Journal of Medicinal Chemistry

Article

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Substituted 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides as inhibitors of the calcium-activated chloride channel transmembrane protein 16A (TMEM16A)

Eric C Truong, Puay-Wah Phuan, Amanda L Reggi, Loretta Ferrera, Luis J.V. Galietta, Sarah E Levy, Alannah C Moises, Onur Cil, Elena Diez-Cecilia, Sujin Lee, Alan S Verkman, and Marc O. Anderson

J. Med. Chem., Just Accepted Manuscript • Publication Date (Web): 11 May 2017 Downloaded from http://pubs.acs.org on May 12, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Substituted 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides as inhibitors of the calcium-activated chloride channel transmembrane protein 16A (TMEM16A)

Eric C. Truong¹, Puay W. Phuan², Amanda L. Reggi¹, Loretta Ferrera³, Luis J.V. Galietta⁴, Sarah E. Levy¹, Alannah C. Moises¹, Onur Cil², Elena Diez-Cecilia¹, Sujin Lee², Alan S. Verkman², and Marc O. Anderson^{1*}

¹Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA; ²Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA; ³U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, ITALY; ⁴Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), ITALY.

Corresponding author: Marc O. Anderson, Ph.D. Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA 94132. Phone 415-338-6495; Fax 415-405-0377; email <u>marc@sfsu.edu</u>.

Keywords: TMEM16A, calcium-activated chloride channel, ANO1, hypertension, cancer, anoctamin, cycloalkylthiophene, 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamide

ABSTRACT

Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calciumactivated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report by screening the discovery of 2-acylamino-cycloalkylthiophene-3carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A, and analysis of 48 synthesized analogs (**10ab-10bw**) of the original AACT compound (**10aa**). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (**10bm**), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC₅₀ ~ 30 nM, ~3.6-fold more potent than the most potent previously reported TMEM16A inhibitor **4** (Ani9), and >10-fold metabolic stability. Direct and reversible inhibition of TMEM16A by **10bm** was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.

INTRODUCTION

Transmembrane protein 16A (also known as TMEM16A, ANO1, DOG1, ORAOV2, TAOS-2) is a calcium-activated chloride channel (CaCC) that is expressed in a variety of mammalian tissues including smooth muscle cells, airway mucin-secreting cells, secretory epithelia, interstitial cells of Cajal, and nociceptive neurons.¹⁻³ TMEM16A is overexpressed in some human cancers,^{4, 5} and knockdown of TMEM16A inhibits cancer cell proliferation, cell cycle progression, and apoptosis.⁶ TMEM16A was reported recently as a biomarker for gastrointestinal stromal and esophageal tumors,^{7, ⁸ and TMEM16A expression is associated with good prognosis in PR-positive or HER2-negative breast cancer following tamoxifen treatment.⁹}

Early studies suggested TMEM16A contains eight putative transmembrane domains with intracellular N- and C- termini, and two calmodulin binding domains.¹⁰⁻¹² Multiple TMEM16A splice variants may explain its variable behavior in different tissues and cell types.¹³⁻¹⁶ Recent studies have questioned the role of calmodulin in TMEM16A activation, and have identified four acidic side-chain residues involved in Ca²⁺ binding in mouse TMEM16A: E698, E701, E730 and D734.^{17, 18} Other divalent cations (Sr²⁺ and Ni²⁺) appear to activate the channel as well.¹⁹ Four basic side-chain residues appear to be critical for anion selectivity in mouse TMEM16A: R511, K599, R617 and R784.²⁰ The kinetics of TMEM16A and TMEM16B CI⁻ conductance are complex, with distinct fast and slow gating mechanisms, regulated by membrane voltage and CI⁻ concentration.²¹ Biophysical experiments suggest TMEM16A is present in membranes as a homodimer,^{22, 23} with the dimerization domain located in the N-terminal sequence.²⁴ Recently, the C-terminal region of TMEM16A was modified to produce a constitutively active channel, providing a strategy to design TMEM16A activators.²⁵

A 3.4Å X-ray crystal structure was solved recently of a Ca^{2+} -activated lipid scramblase expressed in the fungus *Nectria haematococca* (nhTMEM16), which is ~ 40% homologous to mammalian TMEM16A, indicating a ten-transmembrane helical structure.²⁶ Using the nhTMEM16 structure, two homology models of TMEM16A suggest it contains ten transmembrane helical segments,^{21, 25} revising earlier eight helix structural models.

