Cycloaddition of N-(2,2,2-Trichloroethylidene)-Substituted Carboxamides and Carbamates to 1,2,4-Thiadiazol-5(2*H*)-imines

Vladimir S. Zyabrev,¹ Mikhail A. Rensky,¹ Eduard B. Rusanov,² and Boris S. Drach¹

¹Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1 Murmanskaya St., 02094 Kiev, Ukraine

²*Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanskaya St., 02094 Kiev, Ukraine*

Received 29 November 2001; accepted 4 April 2003

ABSTRACT: 1,2,4-Thiadiazol-5(2H)-imines 4 react with N-(2,2,2-trichloroethylidene)-substituted amides 5 to form [3+2]-cycloaddition products 6 featured by an extra coordination of the ring sulfur atom to the terminal nitrogen atom of the side 1,3diazapropenylidene group, as established by X-ray diffraction investigation. This coordination evidently plays an important role in the alkylation of compounds 6 into 8 at the oxygen atom under mild conditions. The S-N bond "switch-over" restoring the original 1,2,4thiadiazole ring occurs therewith. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:474–480, 2003; Published online in Wiley InterScience (www.interscience.wiley. com). DOI 10.1002/hc.10182

INTRODUCTION

Substituted 1,2,4-thiadiazol-5(2H)-imines **4** became accessible in the 1970s when Barnikow [1] and, at a later date, Goerdeler [2] had proposed a simple method for preparation of these compounds

from imidoyl chlorides 1, through their derivatives 2 and 3 (Scheme 1). Nucleophilic agents 4 have already found application in fine organic synthesis. The most interesting of their properties is the ability to take part in [3 + 2]-cycloaddition reactions as 1,3-dipoles [2–6]. In particular, much has been studied about their interaction with isocyanates, isothiocyanates, and carbodiimides [2]. Here we report the cycloaddition, to agents 4, of *N*-(2,2,2trichloroethylidene)-substituted carboxamides and carbamates 5, in which the electrophilicity of the C=N bonds is especially pronounced [7].

RESULTS AND DISCUSSION

By using the standard method, we synthesized a series of substituted 1,2,4-thiadiazol-5(2*H*)-imine hydrobromides **3** and the corresponding free bases **4**, which react under mild conditions with *N*-acyl- or *N*-alkoxycarbonylimines **5**, as shown in Scheme 1. It is more convenient to prepare the cycloaddition products **6** by treatment of a mixture of the appropriate salt **3** and *N*-substituted amide **7** with triethylamine. The structure of compound **6** incorporating the 1,2,4-thiadiazolidine ring was confirmed by IR and NMR (¹H, ¹³C) spectra (Table 1) and by X-ray crystallographic data for **6h** (Fig. 1, Table 2).

Correspondence to: Vladimir S. Zyabrev; e-mail: users@bpci. kiev.ua.

^{© 2003} Wiley Periodicals, Inc.

SCHEME 1

The sulfur atom in compound **6h**, as established, is additionally coordinated by the terminal nitrogen atom of the side 1,3-diazapropenylidene group. The distances $S \cdots N(1)$ (1.960 Å) and $S \cdots N(4)$ (1.916 Å), though noticeably elongated as compared to S-Nbonds in bivalent sulfur compounds (1.707 Å) [8], are nevertheless significantly shorter than the sum of the van der Waals radii (3.35 Å) [9]. The bond system SN(1)C(8)N(2)C(15)N(3)N(4) is planar, and the maximum deviation of the atoms from the leastsquares plane does not exceed 0.061 Å. The triad N(3)C(23)N(4) forms with this plane a dihedral angle of 15.1°. The bonds N(1)-C(8) (1.303 Å) and N(2)-C(15) (1.312 Å) are longer than the standard C=N double bond (1.27 Å). At the same time the distances N(2)–C(8) (1.365 Å) and N(3)–C(15) (1.351 Å) are substantially shortened in comparison with the value of 1.45 Å characteristic of a single bond N(*sp*²)–C(*sp*²) [10]. It should be noted also the shortening of the bond N(4)–C(25) (1.358 Å) evidently caused by the *n*– π interaction of the N(4) atom with the C=O group. Thus the structure of **6h** can be represented as a superimposition of three forms, monocyclic neutral A, monocyclic bipolar B, and bicyclic C (Scheme 2). A significant contribution of the bipolar forms of type B to the ground state of compounds **6e**,**g** is evident from their IR spectra (Table 1). The $\nu_{C=O}$ of these compounds is shifted 30–50 cm⁻¹ to lower frequencies relative to the $\nu_{C=O}$ of disubstituted carboxamides.

