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Stabilization of electrically conducting capillary bridges using feedback
control of radial electrostatic stresses and the shapes of extended bridges

Mark J. Marr-Lyon, David B. Thiessen, Florian J. Blonigen, and Philip L. Marston
Department of Physics, Washington State University, Pullman, Washington 99164-2814
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Electrically conducting, cylindrical liquid bridges in a density-matched, electrically insulating bath
were stabilized beyond the Rayleigh—Platg®P) limit using electrostatic stresses applied by
concentric ring electrodes. A circular liquid cylinder of lendgtfand radiusR in real or simulated

zero gravity becomes unstable when the slenderesk/2R exceedsw. The initial instability
involves the growth of the so-callg@, 0) mode of the bridge in which one side becomes thin and
the other side rotund. A mode-sensing optical system detects the growth (@ henode and an
analog feedback system applies the appropriate voltages to a pair of concentric ring electrodes
positioned near the ends of the bridge in order to counter the growth @2 tldemode and prevent
breakup of the bridge. The conducting bridge is formed between metal disks which are grounded.
Three feedback algorithms were tested and each found capable of stabilizing a bridge well beyond
the RP limit. All three algorithms stabilized bridges haviSgs great as 4.3 and the extended
bridges broke immediately when feedback was terminated. One algorithm was suitable for
stabilization approachin§=4.493... where th€3, 00 mode is predicted to become unstable for
cylindrical bridges. For that algorithm the equilibrium shapes of bridges that were slightly under or
over inflated corresponded to solutions of the Young—Laplace equation with negligible electrostatic
stresses. The electrical conductivity of the bridge liquid need not be large. The conductivity was
associated with salt added to the aqueous bridge liquid2080 American Institute of Physics.
[S1070-663(00)00505-5

I. INTRODUCTION influence the RP instability Of the various methods for sta-
bilization which have been previously investigated, the ac-
The stability of a weightless column of liquid between tive controf of acoustic radiation stresselas the greatest
identical circular supports is ordinarily governed by capillary similarity with the approach considered here.
forces. When the volume of the liquid column is constrained  Some situations where the RP instability is relevant in-
to be that of a circular cylinder between coaxial supports, thelude the following: materials processing based on the float-
column first becomes unstable when its lengttexceeds ing zone method;}%*! drop formation and the breakup of
27R whereR is the radius of the supports® In the discus-  laminar liquid jets'**®the coating of solid fiber¥* and the
sion which follows, this condition is referred to as the release of air bubbles from an underwater noZZleis note-
Rayleigh—Platea(RP) limit and the corresponding limit for worthy that the boundary conditions of fixed circular contact
the slendernesS=L/2R is 7. In this paper a novel method curves of equal radius may be insufficient for describing
for suppressing the RP instability is demonstrated based offoating zone crystallization even in low gravity}” and for
the active control of electrostatic stresses on a grounded lighat application the liquid volume might not be constrained
uid bridge. While the experimental demonstration was lim-to be at(or neay 7R?L as in our experiments. Nevertheless,
ited to situations in which the electrical conductivity of the feedback control strategies for suppressing capillary driven
bridge was enhanced by adding séiaCl) to the bridge instabilities are relevant.
liquid, it is anticipated that a similar method may be useful
for c_ertgln_ situations in which t_he electrical cpnductmty of_ Il ACTIVE STABILIZATION USING ELECTRIC FIELDS
the liquid is small. In the experiments, the weightless condi-
tion is established by the Plateau tank method where, for the As was previously demonstratédhe slenderness of a
present application, the electrical conductivity is negligibleliquid bridge in a Plateau tank may be extended significantly
for the outer(density matchedliquid. The electric field and beyond the RP limit by optically sensing the amplitude and
associated stresses are nearly radial since the bridge fhase of the axisymmetric mode of interest and using the
grounded. information to rapidly control the spatial distribution of the
The present study differs in various aspects with prioracoustic radiation stress. The first mode which naturally be-
investigations of methods for suppressing the RP instabilitycomes unstable for a circular cylindrical bridge of fixed vol-
Electric-field based methods have emphasized liquids whicime having pinned contact circles at the ends is denoted here
are good insulators and passive electric fields which are agpy (n,m)=(2,0), wheren is an axial index andn is an
plied axially® Axisymmetric laminar flow has been shown to azimuthal index. This mode displays a left—rigft—R)