Inhibitors of TMEM16A has been proposed to be of potential utility for treatment of hypertension, asthma, inflammatory and reactive airways diseases, pain, and possibly cancer.^{1, 3, 4, 27} Reported inhibitors (Figure 1) include the non-selective CaCC inhibitor $CaCC_{inh}$ -A01 (1),²⁸ and TMEM16A-selective inhibitors such as the thiopyrimidine aryl aminothiazole T16A_{inh}-A01 (2), 29,30 N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid (MONNA) (3),³¹ and the acyl hydrazone Ani9 (4).³² The use of compound 2 to inhibit TMEM16A in various tissues has been reviewed.¹ Compound 2 blocks Ca²⁺-activated Cl⁻ currents in vascular smooth muscle cells, and relaxes mouse and human blood vessels,³³ This compound also prevents serotonin-induced contractile responses in pulmonary arteries of chronic hypoxic rats, a model of pulmonary hypertension,³⁴ and reverses EGFinduced increases in CaCC currents in T84 colonic epithelial cells.³⁵ Recently, **2** was also shown to attenuate angiotensin II-induced cerebral vasoconstriction in rat basilar arteries, further supporting TMEM16A as a target in vascular function, hypertension, and stroke.³⁶ The non-selective CaCC inhibitor 1 was shown to accelerate the degradation of TMEM16A in cancer cells by the ubiquitinproteasome pathway by a mechanism that may not involve channel inhibition.³⁷ Several recent studies address inhibitor selectivity. Studies of 1, 2, and 3 in isolated resistance arteries suggested poor TMEM16A selectivity for all three compounds.³⁸ Another study reported **1** as a non-selective inhibitor of CaCCs TMEM16A and Bestrophin1, while 2 selectively inhibited TMEM16A but with low potency.³⁹ As such, the discovery of potent and selective TMEM16A inhibitors continues to be a focus of multiple laboratories.

Herein, we report the discovery by screening of a 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamide (AACT) class of TMEM16A inhibitors, exemplified by **10aa**. Synthesis and evaluation of 48 analogs of **10aa** has provided compounds with substantially improved TMEM16A inhibition potency and metabolic stability than the recently reported compound **4**.

Figure 1. Structures of the non-selective CaCC inhibitor 1^{28} and TMEM16A inhibitors $2^{29, 30}$, 3^{31} , 4^{32} and the new class of cycloalkylthiophene inhibitors (**10aa**) described herein.

RESULTS AND DISCUSSION

A medium-throughput screening assay was previously developed to identify small molecule inhibitors of TMEM16A.⁴⁰ The screen utilized FRT cells that were stably transfected with human TMEM16A and the iodide-sensitive fluorescent protein YFP-H148Q/I152L/F46L. The assay involved addition of test compounds to the cells for 10 min in a physiological chloride-containing solution, followed by addition of an iodide solution containing ATP. ATP is a P2Y2 agonist in FRT cells used to increase cytosolic Ca²⁺ and activate TMEM16A channels. TMEM16A-facilitated iodide influx was determined from the initial time course of decreasing YFP fluorescence. TMEM16A inhibitors reduce iodide influx, resulting in a reduced rate of decreasing fluorescence. Here, screening of 50,000 drug-like synthetic small molecules not previously tested identified 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamide (AACT) **10aa** with IC₅₀ ~ 0.42 μ M (Figure 2). The structure of **10aa** resembles that of the previously identified non-selective CaCC inhibitor **1**,²⁸ although the latter molecule is substituted with a *tert*-butyl group, has a different assortment of functionality on the thiophene (e.g. lacking the haloacetamide), and was reported to be significantly less potent (IC₅₀ = 2.1 μ M) than **10aa** against TMEM16A.²⁹

Figure 2. Identification of TMEM16A inhibitors. A. Schematic of assay. FRT cells stably expressing TMEM16A and a halide-sensitive YFP sensor were incubated for 10 min with test compound.
Extracellular addition of addition of iodide and ATP results in YFP quenching whose rate is reduced by TMEM16A inhibition. B. Original fluorescence quenching curves for inhibition of TMEM16A by 10aa.
C. Concentration-dependent inhibition of TMEM16A by 10aa (mean ± S.E., n=4).

Motivated by the submicromolar potency of **10aa** and the modularity and synthetic accessibility of this scaffold, we further optimized this class of compounds. The only other reported biological activity of AACT compounds is inhibition of the protozoan parasite *Leishmania donovani* (EC₅₀ = 6.4 μ M), with no cytotoxicity seen against human macrophages (CC₅₀ > 50 μ M).⁴¹ The most potent inhibitor in the anti-parasite study was an analog of **10aa**, with 2-methylanilide replaced with 4methoxyanilide.

