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An Extremely Redox-Active Air-Stable Neutral p Radical:
Dicyanomethylene-Substituted Triangulene with a Threefold Symmetry

Akira Ueda,[a] Hideki Wasa,[a] Shinsuke Nishida,[b] Yuki Kanzaki,[b] Kazunobu Sato,[b]

Daisuke Shiomi,[b] Takeji Takui,*[b] and Yasushi Morita*[a]

Organic molecules possessing multistage redox ability
play important roles in a wide range of scientific fields from
chemistry and biology to materials science and physics.[1–4]

p-Benzoquinone derivatives are typical examples of such
multistage redox systems.[1] They usually exhibit two-stage
one-electron reduction behavior and form the radical anion
and dianion species (Figure 1 a). This multistage redox fea-

ture is attributable to the electron-accepting ability of the
two carbonyl groups as well as an aromatic stabilization
effect in the six-membered ring in the anionic states. Fur-
thermore, transformation to the corresponding tetracyano-p-
quinodimethane (TCNQ)-type analogues by the replace-
ment of the oxygen atoms of the p-benzoquinone derivatives
with dicyanomethylene groups, which have stronger elec-
tron-accepting ability (Figure 1 b), has frequently been per-
formed to modulate their redox abilities, electronic struc-
tures, and salient physical properties.[2]

Most of the well-studied multistage redox systems are
based on intrinsically closed-shell neutral organic molecules.

However, some kinds of stable open-shell neutral organic
molecules (neutral radicals), such as phenalenyl and verda-
zyl derivatives, also show the multistage redox behavior.[5,6]

For example, we reported that tri-tert-butylated 6-oxophena-
lenoxyl (6 OPO in Figure 2 a), a phenalenyl-based air-stable

neutral radical with two carbonylic oxygen atoms, shows re-
versible two-stage redox behavior and gives the anion and
radical dianion species.[5,7] Importantly, in this redox process,
charge and spin states of the generated chemical species are
in sharp contrast to the quinoid-type system that forms the
radical anion and dianion species (Figure 1 a). This unique
redox feature in the oxophenalenoxyl systems enabled us to
explore various exotic electronic-spin properties and func-
tionalities.[5,7,8] Notably, we recently revealed that tri-tert-bu-
tylated trioxotriangulene (TOTC in Figure 2 b), an extremely
air-stable neutral p radical with a C3-symmetric extended p-
conjugated system and is derived from 6 OPO, exhibits a
four-stage reduction process due to the small SOMO–
LUMO gap as well as the doubly degenerate LUMOs.[7e]

Taking advantage of this four-stage redox ability, we suc-
ceeded in developing a new secondary battery that shows a
higher discharge capacity than Li-ion batteries.[7e]

In order to further investigate this kind of the fused poly-
cyclic neutral p radical with the multistage redox ability, in
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Figure 1. a) Two-stage redox behavior of the p-benzoquinone system. b)
General transformation scheme from p-benzoquinone derivatives to their
tetracyano-p-quinodimethane analogues.

Figure 2. a) Two-stage redox behavior of the 6OPO system. Chemical
structures of b) TOTC and TOT� and c) 1C and 1�.
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this study we have designed, synthesized, and isolated a
novel C3-symmetric triangulene[9]-type neutral p radical 1C

(Figure 2 c), in which three dicyanomethylene groups with
stronger electron-accepting ability are introduced instead of
the oxygen atoms of TOTC. High air-stability of both 1C and
the anionic species 1� has allowed us to experimentally dis-
close electronic effects of the dicyanomethylene groups on
the redox properties and solid-state properties of fused poly-
cyclic giant p-electronic molecular systems with the help of
theoretical calculations. In particular, we emphasize that this
chemical modification enables the 1C system to exhibit eight-
stage redox ability exceeding the TOTC system, due to the
extremely small SOMO–LUMO gap and the significantly
lowered frontier orbital energies of 1C together with the de-
generate LUMOs.