				Four	d (Calcd)	(%)		
Compd	Yield (%)	mp (° C)	Formula	CI	N	S	IR (cm ⁻¹) ^a	¹ Н NMR (δ) ^b
ба	56	158 dec. (MeCN)	C ₁₈ H ₁₅ Cl ₃ N ₄ OS	24.15 (24.07)	12.59 (12.68)	7.22 (7.26)	1650 (^{//} C=O)	A mixture of stereoisomers. 3.70, 3.73 (s, CH ₃ N); 5.30, 6.09 (s, 1:5, CCl ₃ CH); 7.03–7.59 (m, 2C ₆ H ₅); 8.32, 8.58 (s. 5:1. HCO)
$\mathbf{6b}^c$	73	164 dec.	$C_{19}H_{17}Cl_3N_4OS$	23.54 (23.33)	12.36 (12.29)	7.10	1640	2.18 (s, CH ₃ C), 3.69 (s, CH ₃ N), 6.26 (s, CCl ₃ CH), 7.02–7.56 (m. 2024F)
6c	64	144 144	$C_{19}H_{17}Cl_{3}N_{4}O_{2}S$	22.40	12.02	(6.71 6.71	1670	3.69 (s, CH ₃ N), 3.74 (s, CH ₃ O), 5.91 (s, CCl ₃ CH), 7.02 7.56 (m, 201, 10)
6d	76	(LLOLI) 146-147	C ₂₀ H ₁₉ Cl ₃ N ₄ O ₂ S	(52.34) 21.74	11.63	(0.00) 6.63	1680	1.27 (t, <i>CH</i> ₃ CH ₂), 3.69 (s, CH ₃ N), 4.19 (q, CH ₃ <i>CH</i> ₂), 5.90
9 U	81	(AcOEt) 174 dec	C.o.Ho-CloN, OS	(21.89) 18.27	(11.53) 9.69	(6.60) 5.53	(VC=0) 1620	(s, CCl ₃ CH), 7.03–7.57 (m, 2C ₆ H ₅) 1 19–3 04 (m 5 CH ₂) 3 97 (m CH ₂ CHCH ₂) 6 55 (s
8	-	(AcOEt)	(23, 12, 12, 14, ()	(18.15)	(9.56)	(5.47)	(vc=0)	CCl ₃ CH), 6.70–7.86 (m, 3 C ₆ H ₅)
6f	76	148 dec.	C ₂₅ H ₂₁ Cl ₃ N4O ₂ S	19.23	10.37	5.82	1670	3.79 (s, CH ₃), 5.02 (s, CH ₂), 6.49 (s, CCl ₃ CH), 7.23–7.60
6g	77	(ACUEI) 168 dec.	C ₃₀ H ₂₃ Cl ₃ N ₄ O ₂ S	(19.41) 17.17	(10.23) 9.14	(5.30) 5.30	(VC=0) 1600	(ш, 3 С ₆ н5) 3.75 (s, CH ₃ O), 6.69–6.79 (m, 4 Har.), 7.16 (s, CCl ₃ CH),
)		(MeCN)	 - 	(17.44)	(9.19)	(5.26)	(1/C=O)	7.26–7.93 (m, 15 Har.)
6h	70	179 dec.	C ₂₆ H ₂₃ Cl ₃ N₄O ₃ S	18.25	9.60	5.51	1670	2.38 (s, CH ₃ C ₆ H ₄); 3.80, 3.86 (s, 2 CH ₃ O); 6.45 (s,
-		(C ₆ H ₆)		(18.40)	(69.6)	(5.55)	(n_c=o)	CCl ₃ CH); 6.96–7.52 (m, C ₆ H ₅ , 2C ₆ H ₄)
$\mathbf{8a}^d$	66	182 dec.	C ₂₀ H ₂₀ Cl ₄ N ₄ O ₅ S	24.64	9.73	5.65	1620	A mixture of stereoisomers. 2.43 (s, CH ₃ C); 3.80, 3.93 (s,