Chemistry

AACT compounds were prepared using the modular synthetic strategy shown in Scheme 1. The synthesis begins with the generation of substituted aryl cyanoacetamides, followed by a two-step Knoevenagel-Gewald sequence to generate 2-aminothiophenes, and coupling with simple electrophilic acylating agents. Substituted anilines (**5a-5k**) were coupled with cyanoacetic acid using EDCI-HCl to generate the library of cyanoacetamides (**6a-6k**). The substituent composition of this

library, prepared typically in good yields, is reported in Table 1, with some of the cyanoacetamides also being commercially available.

Scheme 1. Synthesis of 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides. *Reagents and conditions*: (a) cyanoacetic acid (1.0 eq) and EDCI-HCl (1.2 eq) (rt, 6 min); (b) cycloalkyl ketone, NH₄OAc, and AcOH (100 °C, 60 min); (c) S₈, morpholine (3.0 eq), EtOH (90 °C, 5h); (d) electrophilic acylating agent (1.3 eq), Et₃N (1.3 eq) (rt, 10 min) or difluoroiodoacetic acid (1.2 eq) and EDCI-HCl (1.5 eq) (rt, 60 min).

Table 1. Synthesis yields for EDCI-mediated cyanoacetamide generation reactions ($5 \rightarrow 6$); yields (%) are of the isolated or purified products. Purity of compounds was >95% based on HPLC-LCMS analysis at 254 nm, and absence of impurities was confirmed by ¹H NMR spectra.

Product			Isolated
Cyano-	SM Aniline	\mathbf{R}^2	Yield
acetamide			(%)
6a	5a	2-(CH ₃)	50
6b	5b	Н	purchased
6c	5c	2-(CH ₂ CH ₃)	76
6d	5d	2-F	78
6e	5e	4-F	70
6f	5f	2-C1	82
6g	5g	3-C1	80
6h	5h	4-C1	89
6i	5i	4-(CF ₃)	79
6j	5j	4-(CH ₃)	86
6k	5k	2-(OCF ₃)	87

Next, the substituted aryl cyanoacetamides (**6a-6k**) were condensed with a small collection of cycloalkyl ketones (**7a-7d**) under buffered acid-catalyzed aldol conditions (AcOH:NH₄OAc) to generate Knoevenagel adducts (**8a-8v**). While excess cyclic ketone was useful to obtain high conversion, we were pleased that this material could be removed by evaporation. The Knoevenagel adducts were subjected to the Gewald cyclization reaction in the presence of molecular octasulfur (S₈), to yield 2-amino-cycloalkylthiophene-3-carboxylic acid arylamides (**9a-9v**), which were typically crystalline and easily purified by trituration. The composition of the library and yields for the Knoevenagel and Gewald reactions are reported in Table 2, separated by the different cycloalkyl ketones.

Table 2. Synthesis yields for Knoevenagel reaction / aminothiophene formation $(7 + 6 \rightarrow [8] \rightarrow 9)$. Yields (%) are of the isolated or purified products. Purity of compounds was >95% based on HPLC-LCMS analysis at 254 nm, and absence of impurities was confirmed by ¹H NMR spectra.

		Isolated	Isolated		
Product	SM	Yield	Yield		
Amino-	Cyano-	(%)	(%)	\mathbf{R}^1	\mathbf{R}^2
thiophene	acetamide	Intmdt	Product		
		8a-8v	9a-9v		
(based on cyclo	heptanone 7 a)				
9a	6a	87	50	-(CH ₂) ₄ -	2-(CH ₃)
9b	6b	52	90	-(CH ₂) ₄ -	Н
9c	6c	48	70	-(CH ₂) ₄ -	2-(CH ₂ CH ₃)
9d	6d	93	51	-(CH ₂) ₄ -	2-F
9e	6e	60	69	-(CH ₂) ₄ -	4-F
9f	6f	70	85	-(CH ₂) ₄ -	2-Cl
9g	6g	73	93	-(CH ₂) ₄ -	3-Cl
9h	6h	90	67	-(CH ₂) ₄ -	4-Cl
9i	6i	76	98	-(CH ₂) ₄ -	4-(CF ₃)
9j	6ј	58	7	-(CH ₂) ₄ -	2-(OCF ₃)
(based on cyclo	hexanone 7 b)				
9k	6b	70	62	-(CH ₂) ₃ -	Н
91	6a	90	95	-(CH ₂) ₃ -	2-(CH ₃)