As depicted in Scheme 1, the neutral radical 1C was syn-
thesized in four steps from diketoalcohol 2[7e] in a relatively
high total yield (71 %). The two carbonyl oxygen atoms in 2

were converted to dicyanomethylene groups by a condensa-
tion reaction with malononitrile in the presence of TiCl4 and
pyridine, to give 3. After the hydroxyl group of 3 was tos-ACHTUNGTRENNUNGylated, the coupling reaction of the tosylate 4 with malono-
nitrile and subsequent treatment with Bu4NCl were per-
formed to yield the anion salt Bu4N

+·1� as air-stable green
crystals.[10] Oxidation of Bu4N

+·1� by 2,3-dichloro-5,6-dicya-
no-1,4-benzoquinone (DDQ) quantitatively gave neutral
radical 1C as brown crystals. Similar to TOTC, this neutral p

radical 1C is stable in air at room temperature, not only in
the crystalline state but also in solution.[11]

Firstly, we investigated the electronic-spin structure of the
obtained neutral radical 1C by liquid-phase ESR and 1H-
ENDOR/TRIPLE spectroscopy (Figure 3). An ESR spec-
trum of 1C in a degassed toluene (2 � 10�4

m ; Figure 3 a)
showed a well-resolved hyperfine structure. The observed g-
value of 1C was 2.0028, which is similar to that of tri-tert-bu-
tylated phenalenyl (g=2.0028),[12] but significantly smaller
than that of TOTC (g=2.0042).[13] This result indicates that
heteroatomic contribution to the g-value of 1C is less, that is,
the unpaired electron of 1C has a substantial hydrocarbon-
radical character (no significant influence by CN), in con-

trast to TOTC with an aroxyl-radical character. This is due to
the replacement of the oxygen atoms of TOTC with the di-
cyanomethylene groups. Furthermore, 1H-ENDOR/TRIPLE
spectroscopy allowed us to unequivocally determine the hy-
perfine coupling constants (hfccs) and relative signs of the
protons in the triangulene skeleton (H(Ar)) and tert-butyl
groups (H ACHTUNGTRENNUNG(tBu); Figure 3 c, d).[14] These hfccs were success-
fully assigned with the help of the DFT calculations
(Table 1).[15] Also, the hfcc of the nitrogen nucleus in the di-
cyanomethylene groups was determined by ESR spectral
simulation (Figure 3 b, Table 1, and see the Supporting Infor-

Scheme 1. Synthesis of neutral radical 1C : a) CH2(CN)2, TiCl4, pyridine,
CHCl3, 70 8C, 90 %; b) TsCl, pyridine, CHCl3, room temperature, 86%;
c) i) NaH, CH2(CN)2, [PdCl2 ACHTUNGTRENNUNG(PPh3)2], THF, room temperature; ii)
Bu4NCl, MeOH, room temperature, 94%; d) DDQ, CH2Cl2, room tem-
perature, 97 %. Ts=p-toluenesulfonyl, DDQ=2,3-dichloro-5,6-dicyano-
1,4-benzoquinone.

Figure 3. a) Observed ESR spectrum of 1C in a degassed toluene (2 �
10�4

m) at 293 K. The microwave frequency used is 9.40005 GHz and the
observed g-value is 2.0028. The field modulation frequency of 12.5 kHz
with low modulation depth was used to observe a sideband-free and
highly resolved spectrum. b) Simulated ESR spectrum. c) 1H-ENDOR
and d) 1H-TRIPLE (pump frequency, 15.691 MHz) spectra of 1C in de-
gassed toluene (2 � 10�4

m) at 273 K.

Table 1. Observed and calculated hfccs [in mT] of 1C. H(Ar), H ACHTUNGTRENNUNG(tBu), and
N represent hfccs of the protons in the triangulene skeleton, tert-butyl
protons, and nitrogen nucleus in the dicyanomethylene groups, respec-
tively. The g-value for 2.0028 is used for the unit conversion of the hfccs
from MHz to mT.