		(MeOH)		(24.87)	(9.82)	(5.62)		2.5:1, CH ₃ N); 4.05, 4.10 (s, 1:2.5 CH ₃ O); 5.58, 5.99 (s, 1:2.5 CCl ₃ CH); 7.30–7.55 (m, 2C ₆ H ₅)
8b	22	168 dec.	C ₂₀ H ₂₀ Cl ₄ N ₄ O ₆ S	24.34	9.82	5.50	1610	3.85 (s, CH ₃ N); 4.02, 4.21 (s, 2CH ₃ Ŏ); 5.79 (s, CCl ₃ CH);
Ċ	ľ			(24.19) 20.50	(90°.6)	(2.47) 7.47		/.28-/.38 (m, 206H5)
SC	/ 9	167 dec. (MeOH)	C22H24CI4N4O6S	22.50 (23.08)	9.18 (9.12)	5.18 (5.22)	1600	1.40 (m, 2 <i>CH</i> ₃ CH ₂), 3.85 (s, CH ₃ N); 4.42, 4.64 (m, 2 CH ₃ <i>CH</i> ₅); 5.79 (s, CCl ₃ CH); 7.30–7.58 (m, 2C ₆ H ₅)
1	73	200 dec.	C ₂₄ H ₁₉ Cl ₃ ¹⁵ N ¹⁴ N ₃ OS	20.44	11.06	6.22	1650	A mixture of stereoisomers. 2.27 (s, CH ₃); 5.71, 6.33 (d, 8:1,
))]	(20.50)	(10.99)	(6.18)	(1/C=0)	3 $J_{HH} = 8$ Hz, CCl ₃ CH); 6.68–7.95 (m, 2C ₆ H ₅ , C ₆ H ₄);
								8.98, 9.19 (dd, 1.8, 1 $J_{5NH} = 93$ Hz, 3 $J_{HH} = 8$ Hz, NH)
^a IR spect 1600–170	ra were tak∈ 0 cm⁻¹ are i	en on a Spec Indicated.	ord 71IR spectrophotometer	r in a CH ₂ C	d ₂ solution	(6a-h, 8a-	c) and on a UR 2	0 spectrophotometer in a KBr disk (11). Only bands in the region of
^b ¹ H NMR	spectra wei	re recorded o	n the following spectrometer	s: Varian V.	XR 300 (6a -	-g, 8a,c, 1 [.]	1), Varian Mercuri	400 (6h), and Varian Gemini 200 (8b). Most of the compounds were
	11 CUC03 all 1 (75 MHz, C	$COCI_3$ $\delta = 22$	2.22 (CH ₃ C), 39.17 (CH ₃ N), 7	њ. 78.87 (<i>С</i> НС	Cl ₃), 102.3	5 (CCl ₃); 12	24.45, 126.80, 128	.32, 129.49, 129.55, 130.65, 131.17, 138.59 (2C ₆ H ₅); 159.79, 170.54
(2C=N); 1 ^d 13C NMF 127.01, 12	73.57 (C C 8 (75 MHz, ⁴ 27.08, 128.6)) CDCl ₃ , a mix 8, 128.77, 13	ture of stereoisomers) $\delta = 1$ 0.31, 130.40, 130.54, 130.64	7.09, 18.82 4, 131.06, 1	(<i>C</i> H ₃ C); 42 32.74, 133.0	2.64, 44.18 03, 133.78,	(CH ₃ N); 57.51, 5 134.04 (2C ₆ H ₅);	8.24 (CH₃O); 79.60, 85.52 (CHCCl₃); 100.47, 102.00 (CCl₃); 126.42, 63.65, 164.44, 171.90, 173.81, 174.07, 175.20 (3C=N).