1070-6631/2000/12(5)/986/10/$17.00 986 © 2000 American Institute of Physics
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Laser beam Tllumination carried out in a Plateau tank in which the outer bath liquid is
a good insulator with a dielectric constant that is not large.
esing oty S S As a consequence, it_ may be sho@ee t_he_Appendbxtha’_[
bar bridge MUt fiter Segmented the electrical conductivity of the bridge liquid is not required
I lens \ photodiode to be large and it was sufficient to add 2% by weight of salt
to a mixture of water and methyl alcohol. The lower limit of
I’H: g:edback salt concentration was not determined experimentally. As ex-
circuit plained in the Appendix, the dimensions of the electrodes
/ \ f were selected in such a way that the electric-field distribution
Heam — e Laser outside the surface of the bridge was appropriate for apply-
spliter splitter fine filter ing a stress to the side of the bridge closest to the electrode

FIG. 1. The bridge is illuminated with an expanded laser beam, which isvmhoUt significantly applying a stress to the other side of the

focused onto the segmented photodiode by a two-element lens that projeddidge. For the situation where the bridge liquid is main-
half of the bridge on each photodiode segment. The difference in signalained at ground potential, the electrostatic stress is radially

between the two segments is then a measure oh@ mode deformation.  gytward and in the region closest to the lgfght) electrode
The bridge is horizontal in the Plateau tank and this is the top view. is proportional td\/E(VZR). The electric field in the portion of
the bridge near either electrode is only weakly affected by
) ) . _. the electrode potential on the opposite end. Stabilization of
asymmetry when wgewed from the side as shown, e.9., in Figye jiquid bridge to a slenderness significantly beyond the
2(b) of Morseet al,” where a similar notation is used. Ad- a4 limit of ~ was achieved by using three different al-
d|t.|onally, all other axisymmetric modes of a cylindrical gorithms for adjusting the electrode voltagasandVy . For
bridge (n, 0) for n=3,4,... also become unstablesfis suf-  gefiniteness in the discussion which follows, let positive val-
ficiently large. The slendernes at which the(n, 0) mode, o5 of the error voltagi,, correspond to the situation where
wheren=2,3,..., becomes unstable, is given by thé2jth 0 |eft side of the bridge is slender and the right side of the
lowest nonzero root of ta=0 if n is even, and by the(n  pyigge is rotund. In the simplified discussion of the control
—1)/2]th lowest nonzero root of te=Sif nis odd:=*""For  method described below, the finite frequency response of the
Fhe two modes of.|nFerest—t|*(e, 0 and(3, 0 modes—S.;? control system is neglected so that any delays in adjusting
is simply the RP limit ofr, andS;~4.49341. The stability o hotentiala/, andVy are omitted from consideration. The

limit of the (3, 0) mode is of interest since the stabilization a6 methods for selecting the electrode potentials are sum-
methods described herein are applied only to(gh€)) mode marized as follows.

instability, thus the bridge stabilized by these methods will
break when thé€3, 0) mode becomes unstable. This limit will
be discussed further in Sec. IV. 1. Method 1: Simple feedback

A. Stabilization methods The potential Qf thg electrodg adjacent_ to the slendgr side
of the bridge is raised in proportion ¥, while the opposite

In the present workas well as in Marr-Lyoret al®), an electrode remains at ground potential,
error voltageV, is optically generated which is proportional
to the L—R asymmetry of the bridge. This signal is generated VL =KVe, Vg=0 (V=0), (13
by illuminating the bridge with a laser beam and by detecting
the light which passes by the bridge without being scattered V=0, Vg=KVe (Ve<0), (1b)
by the bridge using a photodiode having two segments aghereK is a positive gain constant incorporating the gain of
shown in Fig. 1. An additional description of the apparatus isa high-voltage amplifier. This method has the property that
given in Sec. Ill. The principle of operation is that if the left the difference in the stresses applied to the left and right side
side of the bridge becomes rotund and the right side thinssf the bridge has a magnitude proportional \lé, which
the optical power detected by the photodiode on the left deintroduces certain complications as explained in Sec. IV.
creases while the power into the right diode increases and
this imbalance is useg@vith the aid of a differential ampli-
fier) to produce the error voltag¥, which may be either
positive or negative depending on which end of the bridge i
rotund. The simplest method to generate a stress difference

The error voltage is processed and used to adjust thghich varies in magnitude proportional {¥,| is to use a
potentials of a pair of ring electrodes which are concentriccircuit which takes the square root bi.| prior to amplifi-
with the axis of the cylinder. LeV, and Vg denote the cation. As in method 1, the potential of the opposite elec-
potentials of the electrodes closest to the left and right endgode remains at ground potential,
of the cylinder, respectively. The circular metal disks on ™
each end of the bridge are held at ground potential. The Vi=K|Ve[" Vr=0 (Ve=0), (23
electrical conductivity of the bridge liquid is taken to be _ _ 12
sufficiently large that the bridge liquito a good approxi- V=0, Ve=—K|Vq (Ve<<0), (2b)
mation is maintained at ground potential. The experiment iswhereK is a positive gain constant as in EQ).