H(Ar) H ACHTUNGTRENNUNG(tBu) N

obsd[a] +0.090 + 0.0082 �0.0535[b]

calcd[c] +0.146 + 0.008 +0.073

[a] Values and relative signs were determined by the 1H-ENDOR/
TRIPLE spectroscopy. [b] Value was determined by the ESR spectral
simulation. [c] Hfccs of the optimized structure calculated at the
UB3LYP/6-31G ACHTUNGTRENNUNG(d,p) level of theory. Considering the molecular symme-
try, hfccs for the equivalent nuclei were averaged.
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mation for the detailed analysis).[16] The experimental and
calculated hfccs are in good agreement. Thus, as shown in
Figure 4 a, the unpaired electron of 1C in solution extensively
delocalizes over the whole 37 p-conjugated molecular skele-

ton with C3 symmetry. In addition, the spin density on the
triangulene p skeleton of 1C (68 % of the total spin densities,
Figure 4 a) is much less than that of TOTC (88% of the total
spin densities, Figure 4 b), indicating that significant portion
of spin density delocalizes onto the dicyanomethylene
groups from the triangulene skeleton. This change in the
spin density distribution can also be interpreted in terms of
the electronic resonance effect of the dicyanomethylene
group (see the Supporting Information).

The electronic effect on the multistage redox ability by
the introduced dicyanomethylene groups was evaluated by
means of cyclic voltammetry (CV) of the salts Bu4N

+·1� and
Bu4N

+·TOT� in DMF (Figure 5) with the help of theoretical

calculations (Figure 6). As illustrated in Figure 5 b, the di-
cyanomethylene derivative Bu4N

+·1� exhibited six reduction
processes and two oxidation ones. A series of the redox
waves were observed reversibly and reproducibly. These re-
sults mean that the number of redox stages increased to
eight from four of the TOTC system by the replacement of
the three oxygen atoms of TOTC with the dicyanomethylene
groups. Focusing on the first, second, and third reduction
processes and the first oxidation one of both the systems, we

found that all of the peak potentials in 1� (Ered1
p =�1.17,

Ered2
p =�1.28, Ered3

p =�2.09, and Eox1
p =+ 0.09 V, Figure 5 b)

are significantly positively shifted from those of TOT�

(Ered1
p =�2.14, Ered2

p =�2.53, Ered3
p =�3.18, and Eox1

p =

�0.26 V, Figure 5 a). According to the molecular orbital cal-
culations of 1C and TOTC (Figure 6),[17] these four redox
events should be related to the SOMO and doubly degener-
ate LUMOs: the three reduction processes provide the radi-
cal dianion, diradical trianion, and radical tetraanion, and
the one oxidation process generates the neutral radical.[18]

Thus, the experiments suggest that the SOMO and LUMO
energy levels of 1C remarkably decrease in comparison with
those of TOTC. Furthermore the potential difference be-
tween Ered1

p and Eox1
p , corresponding to the SOMO–LUMO

energy gap, significantly decreases from 1.88 V of TOT� to
1.26 V of 1�.[19] The calculated results (Figure 6) show the
similar trends with the experimental observation: the theo-
retical energy levels of the SOMO and LUMOs of 1C (�3.53
and �3.46 eV) are much lower than those of TOTC (�3.11
and �2.29 eV) and thus the estimated SOMO–LUMO
energy gap of 1C is much smaller (0.07 eV) than that of TOT
(0.82 eV). Also, the potential difference between Ered2

p and
Ered1

p of 1� is also found to be much smaller (0.09 V) than
that of TOT� (0.39 V; Figure 5). This means that the tri ACHTUNGTRENNUNGan-ACHTUNGTRENNUNGionic state of 1 is more easily generated than that of TOT.
Namely, the intramolecular Coulomb repulsion in 13� is
smaller than that in TOT3� due to the extended p-electronic
system. At more negative potentials, we observed three
other reduction processes (�2.49, �2.80, �2.98 V) in the
system 1. One can imagine that the further three electrons
are sequentially added to the LUMO and LUMO + 1 of
1C,[18b] because the LUMO + 1 is located at still a lower
energy level (�2.16 eV) similar to the LUMO of TOTC

Figure 4. Spin density distribution of a) 1C (left: top view, right: side view)
and b) TOTC calculated at the UB3LYP/6-31G ACHTUNGTRENNUNG(d,p) level of theory. The
red and blue colors denote positive and negative spin densities, respec-
tively. Hydrogen atoms are omitted for clarity.