9m	6j	55	37	-(CH ₂) ₃ -	4-(CH ₃)	
9n	6e	32	97	-(CH ₂) ₃ -	4-F	
(based on tetrahydro-4H-pyran-4-one 7c)						
90	6a	86	92	-CH ₂ OCH ₂ -	2-(CH ₃)	
9p	6f	66	21	-CH ₂ OCH ₂ -	2-Cl	
9q	6ј	55	23	-CH ₂ OCH ₂ -	4-(CH ₃)	
9r	6e	70	26	-CH ₂ OCH ₂ -	4-F	
(based on cyclop	pentanone 7 d)					
9s	6a	60	92	-(CH ₂) ₂ -	2-(CH ₃)	
9t	6ј	60	55	-(CH ₂) ₂ -	4-(CH ₃)	
9u	6f	84	72	-(CH ₂) ₂ -	2-Cl	
9v	6k	38	82	-(CH ₂) ₂ -	2-(OCF ₃)	

Finally, coupling of the aminothiophenes (**9a-9v**) with alkyl and fluoroalkyl acyl chlorides, anhydrides, or EDCI-coupling was done to generate the final desired AACT compounds (**10aa-10bw**), also typically as crystalline solids, in fair to good yields (Table 3). After completion of a 1st generation of compounds (**10aa-10bj**) based on simple alkyl and fluoroalkyl groups at the R³ position, we designed a 2nd generation library with halodifluoroalkyl (chloro, bromo, and iodo) and heptafluorobutyryl at R³, based on the most promising combinations of R¹ and R² (**10bk-10bw**). The synthesis of the difluoroiodoacetyl inhibitors (**10bn**, **10bq**, **10bt**, and **10bw**) was accomplished by EDCI-mediated coupling of aminothiophenes with difluoroiodoacetic acid. In total, 49 inhibitor candidates were prepared by variations at the R¹, R², and R³ positions. The structure and purity of the final products were confirmed by ¹H-NMR, ESI-LCMS (UV absorption detection at 254 nm), with purities estimated to be >95%.

Journal of Medicinal Chemistry

Table 3. Coupling yields and TMEM16A inhibition of AACT compounds (**10aa-10bw**). Yields (%) are of the isolated or purified products. IC_{50} (µM) for inhibition of TMEM16A anion conductance using a fluorescence plate reader (FPR) assay (SEM in parentheses; n = 3). Purity of assayed compounds was >95% based on HPLC-LCMS analysis at 254 nm, and absence of impurities was confirmed by inspection of ¹H NMR spectra. ^aLow solubility in DMSO.

Product Final	SM Amino thiophene	\mathbf{R}^{1}	R ²	R ³	Isolated Yield (%)	FPR IC ₅₀ TMEM16A (µM)
(based on cyclo	heptanone 7 a)					
10aa	9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₃	61	0.42 (0.03)
10ab	9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ CF ₃	65	1.3
10ac	9a	-(CH ₂) ₄ -	2-(CH ₃)	CH ₃	82	>10
10ad	9a	-(CH ₂) ₄ -	2-(CH ₃)	CH ₂ CH ₃	70	>20
10ae	9b	-(CH ₂) ₄ -	Н	CF ₃	38	0.3 (0.005)
10af	9b	-(CH ₂) ₄ -	Н	CF ₂ CF ₃	97	2.5
10ag	9b	-(CH ₂) ₄ -	Н	CH ₃	80	>20
10ah	9b	-(CH ₂) ₄ -	Н	CH ₂ CH ₃	87	1.2
10ai	9c	-(CH ₂) ₄ -	2-(CH ₂ CH ₃)	CF ₃	6	1.3 (0.7)
10aj	9d	-(CH ₂) ₄ -	2-F	CF ₃	48	1.3
10ak	9e	-(CH ₂) ₄ -	4-F	CF ₃	60	0.32 (0.11)
10al	9f	-(CH ₂) ₄ -	2-Cl	CF ₃	87	0.66 (0.02)
10am	9f	-(CH ₂) ₄ -	2-Cl	CF ₂ CF ₃	91	>20