§' Method 2: Square-root feedback
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3. Method 3: Bias potential feedback wherek=m,w? andm, are the effective spring constant and
b®p b 1Stant @
Another method in which the generalized force for the pare masés for theﬁZ, 0 mode_ of the cqrrespondmg NVIS-
. o : . . : cid system® and y, is an effective damping constant in the
mode of interest is linear in the error signgl is to introduce .
. : ; absence of feedback. For bridges longer tisanm, k be-
a bias voltage and to consider the difference between the . . "
. . . comes negativeso the gain must be positive but not larger
stresses on the left and right sides of the bridge. The elec;[- . e
trode voltages are taken to be hany.m, /7. The result that the maximum allowable gain is
9 proportional to 1+ agrees with standard control thedRAs
Vi =Vp+KVe, Vg=-Vp+KV,, ©) Sis increased significantly beyont k becomes increasingly
. . negative and it becomes impossible to control {Be 0)
for all \_/e where Vy, is a bias voltgge. It fpllows thgt the mode if—k exceedsy,m, /7 and(as assumed heréhe con-
generalized force for the mode of interest is proportional totroller uses only displacement information. Our results pre-
V22— 4KV, @ sented in Sec. IV indicate that for the bridge system used in
L "RT b¥e: these experiments, this crossover does not occur prior to the
which is linear inV,. The effective gain of the system is onset of(3, 0 mode instability. For control method 1 the
now proportional to the bias voltagé,. As explained in feedback force is nonlinear iand this model is not directly
Sec. IV, this method has the complication that for a symmetapplicable.
ric bridge giving V=0, each electrode has a potential of
magnitudeV, so that there is a radially outward stress on
each end of the bridge. Ill. DESCRIPTION OF EXPERIMENTAL APPARATUS
A. Plateau tank

B. Feedback delay time A horizontal liquid cylinder consisting of a mixture of

In the analysis presented in the Appendix to Marr-Lyon62.0 wt% water, 36.0 wt% methanol, and 2.0 wt% salt
et al,? one of the requirements for feedback control to stabi{NaC)) is formed between two 0.432 cm diameter stainless-
lize the bridge is that the generalized fol€gegnackfor the  steel disks in a density-matched bath of 20 ¢S silicone oil
mode of interest must not lag significantly behind the modal(Dow Corning 200 fluidp=0.951 g/cm). The salt provides
amplitude detected by the optical sensor. In practice, somsignificantly more than the minimum conductivity required,
delay is necessary because the frequency response of the explained in the Appendix. Two ring electrodes which are
amplifier circuitry is diminished at high frequencies. The concentric with the bridge are spaced by 1.16 cm. The rings
simplest causal approximation of the impulse response of thare 1.23 cm in diameter and are made of 0.12 cm diameter
control circuitry is the one-sided exponentiah(t) copper wire. The ring diameter was chosen to give optimal
=H(t)e Y7, wherer is a time constant anHi(t) is a step  coupling of the electrostatic stress profile to te 0) mode
function which vanishes far<0. For control methods 2 and of the bridge, as explained in the Appendix. The voltages on
3, FreedbackiS proportional to the convolution of the error the ring electrodes are varied as needed in order to stabilize a
voltage V¢(t) with h(t). The characteristic equation of the liquid bridge while the disks are held at ground potential.
bridge mode with feedback follows from the analysis in An automated system injects the bridge liquid through a
Marr-Lyon et al, as will now be demonstrated. Led(t) hole in one of the end disks and simultaneously retracts the
=x0e'" denote the amplitude of th€2, 0) bridge mode disks at such a rate that the liquid bridge remains cylindrical
where() is a complex frequency and, is proportional to  during extension. The disk separation and bridge volume
the (real part of x(t). Assuming that|Q7|<1, from the may also be adjusted independently.
convolution withh(t), the feedback force becomes

Ffeedback™ — GXOe_iQTeimy 5 5. opries

The deformation of the bridge is detected optically, as
where G is a gain constant. The force in E(p) is of the  shown in Fig. 1. The beam of a semiconductor laser is ex-
form considered by Marr-Lyoret al. The characteristic panded and illuminates the bridge, and a two-element lens
equation for the natural frequené€y of the controlled mode focuses the laser beam passing by each half of the bridge
is reducible t8 onto a separate photodiode element. A spatial filter placed at

