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During the approach to the total synthesis of (+)-gelsemine, two novel spirocyclopentaneoxindole com-
pounds 2 and 3 were obtained. Starting from compound 9, spirocyclopentaneoxindole 3 was efficiently
and unexpectedly obtained through a Boc migration–intramolecular Michael cyclization cascade proce-
dure. This intramolecular Michael addition strategy allows conveniently access to complex spirooxindole
and spirocyclopentaneoxindole derivatives.

� 2012 Elsevier Ltd. All rights reserved.
Heterocyclic compounds play important roles in the drug dis- As shown in the retrosynthetic analysis of (+)-gelsemine
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Figure 1. Natural products containing the spirocyclopentaneoxindole scaffold.
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covery process. Polycyclic spirooxindoles are commonly occurring
heterocyclic ring systems found in a range of natural products
and pharmaceuticals.1–5 Among them, spirocyclopentaneoxindole
scaffolds are widely embodied in natural alkaloids such as paraher-
quamide A, notoamide B, and sclerotiamide (Fig. 1).6,7 Spirocycl-
opentaneoxindole, bearing a critical quaternary carbon at the
joint point, remains a challenging motif for synthetic chemists.
Because of the intriguing structure and potential biological activity,
the synthetic methodologies of spirocyclopentaneoxindole frame-
work have received significant attention around the world. To date,
many elegant strategies concerning the synthesis of spirocyclopen-
taneoxindole framework have been reported.8–11 Recently, two
new spirocyclopentaneoxindole derivatives compounds 2 and 3
were efficiently constructed through an intramolecular Michael
addition and an unexpected Boc migration–intramolecular Michael
cyclization cascade procedure, respectively.

(+)-Gelsemine 1 was first isolated in 1876 and its elusive struc-
ture was elucidated in 1959 by NMR spectroscopy and X-ray
crystallographic analysis,12–14 which has attracted numerous syn-
thetic efforts in the chemical community.15 During our research
on asymmetric total synthesis of (+)-gelsemine,16 to our surprise,
two new spirocyclopentaneoxindole derivatives 2 and 3 were
achieved (Fig. 2). In this Letter, we will have a further discussion
on studies toward the total synthesis of (+)-gelsemine and forma-
tion of the spirocyclopentaneoxindole skeleton.
ll rights reserved.
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(Scheme 1), we envisioned that (+)-gelsemine could be synthesized
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Figure 2. Structures of (+)-gelsemine and compounds 2 and 3.
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Scheme 1. Retrosynthetic analysis of (+)-gelsemine.
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from the intermediate 5 through an acid-catalyzed enol-oxonium
cyclization. We reasoned that the C-ring and D-ring of compound
5 could be constructed by two continuous intramolecular Michael
additions due to the nucleophilicity of a position of aldehyde
group in 6. Compound 6 could be achieved through cyano reduc-
tion and deprotection of acetal from compound 7. Compound 7
was synthesized by intermolecular aldol condensation of N-benzy-
loxindole 8 and aldehyde 9. Cis alkene 9 could be conveniently
generated from compound 10, which was easily prepared from
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Scheme 2. The first route toward (+)-gelsemine. Reagents and conditions: (i) Bu4N+F�, T
THF, �78 �C, 70%; (v) SOCl2/pyridine, 0 �C, 85%, E/Z = 3:5; (vi) LDA, THF, �78 �C, 70%; (v
D-diethyl tartrate in 12 steps according to our reported synthetic
route.16

According to the retrosynthetic analysis, our total synthesis of
(+)-gelsemine commenced with converting 10 to 12 (Scheme 2).
Removal of t-butyldimethylsilyl (TBDMS) with tetrabutylammo-
nium fluoride in 10 provided alcohol 12 in 93% yield, which fol-
lowed by the partial hydrogenation of triple bond in 12 with
Lindlar catalyst (Pd/CaCO3) at 1 atm of hydrogen pressure in MeOH
for 3 h gave the expected Z-conformation alkene 13 in excellent
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Scheme 3. The second route toward (+)-gelsemine. Reagents and conditions: (i) LDA, THF, �78 �C, 70%; (ii) SOCl2/pyridine, 0 �C, 85%; (iii) LDA, THF, �78 �C, 70%; (iv) (Boc)2O,
Et3N, CH2Cl2, rt, 40%; (v) PPTS, acetone–H2O, rt, 80%; (vi) LiHMDS, THF, �78 �C ? �40 �C.

