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1-Phenyl-2-methyl(phenyl)-4-(diphenylphosphoryl)pyrroles are obtained, unexpectedly instead of the
1-phenyl-4-methyl(phenyl)-2-(diphenylphosphoryl)pyrrole regioisomers from a series of reactions
between 1,4-dibromo-2-methyl(phenyl)-4-diphenylphosphorylcyclobutenes and aniline via nucleophilic
substitution accompanied by an allylic shift, subsequent retro electrocyclization and pyrrole ring closure.

� 2013 Elsevier Ltd. All rights reserved.
Pyrroles are widely used in synthetic organic chemistry and
material science.1,2 Among pyrrole derivatives, there are a large
number of known natural biologically active compounds and drugs.3

It is also known that phosphorylated heterocycles regulate impor-
tant biological functions.4 From this point of view, phosphorylated
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e 1. Route to the synthesis of dib
pyrroles are of particular interest. While a number of methods
have already been documented for the preparation of 2-phosphono-
pyrroles,5 there appear to be a few practical procedures available
for the synthesis of 3-phosphonopyrroles. These are based
on the addition of enolates and enamines to phosphonoazoalkenes,6
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Figure 1. X-ray crystal structure (ORTEP) of 7a-hydrate.
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and nucleophilic addition of CH acids to azoalkenes7 or
ethynylphosphonates.8

Recently we reported the synthesis of 2-chloro-3-tert-butyl-1-
dialkyl(aryl)phosphorylcyclobut-2-enes with the purpose of
investigating the potential reactivity of these compounds.9 How-
ever, we found that their double bond was poorly reactive towards
electrophilic reagents (bromination and epoxidation), and when
the reaction was carried out under harsh conditions, cleavage of
the cyclobutene ring occurred leading to the formation of the
original 1,3-butadiene, sometimes with its geometric isomer at
the 1-position. A sequence of transformations starting with
propargylic alcohols allows the preparation of various sterically
hindered 1,3-butadienes, some of which underwent thermal
Figure 2. X-ray crystal str
transformation into cyclobutenes. In continuation of our interest
in the chemistry of cyclobutenylphosphine oxides, we report here
a study on the reactions of bromine-containing phosphorylcyclo-
butenes with aniline, which resulted in the discovery of a new
strategy for the preparation of b-(diphenylphosphoryl)pyrroles
through a series of one-pot reactions.

We applied our approach described earlier9 to the synthesis of
cyclobutene 5b possessing bromine atoms at the double bond
and the saturated carbon atom, which also bears a diphenylphos-
phoryl group (Scheme 1).

The starting c-bromopropargylic alcohols 1a,b and allenes 2a,b
were prepared according to the literature procedure.10 Bromina-
tion of 2a led to stable salt 3a,10 whereas in the case of 2b, the
ucture (ORTEP) of 7b.
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Scheme 2. Proposed mechanism for the formation of pyrroles 7a,b.

1716 A. S. Bogachenkov et al. / Tetrahedron Letters 54 (2013) 1714–1717
corresponding salt 3b decomposed immediately, even upon cool-
ing, with liberation of hydrogen bromide to form diene 4b.11 Heat-
ing the reaction mixture in refluxing toluene for about half an hour
afforded cyclobutene 5b. It is interesting to note that the salt 3a
was found to be sufficiently stable, so our attempts to isolate 4a
failed. We therefore decided to prepare 5a bypassing 4a, based
on the fact that oxophospholenic salts such as 3a decompose read-
ily in polar solvents such as nitromethane.12 Thus, heating 3a in
refluxing nitromethane followed by column chromatography affor-
ded an inseparable mixture of two isomeric cyclobutenes, 5a and
6a in a 1:1 ratio.

All the cyclobutenes obtained seemed to be reactive in
nucleophilic substitution reactions due to the presence of the
bromine atom attached to a tertiary carbon atom. Actually, we
found that these compounds readily underwent a thermal
reaction with excess aniline, however, the reaction proceeded
unexpectedly, with the formation of 1-phenyl-2-methyl
(phenyl)-4-diphenylphosphoryl pyrroles 7a,b instead of the
expected 1-phenyl-4-methyl(phenyl)-2-diphenylphosphoryl
regioisomers.

The structures of the obtained pyrroles were confirmed unam-
biguously by XRD crystal structure analysis13 (Figs. 1 and 2). Com-
pound 7a was isolated as the monohydrate (7a-hydrate).

Obviously, the thermal reaction proceeds through nucleophilic
substitution combined with an allylic shift, with subsequent retro
electrocyclization of the cyclobutene intermediate. Pyrrole ring-
closure probably proceeds via the intramolecular Michael addition
of aniline to the double bond, activated by the phosphoryl group,
followed by a prototropic shift and hydrogen bromide elimination
(Scheme 2).

To the best of our knowledge, allylic rearrangement of cyclob-
utenyl halides has not previously been observed. Kiefer reported
that attempted isomerization of 3-bromo-3-methylcyclobutene
met with failure.14

Thus, we have described a novel allylic transformation of
bromocyclobutenes and have proposed a new approach to the syn-
thesis of pyrrole derivatives via a series of reactions between phos-
phorylated dibromocyclobutenes and aniline, which involves
nucleophilic substitution with double bond migration, Michael
addition, a prototropic shift and hydrogen bromide elimination.
The structures of the formed pyrroles, together with the isolation
of two isomeric dibromocyclobutenes, 5a and 6a, point to the pos-
sibility of allylic nucleophilic substitution and allylic anionotropic
isomerization.
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