. ) ) the focal plane of the lenses prevents light scattered by the

“’r21_02+a“'(1+')93/2+'7”920’ 6) bridge from entering the photodiode. The photodiode is po-
where a,, and y,, are normalized modal damping constantsSitioned as clpse to the focal plane of the lenses as possible
which depend on the viscosities of the inner and outer liquid$® ll of the light collected by the lenses falls on the appro-
and w? is a normalized effective spring constant for the Priaté segment of the photodiode. This method allows for
mode. For the bridge to be stable, it is necessary to have botAcreased sensitivity and easier alignment than the previously

»?>0 and y,>0. (The damping parametet,, is positive described method using a single Iéns.

and is only weakly affected by the choice faj The varia- The two-element lens is composed of two circular plano-
tion of w, andy, with 7 is such that for stability the gai ~ CONvex lenses of focal lengfhmodified as shown in Fig. 2.
must be in the rande Both lenses are cut along a chord such that the lens centers

are separated by a distande determined by the size and
—k<G<ymy/7, (7)  configuration of the photodiode elements. The radiokthe
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FIG. 2. Front view of the dual-lens system. FIG. 4. High-voltage circuit using diodes.

tem could also be used. From the frequency response of the

lenses must be large enough so that vignetting of the bridggrek amplifier a lower limit forr is estimated to be 0.03 ms.
by the lenses does not occur, ahahust be long enough so

that all of the parallel rays entering the lens fall on the pho-; nethod 1: Simple feedback
todiode element, which is positioned behind the focal plane
of the lenses. In the system used for stabilization, the parank
eters are as followd:=175,d=6,r =12.5mm, and the pho- !
todiode is approximately 20 mm behind the focal plane o
the lenses.

Since the expanded semiconductor laser beam is not sp
tially uniform, a horizontal masking bar is placed in the
beam path at the same height as the brigge Fig. 1 The
bar has a diameter slightly less than that of the end disks, but
greater than that of the supporting rods. This results in & Method 2: Square-root feedback
much decreased sensitivity of the optical signal difference to  In this method V=K,V V| ~¥2, wherekK, is again an
the bridge length. adjustable positive gain constant. Using the high-voltage cir-
cuit in Fig. 4, the electrode potentials are given by E.
Calculation of the square-root is accomplished using loga-
éithmic amplifiers, and therefore the circuit does not behave

As described in Sec. Il, three feedback methods wer Jeall V.—0. H this had b ble effect
used for stabilization. The general form of the implementa-I eally nearve="1. However, this had no observable efiec

tion of all three methods is outlined in Fig. 3. The photodi- on the stabilized bridge.

ode signals are amplified, and the difference is taken. An ) )

adjustable offset voltag¥, is then added to the difference 3 Meéthod 3: Bias potential feedback

signal to compensate for laser beam irregularities and other In this method, a bias potential is introduced into the
optical imperfections, giving the error signd. The error  high-voltage circuit as in Fig. 5 such the{ =V,+V, and
signal is input to the feedback circuit which generates avg=V,—V,. The linear feedback algorithii;=K,V, of
single output voltag®/; that is then input to a high voltage method 1 is used to produce the electrode potentials given by
amplifier. The output of the amplifiev, is then input to a Eq. (3).

high-voltage circuit which produces two output voltagés
andV, on the electrodes.

max-:_rztar: |gzt\£ltta\ll%(latazrgp;|2e2t('|£(/e I;go:e%;;;%&a:l e?/v As d?scussed in pre_vious sections, _bridg_e stabilizgtion is
rate of 15 Vs, and has an adjustable current limit in the accompllshed by sensing when the bridge IS becoming de-
range 0—5 mA to avoid catastrophic failure when the bridgeformfad with a L—R asymmetry and then applying voltage§ o
breaks and shorts an electrode to ground. All circuits in théhe ring electrodes to counter the growth of the deformation.

feedback loop use analog components to keep the delay timT e three different algorithms for determining the electrode

as small as possible, though in principle a fast digital s Spotentials which were discussed previously were each tested
T poss ugh in princip 9 4 and found capable of stabilizing a bridge well beyond the RP

The simplest feedback algorithm V¢=K,V,, where
is an adjustable positive gain constant. Using rectifiers as
fshown in Fig. 4, the high-voltage outpu, is split such that
V| andVg are given by Eq(1). As previously noted in Sec.

, the net force on the bridge is proportional to the square of
the electrode potential, so this linear feedback algorithm re-
sults in a nonlinear feedback force.

C. Feedback algorithms

IV. RESULTS AND DISCUSSION

Photodiode | | |

Ring 7

Electrodes

Feedback

HV

v, Circuit 7 Amplifier

HV

v, Circuit

Capillary

Vr Bridge

FIG. 3. Feedback block diagram.