5686 S. Zhou et al. / Tetrahedron Letters 53 (2012) 5684–5687
yield. Oxidation of the hydroxy group in 13 provided aldehyde 9.
Aldol condensation of the resulting aldehyde 9 with N-benzyloxin-
dole 8 in the presence of LDA at �78 �C, followed by dehydration
with SOCl2/pyridine delivered compound 7 (E/Z = 3:5). With 7 in
hand, we began to synthesize the key compound 6. Perhaps, due
to the instability of 6, numerous efforts for converting compound
7 to 6 failed, which declared the failure of our initial plan to assem-
ble the C/D rings, and C20 quaternary stereocenter of gelsemine via
two continuous intramolecular Michael additions. Based on the
above results, we have to construct the C/D rings of gelsemine,
respectively. Starting from compound 7, the pyrrolidine ring (D
ring) was easily prepared through the first intramolecular Michael
addition of C20 to C6 in the presence of LDA at �78 �C to provide
15 in 70% yield. However, our attempt to construct the C-ring via
a second intramolecular Michael addition of C20 to C15 in com-
pound 17 was failed. Although the anticipated a,b-unsaturated
aldehyde 16 was achieved after the deprotection of the acetal,
compound 17 was unable to be prepared from compound 16 be-
cause 16 was directly converted into an enantiomerically pure spi-
rocyclopentaneoxindole derivative 219 via an intramolecular
Michael addition of C7 to C15 (Scheme 2).

a,b-Unsaturated aldehyde 16 was easily converted into spiroox-
indole 2 via the spontaneous attack of oxindole enolate on the
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Scheme 4. Plausible mechanism for the formation of 3. Reag
electrophilic C15 under acidic condition.17,18 However, the C-ring
of gelsemine was more difficult to form, as a strong base was usu-
ally needed to active the a position of cyano. Based on the above
analysis, in order to construct C-ring smoothly, the nucleophilicity
of C7 should be weakened at first. Therefore, we designed com-
pound 23 to avoid the cyclization of C7 to C15. Adopting the above
procedure, compound 21 was obtained successfully in three steps
from 9 including Aldol condensation, Lindlar reduction, and
Michael addition. Protection of 21 with ditertbutyl-dicarbonate
in the presence of Et3N gave the O-protected indole 22 in 40% yield.
Removal of acetal in 22 provided the stable a,b-unsaturated alde-
hyde 23 in 80% yield. It is anticipated that the key precursor 24
of (+)-gelsemine could be synthesized by intramolecular Michael
addition between C20 and C15. Surprisedly, treatment of
a,b-unsaturated aldehyde 23 with LiHMDS yielded an enantiome-
rically pure spirocyclopentaneoxindole compound 319 rather than
the desired 24 (Scheme 3).

The data of 1H and 13C NMR spectra, together with further
1H–1H, direct 1H–13C, and long range 1H–13C scalar connectivities
as measured from 2D experiments, allowed the determination of
the structure of 3 as shown in Figure 2.

The unexpected novel spirocyclopentaneoxindole derivative
compound 3 was assumed to be obtained through a tandem
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procedure of Boc migration–intramolecular Michael cyclization.
The plausible mechanism for the unexpected cascade reaction is
proposed in Scheme 4. After deprotonation of C20, the formed an-
ion is unreactive toward the a,b-unsaturated aldehyde, probably
because of the strong steric exclusion involved in the formation
of C20 quaternary stereocenter and cage-like structure. However,
the C20 anion is enough to attack the adjacent enol-Boc group to
form compound 25. After Boc migrated to C20, the spirocyclopen-
taneoxindole skeleton was immediately formed via a spontaneous
intramolecular Michael addition of C7 to C15.

In conclusion, the synthetic strategy using two continuous
intramolecular Michael additions to construct C/D-ring and C20
quaternary stereocenter of (+)-gelsemine was studied. Although
the key skeleton of (+)-gelsemine failed to be synthesized, interest-
ing chemistry ensued from our exploration. Two novel enantiome-
rically pure spirocyclopentaneoxindole derivatives 2 and 3 were
achieved, and the research of their possible bioactivities is now
in progress. The spirocyclopentaneoxindole skeleton of 3 was effi-
ciently and unexpectedly prepared through a Boc migration–intra-
molecular Michael cyclization cascade procedure. This work
demonstrates the intramolecular Michael addition strategy which
will be useful for the synthesis of complex spirooxindole and spiro-
cyclopentaneoxindole derivatives.
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