10an	9g	-(CH ₂) ₄ -	3-C1	CF ₃	23	5 (0.2)
10ao	9h	-(CH ₂) ₄ -	4-Cl	CF ₃	4	3 (0.09)
10ap	9i	-(CH ₂) ₄ -	4-(CF ₃)	CF ₃	2	5 (0.10)
10aq	9j	-(CH ₂) ₄ -	2-(OCF ₃)	CF ₃	12	1.3 (0.2)
10ar	9j	-(CH ₂) ₄ -	2-(OCF ₃)	CF ₂ CF ₃	30	2.7 (0.07)
10as	9j	-(CH ₂) ₄ -	2-(OCF ₃)	CH ₃	55	>20
10at	9j	-(CH ₂) ₄ -	2-(OCF ₃)	CH ₂ CH ₃	50	>20
(based on cyclo	hexanone 7 b)					
10au	9k	-(CH ₂) ₃ -	Н	CF ₃	93	0.37 (0.01)
10av	91	-(CH ₂) ₃ -	2-(CH ₃)	CF ₃	17	0.17 (0.001)
10aw	9m	-(CH ₂) ₃ -	4-(CH ₃)	CF ₃	30	0.22 (0.01)
10ax	9n	-(CH ₂) ₃ -	4-F	CF ₃	48	0.49 (0.02)
(based on tetral	hydro-4H-pyrd	an-4-one 7c)				
10ay	90	-CH ₂ OCH ₂ -	2-(CH ₃)	CF ₂ CF ₃	6	1.6 (0.09)
10az	90	-CH ₂ OCH ₂ -	2-(CH ₃)	CH ₂ CH ₃	40	3 (0.09)
10ba	9p	-CH ₂ OCH ₂ -	2-Cl	CF ₃	67	1.3
10bb	9q	-CH ₂ OCH ₂ -	4-(CH ₃)	CF ₃	38	5 (0.1)
10bc	9r	-CH ₂ OCH ₂ -	4-F	CF ₃	15	3.8 (0.09)
(based on cyclo	pentanone 7 d ,)				
10bd	9s	-(CH ₂) ₂ -	2-(CH ₃)	CF ₃	10	>20
10be	9s	-(CH ₂) ₂ -	2-(CH ₃)	CF ₂ CF ₃	37	6.2
10bf	9s	-(CH ₂) ₂ -	2-(CH ₃)	CH ₃	38	>20
10bg	9s	-(CH ₂) ₂ -	2-(CH ₃)	CH ₂ CH ₃	33	>20
10bh	9t	-(CH ₂) ₂ -	4-(CH ₃)	CF ₃	77	2.5 (0.04)
10bi	9u	-(CH ₂) ₂ -	2-C1	CF ₃	64	1.3
10bj	9v	-(CH ₂) ₂ -	2-(OCF ₃)	CF ₃	56	0.37 (0.02)
(2 nd -generation	inhibitors wit	h novel R ³ substitue	ents, including	chloro/bromo/iod	o difluoroace	etyl)
10bk	9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ Cl	27	0.18 (0.008)