1
Differential Summing Va V * VL
Pr lifier g
reamplifier Amplifier —‘ = b

Vr

FIG. 5. High-voltage circuit using bias potentials.
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Potential Energy 302.76 5 -152.91 s

x (mode
amplitude)

FIG. 6. The dashed curve shows the quadratic dependence of surface fre
energy with the2, 0) mode amplitude, while the dotted curve shows the
cubic dependence onof the potential energy associated with the feedback
force. The solid line is the sum of the two, with an unstable equilibrium at
x=0, and two stable equilibria having# 0, as shown by the images of a
bridge of S=3.5 near each stable equilibrium.

limit. The results of the tests on each of the three methods

are described here with a discussion of the relative advarf!CG- 7- A time sequence showing a bridge with slenderness 4.48 actively

stabilized using the square-root feedback algorithm. Fraf@egc) show

tages at the end. Unless noted otherwise, the volume of ﬂ}ﬁe bridge being stabilized for about 5 min. In frafeethe feedback control

bridge isV=V,,= mR2L. is turned off. Framesgd) through(f) show the subsequent growth of tf
0) mode and bridge breakage which occurs less than a second after control
A. Method 1: Simple feedback is turned off.

In this method, when the bridge begins to deform by one

and getting thin and the other end rotu_nd, gvoltage prOporbridge which begins to get thin; however, in this case, the
tional to the amplitude of the deformation is applied to thevoltage is applied in proportion to the square-root of the

electrg)lde near kt)hf thin sng of the brildgz. It was fOlImd tcf) deformation amplitude instead of in direct proportion. This
possib'e to stabilize a bri ge to a slen JeTNEess value of %5 arcomes the difficulty experienced with the first method,
W'.th this r_nethod, although it was ne_arly |mp055|ble to main-, hich gave stable equilibria which were not a cylindrical
tﬁm a cyllrtl)d_récal sEape. As sgofw nin dthe_lrr?ages of dF'g' 6'shape. With the proper feedback gain the potential energy of
t edStﬁt'C r:' geh_s age wr?s _eorn;]e ’ ]va't on? en _rOtt‘]nﬁ\e system in this case has a single stable equilibrium point
and the other .t n. By changing the ofiset voltage in t ecorresponding to a cylindrical shape. This is because both
feedback algorithm it was possible to cause the rotund pag} . ¢ face free energy and the work done by the electric

OT t_he b_ndge_to move to the opposite side but It was VelYso|q are quadratic in the deformation amplitude. The experi-
difficult if not impossible to tune the offset voltage in such a

hat the brid lindrical. Thi b d c;nental tests of this method confirm that the cylindrical state
way that the bridge was cylindrical. This can be understoogy qiopjq Using this method, bridges with near-cylindrical

by_ considering the potential energy of the system.' FOl0lume could be extended to slenderness values near the
prldges longer tha!$: . the surface free energy contrlt_)u- theoretical cylindrical-bridge limiS;~4.49. In approaching
tion of the(2, 0) bridge mode grows negative in proportion y;q limit, the volume of liquid in the bridge became critical

to the square of the deformation amplitude. The work don% its stability. The bridge deployment system described in

by_the_ electrostatic stress on t_he bridge_ as it goes from &qc 1y A was not capable of reproducibly creating bridges
cylindrical to a deformed shape is proportional to the cube o f precisely cylindrical volume, with errors of 1%—3% being

tEe absolutg dﬁformhatmn am]E) IEUde' fThe ;;otenual energé/ o pical. Accurate measurements of bridge volumes were not
the system Is then the sum of the surface free energy and thg. 4q i real time. The equilibrium shapes of bridges with a

work done by the feedback force which, as shown in Fig. 6slenderness ne&; take on(3, 0 mode characteristics if the

gives a double-well potential. Thus one would expect two, ;e jg slightly greater or less than that of the cylinder.

stab_le equil_ibrium sh_ape_s which h_ave mirror-opposit_g d_eforBridges with just a few percent greater volume than the cyl-

mations while the cylindrical state is an unstable equmbrlum.inder have a bulge in the center and could be stabilized even

beyond theS; limit for the cylinder. A stabilized bridge with

a volume 2.8% greater than that of a cylinder and with a
The second method tried is similar to the first method inslenderness of 4.48 is shown in Figa) Bridge volume was

that a voltage is applied to the electrode near the end of theeasured by integratingr? over the length of the bridge

B. Method 2: Square-root feedback
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bridge volume using digital image analysis which gave a
volume 2% greater than that of a cylinder. The bias potential
on the ring electrodes is thus seen to make the bridge look
more cylindrical even though the volume is greater than the
cylindrical volume. On the other hand, when the volume is
that of a cylinder, the bias voltage tends to give a static shape
which bulges beneath the electrodes and is thin in the center.
This leads to pinch off of the bridge in the center before
reaching the slenderness limit 8§.