TABLE 1 Yields and Characteristics of Compounds 6, 8, and 11

FIGURE 1 Molecular structure of compound 6h.

It is of interest to compare the structures **6h** (A–C) with similar structures **9** (A–C) [2] and **10** (A, A', C) [11]. It may be considered that the charge delocalization over the S–N bond in **6h** is more significant than in **9** despite the higher "bipolarity" of **6h** (B) compared to **9** (B). The equalization of the bond lengths in the triad $N \cdots S \cdots N$ of compound **6h** approaches the ideal state found in **10**, which is an example of the classical "bond–no-bond" resonance system.

TABLE 2 Selected Geometrical Parameters of 6h

Bond Length (Å)	Angle ($^{\circ}$)	
$\begin{array}{c ccccc} S-N(1) & 1.960(2) & N(1) \\ S-N(4) & 1.916(2) & N(1) \\ S-C(15) & 1.733(3) & N(4) \\ N(1)-C(1) & 1.419(3) & S- \\ N(1)-C(8) & 1.303(3) & S- \\ N(2)-C(8) & 1.365(3) & C(1) \\ N(2)-C(15) & 1.312(3) & C(6) \\ N(3)-C(15) & 1.351(3) & C(1) \\ N(3)-C(23) & 1.466(3) & C(1) \\ N(4)-C(23) & 1.421(3) & S- \\ N(4)-C(25) & 1.358(3) & S- \\ O(3)-C(25) & 1.202(3) & C(2) \\ S- \\ S- \\ N(4)-S-S- \\ N(4)-S- \\ N$	$ \begin{array}{l} -S-N(4) \\ -S-C(15) \\ +S-C(15) \\ +S-C(15) \\ +N(1)-C(1) \\ +N(1)-C(8) \\ +N(1)-C(8) \\ +N(1)-C(8) \\ +N(2)-C(15) \\ +S-N(3)-C(16) \\ +S-N(3)-C(23) \\ +S-N(3)-C(23) \\ +S-N(3)-C(23) \\ +S-N(4)-C(25) \\$	166.12(9) 81.14(11) 85.36(11) 115.6(2) 110.9(2) 132.9(2) 111.7(2) 122.6(2) 116.6(2) 120.8(2) 113.0(2) 121.0(2) 108.2(2) 126.9(3) 120.8(2) 116.6(2) 122.6(2)

The marked structural bipolarity is likely to play a large role in the alkylation of compounds **6** into **8**. The alkylation proceeds at the oxygen atom under mild conditions and in most cases rather selectively as can be seen from the comparison of IR spectra of the related compounds **6** and **8** (Table 1). Furthermore, the signals at 164 and 172 ppm in the ¹³C NMR spectrum of **8a** (see footnote *d* in Table 1) correspond to those of atoms C(3) and C(5) in 1,2,4thiadiazolium cation with a disubstituted amine group in the 5-position [12]. These findings indicate that in the process of the alkylation the "switch-over" of the S–N bond and the reestablishment of the heterocycle initially present in reagents **3** and **4** do occur.

SCHEME 3

It should be noted that analogs of compounds **3a–e**, bearing no substituent at the exocyclic nitrogen atom, interact with reagents **7** in the presence of triethylamine in a different way, without ringopening. An example of such a reaction involving salt **3f** and ¹⁵*N*-labeled amide **7f** is shown in Scheme 3. The structure of product **11** was easily deduced from the ¹H NMR spectrum (Table 1).

CONCLUSION

The investigation into the structure and properties of the cycloaddition products of *N*-acylated imino derivatives of chloral and substituted 1,2,4thiadiazol-5(2H)-imines has widened the knowledge of heterocycles with a hypervalent sulfur atom, the chemistry of which is being studied intensively in recent years [13].

EXPERIMENTAL

General

All the reagents and solvents were commercial products and were used as received unless otherwise indicated. Melting points were determined on a capillary tube apparatus and were corrected. ¹H NMR spectra were recorded on a Varian Mercury 400 (400 MHz), a Varian VXR 300 (300 MHz), a Bruker AC 300 (300 MHz), or a Varian Gemini 200 (200 MHz) spectrometer. ¹³C NMR spectra were obtained on a Varian VXR 300 (75 MHz) spectrometer. TMS was used as the internal standard.