6

ACS Paragon Plus Environment

9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ CF ₂ CF ₃	61	0.38 (0.01)
9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ Br	36	0.083 (0.007)
9a	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ I	67	0.6 (0.02)
9b	-(CH ₂) ₄ -	Н	CF ₂ Cl	16	0.925 (0.002)
9b	-(CH ₂) ₄ -	Н	CF ₂ Br	15	0.23 (0.004)
9b	-(CH ₂) ₄ -	Н	CF ₂ I	13	0.23 (0.004)
9e	-(CH ₂) ₄ -	4-F	CF ₂ Cl	19	0.84 (0.04)
9e	-(CH ₂) ₄ -	4-F	CF ₂ Br	32	0.45 (0.03)
9e	-(CH ₂) ₄ -	4-F	CF ₂ I	60	0.15 (0.002)
9v	-(CH ₂) ₂ -	2-(OCF ₃)	CF ₂ Cl	81	>20 ^a
9v	-(CH ₂) ₂ -	2-(OCF ₃)	CF ₂ Br	40	$0.70^{a}(0.002)$
9v	-(CH ₂) ₂ -	2-(OCF ₃)	CF ₂ I	50	1.88 (0.04)
	9a 9a 9b 9b 9b 9e 9e 9e 9v 9v 9v	9a -(CH ₂) ₄ - 9a -(CH ₂) ₄ - 9a -(CH ₂) ₄ - 9b -(CH ₂) ₄ - 9e -(CH ₂) ₂ - 9v -(CH ₂) ₂ - 9v -(CH ₂) ₂ - 9v -(CH ₂) ₂ -	9a $-(CH_2)_{4^-}$ $2-(CH_3)$ 9a $-(CH_2)_{4^-}$ $2-(CH_3)$ 9a $-(CH_2)_{4^-}$ $2-(CH_3)$ 9b $-(CH_2)_{4^-}$ H9b $-(CH_2)_{4^-}$ H9b $-(CH_2)_{4^-}$ H9b $-(CH_2)_{4^-}$ H9e $-(CH_2)_{4^-}$ 4-F9e $-(CH_2)_{4^-}$ 4-F9e $-(CH_2)_{4^-}$ 4-F9e $-(CH_2)_{4^-}$ 2-(OCF_3)9v $-(CH_2)_{2^-}$ $2-(OCF_3)$	9a -(CH2)4- 2-(CH3) CF2CF2CF3 9a -(CH2)4- 2-(CH3) CF2Br 9a -(CH2)4- 2-(CH3) CF2I 9a -(CH2)4- 2-(CH3) CF2I 9b -(CH2)4- H CF2CI 9b -(CH2)4- H CF2Br 9b -(CH2)4- H CF2Br 9b -(CH2)4- H CF2I 9b -(CH2)4- H CF2Br 9b -(CH2)4- H CF2I 9c -(CH2)4- H CF2I 9c -(CH2)4- 4-F CF2Br 9c -(CH2)4- 4-F CF2I 9c -(CH2)4- 4-F CF2I 9c -(CH2)2- 2-(OCF3) CF2CI 9v -(CH2)2- 2-(OCF3) CF2Br 9v -(CH2)2- 2-(OCF3) CF2I	$9a$ -(CH2)4-2-(CH3) $CF_2CF_2CF_3$ 61 $9a$ -(CH2)4-2-(CH3) CF_2Br 36 $9a$ -(CH2)4-2-(CH3) CF_2I 67 $9b$ -(CH2)4-H CF_2CI 16 $9b$ -(CH2)4-H CF_2Br 15 $9b$ -(CH2)4-H CF_2Br 13 $9e$ -(CH2)4-H CF_2CI 19 $9e$ -(CH2)4-4-F CF_2Br 32 $9e$ -(CH2)4-4-F CF_2Br 32 $9e$ -(CH2)4-4-F CF_2Br 32 $9e$ -(CH2)4-2-(OCF3) CF_2CI 81 $9v$ -(CH2)2-2-(OCF3) CF_2Br 40 $9v$ -(CH2)2-2-(OCF3) CF_2I 50

Biological characterization

2-Acylamino-cycloalkylthiophene-3-carboxylic acid arylamides **10aa-10bw** were initially evaluated for inhibition of TMEM16A anion channel function using a cell-based functional plate reader assay as reported.^{29, 30, 40} IC₅₀ values determined from concentration-inhibition measurements are summarized in Table 3.

The 1st generation library (**10aa-10bj**) showed several compounds with apparent IC₅₀ of 0.2-0.3 μ M: **10aa** (initial inhibitor), **10ae**, **10ak**, **10au**, **10av**, **10aw**. These results showed that 5-, 6-, and 7- member rings were tolerated at the R¹ position, while compounds based on tetrahydro-4H-pyran-4- one (**10ay-10bc**) were inactive. The best inhibitors contained H, 2- or 4-(CH₃), or 4-F on the aromatic ring (R²), and CF₃ as the acylamido substituent (R³). Inhibitors with differing groups at R², such as 2-F, 2-Cl, 3-Cl, 4-Cl, 4-(CF₃), 2-(OCF₃), were less potent. Likewise, compounds with alternative substituents at R³, including CF₂CF₃, CH₃, and CH₂CH₃, also had reduced potency.

Based on results that favored CF₃ at the R³ position, we designed a 2nd-generation library (**10bk-10bw**) that incorporated novel groups such as chlorodifluoro, bromodifluoro, or difluoroiodo, probing steric and electronic effects at that position. The 2nd-generation library focused on structural features seen in the more active compounds from the 1st-generation library (R¹ = -(CH₂)₄-; R² = 2-(CH₃), H, or 4-F). One 2nd-generation compound was synthesized that incorporated a heptafluorobutyryl substituent (**10bl**) to evaluate the effect of a multi-carbon fluoroalkyl group. We found three 2nd-generation compounds with lower apparent IC₅₀ of 0.08-0.18 μ M: **10bk**, **10bm**, and **10bt**. Additionally, the full series of inhibitor candidates (**10aa-10bw**) was subjected to a computational screen for pan-assay interference (PAINS),⁴² and all 49 compounds passed.