Figure 5. Cyclic voltammograms (vs. Fc/Fc+) of a) Bu4N
+ ·TOT� (3 mm)

and b) Bu4N
+ ·1� (1 mm) measured in DMF with 0.1 m Bu4NClO4 as a

supporting electrolyte at room temperature.

Figure 6. Frontier molecular orbital energy levels and distributions of the
neutral radicals TOT· (left)[7e] and 1C (right) calculated at the ROB3LYP/
6-31G ACHTUNGTRENNUNG(d,p)//UB3LYP/6-31G ACHTUNGTRENNUNG(d,p) level of theory. Each SOMO–LUMO
energy gap is denoted by the number in blue.
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(�2.29 eV) as shown in Figure 6. Furthermore, the system 1
showed the second oxidation wave at + 0.56 V, suggesting
that a cationic species might be formed.[18b] Taking account
of the lower SOMO energy level of 1C than TOTC, this obser-
vation is probably not due to the electronic effect of the di-
cyanomethylene groups, but rather to the higher solubility
and/or stability of the 1+ ion compared to TOT+ .[20] All
these intriguing multistage redox and MO features of 1C are
attributable to both the enhanced electron-accepting ability
and the extended p-electronic system due to the replace-
ment of the oxygen atoms of TOTC with the dicyanometh ACHTUNGTRENNUNGyl-ACHTUNGTRENNUNGene groups.

The electronic and steric effects of the introduced dicya-
nomethylene groups were further studied in terms of the
crystal structure and solid-state magnetic properties. Single-
crystal X-ray structure analysis revealed that the triangulene
skeleton of 1C is significantly distorted, to form a nonplanar
p-conjugated network (Figure 7 a, b), which is ascribable to

the steric repulsion between the dicyanomethylene groups
and the hydrogen atoms at the peri-positions. All the dicya-
nomethylene groups locate at the same (upper) side to the
triangulene p surface (Figure 7 b), giving a quasi-C3 molecu-
lar symmetry, which agrees with the calculated optimized
structure (Figure 4 a). In the packing structure, 1C formed a
dimeric pair in a head-to-tail manner (Figure 7 c, d) with the
shortest intermolecular contacts (3.0–3.2 �) between the ni-
trogen atoms at the dicyanomethylene groups of one mole-
cule of 1C and the carbon atoms at the dicyanomethylene
groups or the triangulene skeleton of another molecule of
1C.[21] The dimeric pairs further come close each other
through interdimer short contacts between the dicyano-
methylene groups (ca. 3.2 �), constructing a one-dimension-

al chain structure along the a axis (Figure 7 e).[21] This is in
sharp contrast to the p-dimer-based columnar structure of
the TOTC crystal.[7e] This structural feature is also probably
due to the modulation of the spin density distribution of 1C :
the dicyanomethylene groups have a certain proportion of
the spin density (Figure 4 a and Table 1). In fact, the mag-
netic susceptibility measurements and DFT calculations of 1C

illustrate that there are significant intermolecular magnetic
exchange interactions attributable to the intra- and inter-
dimer short contacts through the dicyanomethylene
groups.[22]

In conclusion, we have designed, synthesized and charac-
terized an extremely redox-active, air-stable, neutral p radi-
cal 1C with three dicyanomethylene groups introduced with
threefold symmetry into a triangulene p skeleton. Most im-
portantly, besides the degenerate LUMOs due to the inher-
ent C3-symmetric p-electronic molecular skeleton, the en-
hanced electron-accepting ability and the extended p-elec-
tronic system by this simple chemical modification gave an
extremely small SOMO–LUMO gap and significantly low-
ered the frontier orbital energies, leading to the remarkable
increase in the redox stages. The spectroscopic identification
of the redox species[18] as well as the investigation of the
properties of 1C and 1� as an electrode-active material for
our secondary “molecular spin battery”[7e] are underway.
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