Fig. 3a). A projection on to (010) shows large tunnels parallel to [010], towards which point the lone pairs E (Fig. 3b). The description considering the Te anionic environment as a distorted octahedron (Fig. 1) allows an interesting comparison with the α -PbO₂ (Fig. 4) structure (Hyde & Andersson, 1989). Indeed, the structure of $M\text{TeO}_3\text{F}$ ($M = \text{Fe}^{\text{III}}$, Ga^{III} and Cr^{III} ; Fig. 3a) is thus based on parallel zigzag chains of corner-sharing octahedra, two adjacent chains being shifted by a/2 along the [001] direction. The idealized MTeO₃F structure appears as a superstructure of α -PbO₂ with doubling of the c axis (Table 5). However, the hexagonal close packed (hcp) anionic array and

Figure 1 The anionic polyhedron (distorted octahedron) around the Te atom in the FeTeO₃F structure. The arrow indicates the direction towards which the lone pair *E* points. The Ga and Cr analogs are isomorphous. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.]

Figure 2 The coordination polyhedron of the Fe atom in FeTeO₃F. [Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.]

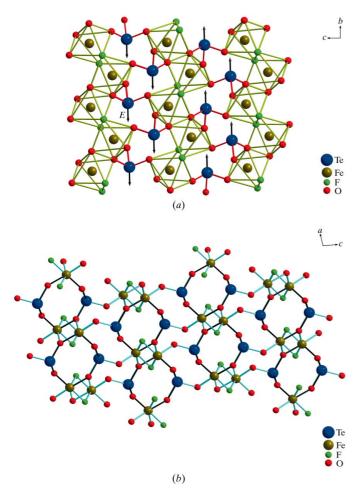


Figure 3 (a) The (100) layer of 'zigzag' (FeO₃F)_n chains of FeO₄F₂ octahedra connected via TeO₃. (b) A projection on to (010), showing the tunnels towards which the lone pairs E point.

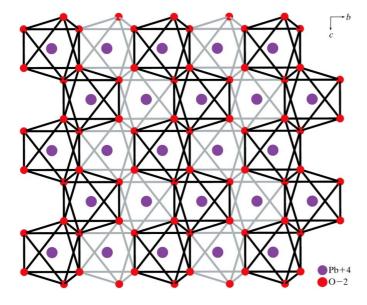


Figure 4 The ideal structure of α -PbO₂ for comparison with the structure of FeTeO₃F (see Fig. 3a).

the positions of the cations are more distorted than in α -PbO₂ as a consequence of the cationic ordering, of the difference in size between $M^{\rm III}$ and ${\rm Te^{IV}}$ cations, and of the stereochemical activity of the lone pair E. A strong monoclinic distortion of the lattice also occurs in the $M{\rm TeO_3}F$ phases, but the analogy is worth noting.

The new $M\text{TeO}_3\text{F}$ structure type is important because it shows that oxyfluorotellurates associating the Te^{IV} cation with trivalent cations presenting octahedral coordination can adopt a structure type derived from a classical oxide such as $\alpha\text{-PbO}_2$, with a distorted hcp anionic array and full cationic ordering in parallel zigzag rows. It also corresponds to an intergrowth of MOF and TeO_2 slabs with F^- anions only bonded to M^{III} cations. There is no strong Te-F bond, sensitive to hydrolysis, so this kind of phase is air stable and could be of interest for applications in optical devices. Moreover, the unusual environment of M^{III} cations, interconnected by alternate F–F and O–O edges, offers the potential of promising magnetic properties.

Experimental

Fe₂O₃, Cr₂O₃ and Ga₂O₃ were commercial products (Aldrich, 99.9%) and TeO₂ was prepared by decomposition of commercial H₆TeO₆ (Aldrich, 99.9%) at 823 K under flowing oxygen. FeTeO₃F and GaTeO₃F were prepared in two steps: first an intimate mixture (mol%) of $\frac{1}{2}$ Fe₂O₃-4TeO₂ (or $\frac{1}{2}$ Ga₂O₃-2TeO₂) was dissolved in hydrofluoric acid (40%) in a Teflon beaker and heated at 453 K, and then, after slow evaporation, the product was crushed and heated in a sealed platinum tube. The temperature was progressively increased to 723 K (923 K for the Ga phase) (5 K min⁻¹), kept stable for 96 h, slowly decreased to 673 K (0.05 K min⁻¹ for Fe and 0.1 K min⁻¹ for Ga) and finally stabilized for 10 h. After that, the tube was waterquenched to room temperature. Green crystals of FeTeO3F and colorless crystals of GaTeO₃F, air stable and suitable for X-ray diffraction study, were obtained. The chromium phase was obtained in powder form by direct heating of a Cr₂O₃-CrF₃-3TeO₂ mixture in a sealed platinum tube. The temperature was progressively increased to 973 K (5 K min⁻¹) and kept stable for 96 h. The tube was then water-quenched.