The most potent TMEM16A inhibitors identified using the semi-quantitative plate reader assay were then studied using a short-circuit current assay in which measured current is a linear measure of TMEM16A CI⁻ conductance. Compounds **10aa** (original inhibitor from screen), **10ae**, **10bk**, **10bm**, **10bn** and **10bt** were tested, and compared with reported inhibitors **2**, **3** and **4**. Concentrationdependence for the selected compounds is shown in Figure 3, with IC₅₀ values summarized in Table 4. Non-transfected FRT cells shows no signal upon ATP stimulation (Figure S1). By the shortcircuit current assay, **10aa** showed an IC₅₀ of 0.26 ± 0.10 μ M (n=3), similar to the chlorodifluoroacetamide **10bk** with IC₅₀ of 0.23 μ M. Difluoroiodoacetamides **10bn** and **10bt** were less potent with IC₅₀ of 0.73 and 0.60 μ M, respectively. Notably, bromodifluoroacetamide **10bm** had IC₅₀ of 0.030 ± 0.010 μ M (n=3). The IC₅₀ of **1**.6 μ M by the short-circuit current assay, significantly less potent than the reported IC₅₀ of 0.08 μ M using a *Xenopus laevis* oocyte assay.³¹ Inhibitor **2** was a previously reported to have an IC₅₀ of 1 μ M.²⁹

ACS Paragon Plus Environment

Figure 3. Short-circuit current measurement of TMEM16A inhibition by **10aa**, **10bk** and **10bm**, and previously reported compounds **3** and **4**. Measurements were done in FRT cells expressing human TMEM16A. A. Summary of dose-response data (mean \pm SEM, n = 3). B. Examples of original data in which inhibitors were added 5 min prior to TMEM16A activation by 100 μ M ATP.

Table 4. Characterization of AACT analogs. Concentration-dependent inhibition of TMEM16A measured by short-circuit current assay; TMEM16B and non-TMEM16 anion conductance measured using a fluorescence plate reader assay; cell viability measured in HT-29 cells. (SEM in parentheses; n=3).

				TMEM16A	TMEM16B	HT-29	Cellular
Inhibitor	\mathbf{R}^{1}	\mathbf{R}^2	\mathbf{R}^{3}	IC ₅₀	IC ₅₀	IC ₅₀	survival %
				(µM)	(µM)	(µM)	at 5 µM
2	_	_	_	~1 ^{ref 29}	~4 ^{ref 32}	5.0	97
3	_	-	-	1.6	13	>20	100
4	-	_	-	0.11	>20	0.3	102
10aa	-(CH ₂) ₄ -	2-(CH ₃)	CF ₃	0.26 (0.10)	1.4 (0.05)	4.0	99
10ae	-(CH ₂) ₄ -	Н	CF ₃	0.13	4.6 (0.4)	5.0	97

10bk	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ Cl	0.23	0.4 (0.01)	9.5	98
10bm	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ Br	0.030 (0.010)	0.4 (0.04)	5.4	97
10bn	-(CH ₂) ₄ -	2-(CH ₃)	CF ₂ I	0.73	1.4 (0.05)	3.5	96
10bt	-(CH ₂) ₄ -	4-F	CF ₂ I	0.60	1.1 (0.13)	5.0	97

Ion channel specificity and cytotoxicity were determined for the six most potent AACT compounds as well as previously reported compounds 2, 3 and 4 (Table 4). Selectivity was studied for TMEM16B, an isoform of TMEM16A that functions as a CaCC and regulates action potential firing in olfaction.⁴³ Inhibition of TMEM16B by the low-potency CaCC inhibitor anthracene-9carboxylic acid was recently reported.⁴⁴ Compounds **3** and **4** (IC₅₀ 13 and >20 μ M, respectively) were selective against TMEM16B, while **2** was less selective (IC₅₀ 4 μ M). The AACT compounds displayed modest selectivity against TMEM16B, with an IC₅₀ range of 0.4-1.4 µM. Two of the more potent AACT inhibitors of TMEM16A (10bk and 10bm) were also among the more potent against TMEM16B with IC₅₀ ~ 0.4 μ M. Compound 4 showed 181-fold selectivity against TMEM16B, while **10bm** achieved 13-fold selectivity. We further assayed compound potency on endogenous non-TMEM16A Ca²⁺-activated Cl⁻ channel in HT-29 cells.²⁸ In general, the AACT compounds were weak inhibitors of CaCCs in HT-29 cells (IC₅₀ 3.5-9.5 μ M), contrasting with 2 (IC₅₀ 5 μ M), 3 (IC₅₀ > $20 \,\mu\text{M}$), and 4 (IC₅₀ 0.3 μM). None of the compounds examined showed significant toxicity using an Alamar blue assay at concentrations up to 5 µM. Additionally, none of the compounds inhibited the cAMP-activated Cl⁻ channel cystic fibrosis transmembrane conductance regulator (CFTR) (data not shown).