Synthesis of N-Imidoylthioureas **2a–e**

To a stirred solution or a suspension of the appropriate imidoyl chloride **1** (50 mmol) in anhydrous MeCN (20 ml), preliminarily dried NaSCN (50 mmol) dissolved in MeCN (30 ml) was added in 0.5 h at 15–20°C. The mixture was stirred for a further 0.5 h and then a 35% aqueous solution of methylamine (10 ml) or a solution of cyclohexylamine or of the appropriate aniline (50 mmol) in MeCN (10 ml) was added dropwise in 0.5 h at 10–12°C. After the addition was complete, the reaction mixture was stirred at room

temperature for 2 h, diluted with water (30 ml), stirred for 0.5 h, and filtered to separate the product.

Compound **2a**: 73% yield, mp 135°C (MeOH) (lit. 140°C) [3]. ¹H NMR (300 MHz, DMSO- d_6 , a mixture of tautomers and stereoisomers) $\delta = 2.78$, 3.11 (d, 3.5:1, CH₃); 6.68–7.66 (m, 2C₆H₅); 8.56, 8.86, 9.59, 9.85, 10.36, 11.82 (s and br s, 2NH). Found: N, 15.54; S, 11.74%. Calcd for C₁₅H₁₅N₃S: N, 15.60; S, 11.90%.

Compound **2b**: 92% yield, mp 159°C (AcOEt) (lit. 184°C) [14]. ¹H NMR (300 MHz, CDCl₃) δ = 1.30– 2.09 (m, 5 CH₂), 4.33 (m, CH₂*CH*CH₂), 6.66–7.38 (m, 2C₆H₅), 7.93 (s, NH), 12.08 (d, NH). Found: C, 71.06; H, 6.90; N, 12.27; S, 9.36%. Calcd for C₂₀H₂₃N₃S: C, 71.18; H, 6.87; N, 12.45; S, 9.50%.

Compound **2c**: 87% yield, mp 133–134°C (MeCN) (lit. 95°C) [5]. ¹H NMR (300 MHz, DMSO- d_6 /CCl₄) δ = 4.63 (d, CH₂), 6.92–7.48 (m, 3C₆H₅), 8.90 (br s, NH), 10.20 (s, NH) [15]. Found: C, 73.10; H, 5.58; N, 12.08; S, 9.14%. Calcd for C₂₁H₁₉N₃S: C, 73.01; H, 5.54; N, 12.16; S, 9.28%.

Compound **2d**: 80% yield, mp 126°C (MeCN). ¹H NMR (300 MHz, CDCl₃) δ = 3.79 (s, CH₃), 6.74–7.74 (m, 2C₆H₅, C₆H₄), 8.16 (s, NH), 14.15 (s, NH). Found: N, 11.74; S, 8.82%. Calcd for C₂₁H₁₉N₃OS: N, 11.63; S, 8.87%.

Compound **2e**: 97% yield, mp 133–134°C (MeCN). ¹H NMR (300 MHz, DMSO- d_6 /CCl₄, a mixture of tautomers and stereoisomers) $\delta = 2.21, 2.35$ (s, 1:6, CH₃C); 3.72, 3.80 (s, 6:1 CH₃O); 6.59–7.63 (m, C₆H₅, 2C₆H₄); 9.82, 10.01, 10.15, 10.28, 10.44, 14.20 (s, 2NH). Found: N, 11.25; S, 8.56%. Calcd for C₂₂H₂₁N₃OS: N, 11.19; S, 8.54%.

Synthesis of 1,2,4-Thiadiazol-5(2H)-imine Hydrobromides **3a–f**

To a stirred solution (**2a,d**) or a suspension (**2b,c,e**) of the appropriate **2** (50 mmol) in CHCl₃ (50 ml), pyridine (50 mmol) was added in one portion followed by a solution of bromine (50 mmol) in CHCl₃ (25 ml) added dropwise in 40 min. The mixture was stirred for 1 h and precipitated **3a–e** was filtered off and washed with MeOH. The filtrate was concentrated in vacuum and the residue was washed with MeOH to give an additional amount of the product.

Compound **3a**: 95% yield, mp 229°C dec. Found: Br, 23.15; N, 12.13; S, 9.25%. Calcd for C₁₅H₁₃N₃S· HBr: Br, 22.94; N, 12.07; S, 9.21%.

Compound **3b**: 92% yield, mp 235°C dec. Found: Br, 19.26; N, 10.16; S, 7.73%. Calcd for C₂₀H₂₁N₃S· HBr: Br, 19.19; N, 10.09; S, 7.70%.