D. Discussion of results

All three methods of stabilization which were tested
proved capable of stabilizing bridges having a volumR?L
well beyond the Rayleigh—Plateau limit. The simplest feed-
back methodwhere the electrode voltages are proportional
to the error signalhas the disadvantage that it gives a static
(2, 0) shape during stabilization. The ultimate slenderness
achieved with this method was significantly less than the
theoretical maximum o08;.

The square-root method has the advantage over the other
two methods that it does not affect the static shape of the
bridge; this generally makes for a more stable situation. The
noncylindrical equilibrium shapes that are seen if the volume

FIG. 8. A time sequence showing a bridge with slenderness 4.4 activeI)I/S not exactly that of a Cylmder are those eXpeCted from

stabilized using the bias-potential method whége-300 V. Framega)—(c)  theory as discussed below.
show the bridge being stabilized for over 5 min. In frafopthe feedback The main drawback of the bias-potential method is that

control is turned off. Frgme(si) through(f) show the subsequent growth of for g bridge with cylindrical volume, the bias potentials on
gl)ent(rzc;l 2 tTrOni% i?f‘_j bridge breakage which occurs less than 1 sec aftef o jnqs cause a noncylindrical equilibrium shape which is
thin in the center, causing a reduction in stability. On the
other hand, for bridges with volumes a few percent greater
where the bridge radius profile(z), was determined by than cylindrical, the bias potentials on the rings cause the
digital image analysis. The image sequence in Fig. 7 shows laridge shape to be more cylindrical than it would otherwise
bridge that was stabilized for about 5 min, at which time thebe. The problems caused by the bias potential could be re-
feedback control was turned off. Control was turned off atduced by reducing the magnitude of the bias potential; how-
time t=0 s shown in Fig. ), and Figs. {d)—(f) show the ever, the minimum level of bias is dictated by the minimum
subsequent growth of th@, 00 mode and ultimate breakup gain needed for stabilization.
of the bridge which occurs less than a second after turning  While it was not the emphasis of our observations, it is

off the control. noteworthy that the conical shapes visible in Fig§) and
8(f) are reminiscent of shapes associated with jet
C. Method 3: Bias potential feedback breakupt?1321

Applying a bias voltage to the ring electrodes as de- _ ) I . .
scribed in Sec. Il is another way to avoid the problem of aF: Theoretical bridge equilibria and comparison with

double-well potential experienced with method 1. Figure 8 isobservatlon
a sequence showing a bridge of slenderness 4.4 being stabi- The equilibrium shapes seen for stabilized bridges near
lized with a bias voltagd/,=300V. The bridge was stabi- S; can be better understood by looking at the stability dia-
lized for more than 5 min before the control was turned off.gram in Fig. 9 calculated using the methods of Lowry and
The control and bias voltages are turned off in frafbeat ~ Steer??~2*In this graph, the stability of bridges is plotted as
time t=0 s and framesd)—(f) show the subsequent growth a function of the normalized bridge volume and slenderness.
of the (2, 0) mode and bridge breakage. It is interesting toln the shaded areas, bridges are only unstable tqzhé)

note that shortly after control was turned off, in fradéthe = mode, and in principle may be stabilized by the methods
bridge relaxes to a near-equilibriu¢®, 0) shape such as that described. In the unshaded region, 8¢ 00 mode is also
seen during active control with the square-root method. Thisinstable and the bridge will break. This graph is only valid
is because the relaxation time of the stal8e 00 mode is for the square-root feedback method, since the bias potential
shorter than the growth time of the unstalfle 0) mode method introduces additional forces which alter the equilib-
which ultimately leads to breakup. TH8, 0) shape with a rium bridge shapes and would be expected to shift stability
bulge in the center seen in Figid indicates that the volume boundaries.

of this bridge was somewhat greater than that of a cylinder. Representative bridge shapes are shown for each of the
This was confirmed by an independent measurement dftabilized regions. In the small darker-shaded area With
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FIG. 9. A stability plot of normalized volum&/V, vs slenderness for
near-cylindrical capillary bridges near the critical slenderr@gs4.4934.  FIG. 11.(a) Photograph of a bridge wit8= 4.1 which is actively stabilized
In the shaded regions, only tfi2, 0) mode is unstable, and the bridge may Using the square-root algorithm. The volume was measured to be 2.5% less
be stabilized by the method described. In the unshaded regior3 @ than that of a cylinder(b) Computer generated image of a bridge shape
mode is unstable, and the stabilized bridge will break. calculated from the Young—Laplace equation assuming no external forces.
The calculation was performed for a bridge wik- 4.1 and a volume which
is 3.2% less than that of a cylinder.