Compound (I)

Crystal data		
	C 1	1
	(rvstai	aaaa

FeTeO ₃ F	$V = 314.72 (7) \text{ Å}^3$
$M_r = 250.45$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.0667 (7) Å	$\mu = 13.73 \text{ mm}^{-1}$
b = 5.0550 (7) Å	T = 293 (2) K
c = 12.3975 (15) Å	$0.10 \times 0.04 \times 0.02 \text{ mm}$
$\beta = 97.630 (13)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer	10518 measured reflections
Absorption correction: multi-scan	903 independent reflections
(SADABS; Bruker 2004)	757 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.337, T_{\max} = 0.763$	$R_{\rm int} = 0.058$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	56 parameters
$wR(F^2) = 0.036$	$\Delta \rho_{\text{max}} = 0.88 \text{ e Å}^{-3}$
S = 0.99	$\Delta \rho_{\min} = -0.95 \text{ e Å}^{-3}$
903 reflections	

inorganic compounds

Table 1 Selected bond lengths (Å) for (I).

Te1-O3	1.870(2)	$Fe1-O1^{i}$	1.923 (2)
Te1-O1	1.884 (2)	Fe1-O3	1.941 (2)
Te1-O2	1.904(2)	Fe1-O2ii	1.965 (2)
$Te1-O1^{i}$	2.695 (2)	Fe1-F1	1.974(2)
$Te1-O3^{ii}$	2.746 (2)	Fe1-F1 ⁱⁱⁱ	2.040(2)
Te1-F1 ⁱ	2.850(3)	$Fe1-O2^{iv}$	2.054(2)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Compound (II)

Crystal data

GaTeO₃F	$V = 304.22 (7) \text{ Å}^3$
$M_r = 264.32$	Z=4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.0625 (7) Å	$\mu = 18.29 \text{ mm}^{-1}$
b = 4.9873 (7) Å	T = 293 (2) K
c = 12.1662 (15) Å	$0.10 \times 0.04 \times 0.02 \text{ mm}$
$\beta = 97.952 \ (13)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker 2004) $T_{\min} = 0.257$, $T_{\max} = 0.697$ 8547 measured reflections 867 independent reflections 831 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

Refinement

$$R[F^2 > 2\sigma(F^2)] = 0.017$$

 $wR(F^2) = 0.042$
 $S = 1.21$
867 reflections

56 parameters $\Delta \rho_{\text{max}} = 1.25 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -1.71 \text{ e Å}^{-3}$

Table 2 Selected bond lengths (Å) for (II).

Te1-O3	1.865 (2)	Ga1-O1i	1.918 (2)
Te1-O1	1.884(2)	Ga1-O3	1.911 (2)
Te1-O2	1.918(2)	Ga1-O2ii	1.923 (2)
$Te1-O1^{i}$	2.632 (2)	Ga1-F1	1.929 (2)
$Te1-O3^{ii}$	2.731 (2)	Ga1-F1 ⁱⁱⁱ	2.009(2)
Te1-F1 ⁱ	2.830(2)	Ga1-O2iv	1.987 (2)

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, -z+\frac{3}{2}$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2}, -z+\frac{3}{2}$; (iii) -x+1, -y+2, -z+1; (iv) $x-\frac{1}{2}, -y+\frac{3}{2}, z-\frac{1}{2}$.

Table 3 Bond valences for (I).

	Fe1	Te1	V_{ij}
O1	0.600	1.286/0.144	2.03
O2	0.536/0.421	1.218	2.18
O3	0.576	1.335/0.125	2.04
F1	0.417/0.349	0.071	0.84
V_{ij}	2.90	4.18	_

Table 4Bond valences for (II).

	Ga1	Te1	V_{ij}
O1	0.602	1.286/0.17	2.06
O2	0.594/0.499	1.173	2.27
O3	0.613	1.354/0.13	2.10
F1	0.480/0.386	0.096	0.96
V_{ij}	3.17	4.21	-

Table 5 Comparison of lattice parameters (Å) of FeTeO₃F and α-PbO₂.

FeTeO ₃ F	α-PbO ₂
a = 5.067	a = 4.989
$b = 5.055; \beta = 97.63$	c = 5.466
$c = 12.398 = 2 \times 6.199$	b = 5.947
Monoclinic, $P2_1/n$	Orthorhombic, Pbcn

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3115). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. (1981). In *Structure and Bonding in Crystals*, edited by M. O'Keeffe & A. Navrotsky. New York: Academic Press.

Bruker (2004). SADABS. Version 2.11. Bruker AXS Inc., Madison, Wisconsin, USA.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000).
J. Appl. Cryst. 33, 893–898.

Guillet, L., Ider, A., Laval, J. P. & Frit, B. (1999). *J. Fluorine Chem.* **93**, 33–38. Hyde, B. G. & Andersson, S. (1989). In *Inorganic Crystal Structures*. New York: Wiley.

Ider, A., Laval, J. P., Frit, B., Carre, J. & Bastide, J. P. (1996). J. Solid State Chem. 123, 68–72.

Laugier, J. & Bochu, B. (2000). CHEKCELL. INP Grenoble, France.

Laval, J. P., Guillet, L. & Frit, B. (2002). Solid State Sci. 4, 549-556.

Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.