Compound **3c**: 92% yield, mp 172°C (ClCH₂CH₂-Cl). Found: Br, 18.31; N, 9.97; S, 7.54%. Calcd for $C_{21}H_{17}N_3S$ ·HBr: Br, 18.23; N, 9.90; S, 7.56%. Compound **3d**: 95% yield, mp 218°C dec. (ClCH₂-CH₂Cl). Found: Br, 18.03; N, 9.63; S, 7.24%. Calcd for $C_{21}H_{17}N_3OS$ ·HBr: Br, 18.15; N, 9.54; S, 7.28%.

Compound **3e**: 88% yield, mp 216–218°C (AcOH). Found: Br, 17.37; N, 9.33; S, 6.98%. Calcd for C₂₂H₁₉N₃OS·HBr: Br, 17.58; N, 9.25; S, 7.06%.

N-Imidoylthiourea of the formula 4-MeC₆H₄-N=C(Ph)NHC(S)NH₂ [12] was brominated as described above to give compound **3f** in 92% yield; mp 227–228°C dec. (EtOH). Found: Br, 22.78; N, 12.13; S, 9.12%. Calcd for C₁₅H₁₃N₃S·HBr: Br, 22.94; N, 12.07; S, 9.21%.

Preparation of Free Base 4e

To a suspension of salt **3e** (20 mmol) in EtOH (40 ml), triethylamine (22 mmol) was added. The mixture was stirred for 4 h and the product was filtered off; 96% yield, mp 136°C (EtOH). Found: C, 70.68; H, 5.16; N, 11.33; S, 8.51%. Calcd for $C_{22}H_{19}N_3OS$: C, 70.75; H, 5.13; N, 11.25; S, 8.59%.

General Procedure for the Synthesis of 1,2,4-Thiadiazolidines **6a–h**

To a stirred mixture of the appropriate reagents 3a-e (5 mmol) and 7a [16], 7b,c [17], or 7d,e [18] (5 mmol) in anhydrous CH_2Cl_2 (10 ml), a solution of triethylamine (10 mmol) in CH_2Cl_2 (5 ml) was added dropwise in 20 min. The mixture was stirred for a further 4 h and diluted with water (15 ml). The organic layer was separated, concentrated in vacuum, and the residue was treated with EtOH (10 ml) to give crystalline **6a–h**. In the case of **6h** a portion of the precipitated product was filtered off before the addition of water. The title compounds are characterized in Table 1.

Alternative Method for Preparation of Compound **6h**

To a suspension of 4e (5 mmol) in anhydrous dioxane (15 ml), compound 5d [17] (5 mmol) was added. The mixture was stirred for 6 h and the precipitated product (77% yield) was separated by filtration.

X-Ray Crystallography of Compound 6h

A single crystal of **6h** (0.18 × 0.26 × 0.61 mm) was grown from an acetonitrile solution. Crystal data: $C_{26}H_{23}Cl_3N_4O_3S$, M = 577.89, triclinic, $P\bar{1}$ (N2), a = 9.594(7), b = 10.915(3), c = 13.221(5) Å, α = 95.86(3), β = 93.19(6), γ = 104.27(6)°, V = 1330.1(12) Å³, Z = 2, D_{calc} = 1.44 g · cm⁻³, μ = 4.59 cm⁻¹. Measurements were performed at 18°C on an Enraf-Nonius CAD 4 diffractometer operating in the ω -2 Θ scan mode (the ratio of the scanning rates $\omega/2\Theta = 1.2$). Intensity data were collected within the range $1 < \Theta < 24^{\circ}$ using graphite monochromated Mo K α radiation $(\lambda = 0.71069 \text{ Å})$. Intensities of 4458 reflections (4261 unique reflections, $R_{int} = 0.014$) were measured. Data were corrected for Lorentz and polarization effects but not for absorption. The structure was solved by direct method [19] and refined by fullmatrix least-squares technique in the anisotropic approximation [20]. In the refinement, 3091 reflections with $I > 2\sigma$ (I) were used. All hydrogen atoms were located in the difference Fourier maps and included in the final refinement with fixed positional and thermal parameters. Convergence was obtained at $R_1(F) = 0.035$, $R_w(F^2) = 0.090$, and GOF = 1.037 (334 refined parameters; obs/variable 9.3; the largest and minimal peaks in the final difference map, 0.25 and -0.24 e/A^3). The weighting scheme $\omega = 1/[\sigma^2(Fo^2) + (0.047P)^2 + 0.585P]$ with $P = (Fo^2 + 2Fc^2)/3$ was used.