<V, andS<S;, the shape is rotund at the ends, and thin in

the middle. Along theV=Vq line for S<S,, the bridge retical calculations. The experimentally observed shapes

shape is a cylinder. In the lighter-shaded area, the bridge i in Fi 1 h ical
rotund in the middle, and thin on the ends. Note that on th Seen in lgs. 1@) and 113 are compared to theoretica

) - . . G'shapes: which are solutions to the Young—Laplace equation
V=V, line for S>S; the stabilized shape is not a cylinder, with no external force fields as shown in Figs.(H0and

everlllthough trf:e blrldge has C?{I'n.dr.'cal VOIUImZ' q 11(b). The theoretical shapes are shown as computer-
brid ear\?g,, t eAsgnf'e'rness. m;)'t.c'js stror:gy e;f)?n enrt1 Ongenerated ray-traced images for a qualitative comparison
Orllogefvo umeI.. dri e||C|ency mh ridge vo umelo dess than it the experimental images. This comparison suggests that
70 from cy |0n rical causes the maximum slenderness tg. o qiaic shape of the bridge is not influenced by the control
decreas_e by 2%, while Itis predicted that a slightly OVEMN“system. The control system simply prevents the growth of
ﬂateg brldgg can Ee stablhz;:d ?4'55."  sh btained the lowest-order unstable mode, allowing equilibrium shapes
omparisons between the theoretical shapes obtaine ich are normally unstable to be seen. As expected, bridges
above and the observed shapes of bridges stabilized using tfje, volumes less than that of the cylinder are found to be

square-root met.hod are shown in F|g_S. 10 and 11. The .VO|Fn0re unstable, tending to pinch off in the center before
umes of the bridges for the theoretical shape CalCUIat'on?eaching a slenderness 8§

were chosen to give a good qualitative shape comparison

with the experimental images. Independent mea;uremeqt ?; RELATED APPLICATIONS

the bridge volumes from the corresponding experimental im-

ages gave volumes very close to those chosen for the theo- While the research results described concern the active
stabilization of the(2, 00 mode of electrically conducting
bridges in(simulated zero gravity, there are related note-
worthy applications. With a modified sensor and electrode
array, it is plausible that both th@, 0) and (3, 0) modes
could be controlled. The control method described should
also be applicable to the suppression of the RP instability of
a dielectric liquid layer which coats a grounded conducting
cylinder. For the situation in which there are two electrodes,
the liquid dielectric will have the greatest attraction to the
electrode where the potential has the largest magnitude, as
with the electrically conducting bridges studied. For electri-
cally conducting bridges havin8< m, axisymmetric modes

of the bridge were excited with an appropriate modulation of
the electrode potential§That demonstration is analogous to
the excitation of modes with modulated acoustic radiation
pressuré) Observationgnot presented heralso show that
FIG. 10. (a) Photograph of a bridge wité=4.48 which is actively stabi- it iS possible to modify the static profile of a vertical electri-
lized using the square-root algorithm. The volume was measured to be 2.8%ally conducting bridge in air with radial electric fields even

greater than that of a cylindetb) Computer generated image of a bridge for non-negligible Bond numbers. For this application how-
shape calculated from the Young—Laplace equation assuming no externa? ' ’

forces. The calculation was performed for a bridge wih4.48 and a  €VEr, th? fields required to_counte_ract gravity may be Ia_rge,
volume which is 2.9% greater than that of a cylinder. as is evident by the following estimate. Consider a vertical

(b)
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conducting bridge surrounded by a gas in an effective gravity
of g.. The magnitude of the hydrostatic pressure differential 81
for a bridge of lengthL and densityp is pg.L. If a radial
field E is applied to the upper portion of the bridge to coun- 6 1
teract the bulge of the lower portion of the bridge, the Max-
well stress is radially outward with a magnitude2%of 4]
(1/2)egE?, whereey,~8.85x< 10™ 12F/m is the permittivity of
free space. Though the magnitude of the applied stress re- 5]
quired to suppress a bulge of a given size is affected by
surface tension, for the purpose of estimating the magnitude «
of E, take (1/2koE%=pgcL; with p=1g/cn?, L=1cm, "
and a reduced gravity af,=29 cm/$=30mg, this estimate

gives E~8.1X10°V/m. The electrode potentials required
depend on the electrode dimensions. The gap between the
electrode and the bridge may not be small so as to avoid a
lateral instability of a liquid column described by TayfSr.
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APPENDIX: ELECTRODES AND BRIDGE ELECTRICAL
CONDUCTIVITY FIG. 12. Equipotential contours of the axisymmetric electric field surround-