Full details of the crystal structure determination have been deposited at the Cambridge Crystallographic Data Centre under number CCDC 172355.

Preparation of 1,2,4-Thiadiazolium Salts 8a-c

A mixture of **6b**, **6c**, or **6d** (3 mmol), the appropriate trialkyloxonium tetrafluoroborate (3 mmol) and anhydrous CH_2Cl_2 (10 ml) was stirred at room temperature for 48 h, after which time the solvents were removed under a reduced pressure and the residue was triturated with AcOEt (5 ml) to give a solid which was filtered off and redissolved in MeOH (10 ml) at 40–50°C. A 3 M solution of NaClO₄ in MeOH (3 ml) was added to the resulting solution and, after standing for 48 h at room temperature, the precipitated product was filtered off. Compounds **8a–c** are characterized in Table 1.

Synthesis of Compound 11

To a stirred mixture of reactants **3f** (5 mmol) and **7f** [21] (5 mmol) in anhydrous CH_2Cl_2 (10 ml), a solution of triethylamine (10 mmol) in CH_2Cl_2 (5 ml) was added dropwise in 20 min. The reaction mixture was stirred for a further 4 h and then the precipitated product was separated and washed with EtOH. Compound **11** is characterized in Table 1.

REFERENCES

- [1] Barnikow, G.; Ebeling, H. Z Chem 1972, 12, 130.
- [2] Goerdeler, J.; Löbach, W. Chem Ber 1979, 112, 517– 531.

480 Zyabrev et al.

- [3] Goerdeler, J.; Haag, J.; Löbach, W. Chem Ber 1979, 112, 1288–1296.
- [4] L'abbe, G.; Vermeulen, G.; Toppet, S.; King, G. S. D.; Aerts, J.; Sengier, L. J Heterocycl Chem 1981, 18, 1309–1317.
- [5] Goerdeler, J.; Eggers, W. Chem Ber 1986, 119, 3737– 3748.
- [6] L'abbe, G.; Albrecht, E.; Toppet, S. J Heterocycl Chem 1992, 29, 1317–1319.
- [7] For preliminary communication see Zyabrev, V. S.; Rensky, M. A.; Drach, B. S. Zh Org Khim 2001, 37, 628–629.
- [8] Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J Chem Soc, Perkin Trans II 1987, S1–S19.
- [9] Pauling, L. The Nature of the Chemical Bond; Cornell University Press: New York, 1960; p. 260.
- [10] Burke-Laing, M.; Laing, M. Acta Crystallogr B 1976, 32, 3216–3224.
- [11] Iwasaki, F.; Akiba, K. Bull Chem Soc Jpn 1984, 57, 2581–2583.

- [12] Zyabrev, V. S.; Kharchenko, A. V.; Pirozhenko, V. V.; Drach, B. S. Zh Org Khim 1988, 24, 1754–1762.
- [13] Minkin, V. I.; Minyaev, R. M. Chem Rev 2001, 101, 1247–1265.
- [14] Goerdeler, J.; Weber, D. Chem Ber 1968, 101, 3475– 3490.
- [15] Compound **2c** exists in the tautomeric form PhNHC(S)N=C(Ph)NHCH₂Ph.
- [16] Vrabel, V.; Pavelcik, F.; Kello, E.; Miertus, S.; Konecny, V.; Lokaj, J. Collect Czech Chem Commun 1985, 50, 1619–1628.
- [17] Kasper, F.; Boettger, H. Z Chem 1987, 27, 70-71.
- [18] Ulrich, U.; Tucker, B.; Sayigh, A. A. R. J Org Chem 1968, 33, 2887–2889.
- [19] Sheldrick, G. M. SHELXS-86. Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1986.
- [20] Sheldrick, G. M. SHELXS-93. Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1993.
- [21] Compound **7f** was prepared analogously to **7c** (see Ref. [17]).