ing the bridge(a) Analytical result for the simplified geometry of an infinite

The selection of the radius and thickness of the Conductgr'ounded cylinder and concentric ring of charge. For ease of cqmparison
. . . . with (b), the plane of the electrode is offset ®R=—2.69. (b) Finite
ing rings used as the electrodes was guided by the fOHOW'nglement result for a more realistic geometry with a bridge of slenderness
calculation. Consider the electrostatic potenthdlk,r) for a  s=4.0 and with the dimensions of the electrodes, support disks, and posts
uniformly distributed ring of charge of radi@s>R which is corresponding to the experimental situation. The center of the bridge corre-
coaxial with an infinitely long grounded conducting cylinder sponds te=0.
of radiusR. The ring lies in the plane=0. The solution for
this simplified potential distribution is useful for estimating
the field distribution near the bridge under conditions which,,pare r_(r_) is the greater(lessef of r and a, B(k,)
apply to the actual system under consideration. Some of thg|o(sz)/K0(sz), andG is given by
simplifications involved include neglecting the perturbation
of the field introduced by the second electrode and the re- 1 (= ,
quirement that an equipotential surface for the simplified G(r,z)=mj_xg(r,kz)e'kzzdkz. (A3b)
problem closely approximate the surface of the conducting
electrode. In addition, the perturbation of the field associate¢the electric field at the surface of the circular cylinder is
with the wire which supports the E|eCtr0®1d connects it proportiona| to— 9G/dr evaluated at =R and is given by
to the circuits described in Sec. )llis neglected, as are the
perturbations resulting from deformation of the bridge. The
potential for the simplified geometry is proportional to the
Green function

£.(2)=A | "k, coskal Bk Ky(kaR) - 14(K,R)]

i X Ko(kya)dk,, (A4)
2 —
VeG(n= 75” 2)o(2), (A1) whereA is a constant. The relevance of these results to the
electrode configuration used is evident by inspection of Fig.
12(a), which shows equipotential contours for the situation
where the radius of the charged ring is 2.8 Inspection
of the contours shows them to be nearly circular in the region
close to the ring. Consequently, the potential distribution
closely approximates that of a conducting torus provided the
cross-sectional area of the torus is sufficiently small. The
ratio a/R~2.87 was selected by evaluating the distribution
of the Maxwell stress on the surface of a cylindrical bridge
normalized to the peak valugvhich occurs in the plane of
the ring which is az=0). Figure 13 shows this normalized
9(r,k,) = — 47 B(Kp) KoKt =) = o(Kyr =) TKo(Kyr =), stressE?(z)/E?(0) which from Eq.(A4) may be expressed
(A3a) as

wherer denotes the radius in cylindrical coordinates. The
boundary condition is that=0 atr=R for all z. This is
solved using standard potential thedrpy using a Fourier
transform representation for tlzedependence of bot and
8(z), which leads to the following condition ay(r,k,), the
Fourier transform ofG:

a(,99 kig=—4mé A2

ar T gr) ~rkeg=—4md(r—a). (A2)

The solution is
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1 given the same potential as the electrode potential in Fig.

12(b). The FEM results indicate that the second electrode

08 being held at ground potential shields the part of the bridge

06 beneath it. Aside from this, the stress distribution computed
E%(z/R) by the two methods is very similar in the region where the
EX0) 4 stress is large.

While this analysis assumes that the bridge is sufficiently
electrically conducting to remain at zero potential, the re-
quirement on the conductivity of the liquid is not very re-
strictive. The requirement on the conductivity, of the
bridge liquid may be estimated as follows. The resistance
from the closest end to the adjacent displacement antinode is
FIG. 13. A plot of the normalized stress distribution for the following nor- roughly R~ L/(o-e477R2), while the actual resistance will
malized ring radiia/R:2.0, 2.5, 2.87, 3.25, and 3.75. be somewhat lower because of current flow from the support
at the opposite side of the bridge. The electrical time con-
stant of the electrode-bridge system may be approximated as

0.2

z/R

Ef(z) % Bz\| Ky(Ba/R) 2 7= R.Ce, WhereC, is the electrode capacitance with re-
E2(0) 1, COS R “Ko(B) spect to the bridge. Taking,< 7, the time constant in Eq.
' (5), and L=2SR (where S is the slendernegsgives o,
Ko(BalR)

o 2 =SGJ/2wR7. For example, typically C,~200pF, R

[ fo W ] ' (AS) ~2 mm, S=4, andr~0.1 ms givesr,=10uS/cm, whereas
the salt solution used had,>20 mS/cm. For comparison,

where g=k,R and the expressiof[Ko(5),10(8)]=1/8  molten and hot solid silicon haf&s.=10000 S/cm.

has been used wheM denotes the Wronskian. The final

result forg,(z) was confirmed using a finite element method
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