Inhibition of TMEM16A by **10bm** was also investigated by the patch-clamp technique using the inside-out configuration. Membrane patches were excised from TMEM16A-expressing FRT cells. With the inside-out configuration, the cytosolic side of the membrane is exposed to the bath solution. To activate TMEM16A, the bath solution contained a free Ca^{2+} concentration of 305 nM. Under

Journal of Medicinal Chemistry

these conditions, relatively large membrane currents were recorded due to the presence of multiple TMEM16A channels (Figure 4). The currents had the typical characteristics of TMEM16A with outward rectification and time-dependent activation at positive membrane potentials. Addition to the bath of **10bm** (250 nM) by perfusion resulted in rapid inhibition of membrane currents, which fully recovered following washout. To further examine the specificity of **10bm**, short-circuit current measurement showed that **10bm** inhibited ionomycin- and carbachol-activated chloride conductance (Figure S2A), indicating that **10bm** did not inhibit chloride conductance through an ATP-stimulated purinergic G protein-coupled receptor mechanism. Further, cytoplasmic calcium was not altered by 1 µM **10bm** as seen in Fluo-4 fluorescence measurement of ATP-stimulated cytoplasmic calcium elevation (Figure S2B). These results support reversible TMEM16A inhibition by **10bm** by a direct interaction mechanism.

Figure 4. Patch-clamp studies of TMEM16A inhibition by **10bm**. A. Representative currents recorded from an inside-out membrane patch. Cytosolic (bath) free Ca²⁺ concentration was 305 nM. Each panel of traces show superimposed membrane currents elicited at membrane potentials in the range -100 to +100 mV. Currents were recorded under control conditions, after application by perfusion of **10bm** (250 nM), and after washout. B. Current-voltage relationships from the experiment shown in A. Current values were measured at the end of each voltage step. C. Summary of conductance values at +100 mV obtained from five independent experiments (***, p < 0.001 by paired t test).

In vitro metabolic stability was determined using a hepatic microsome assay for the most potent AACT inhibitor **10bm** (Figure 5A) and previously reported compound **4**. These compounds were incubated with rat liver microsomes and NADPH, and non-metabolized compounds were quantified by ESI-LCMS. Figure 5B shows near complete degradation of **4** at 180 min, whereas for the same incubation time ~30% of **10bm** remained. Figure 5C summarizes the time course of compound degradation showing remarkably greater stability of **10bm** compared to **4**. Inhibitor **10bm** could be potentially metabolized by amide-bond hydrolysis or oxidation of the benzene or aryl methyl. We speculate that **4** could be oxidized at the aryl methyl or N-N bond; or hydrolyzed at the amide or hydrazone linkages.

We have found the bromodifluoroacetamide functional group present in **10bm** to have long-term shelf stability (> 6 months) as a solid or in DMSO stock solution. In aqueous solution, there was gradual degradation of **10bm**, with 72% and 30% remaining at 1 and 2 days, respectively (Figure S3A). ESI-LCMS analysis suggested that degradation of **10bm** involves: solvolysis, elimination, and hydrolysis of the resulting acid fluoride to a stable N-substituted oxalamic acid (Figure S3B). This solvolytic pathway has not been previously reported for the bromodifluoroacetamide functional group. While we feel this degradation is slow enough to not effect potential pharmacological use of **10bm**, these results discourage multi-day storage in aqueous solution. Kinetic aqueous solubility was measured for **10bm** to be 0.04 mg/mL by titration.

Figure 5. Microsomal stability of 10bm and 4 in the presence of hepatic microsomes and NADPH, AND inhibition of isometric smooth muscle contractions of *ex vivo* mouse ileum by 10bm. A. Structure of 10bm. B. LC/MS traces showing total ion counts as a function of incubation time. C. Summary of in vitro metabolic stability shows percent of remaining compounds over time (mean \pm S.E.M., n=3). D. Isometric smooth muscle contraction in mouse ileum showing suppression by 10bm. Data representative of three separate experiments.

To demonstrate one predicted biological action of TMEM16A inhibition, we measured intestinal smooth muscle contraction. The effect of **10bm** was determined when added to the bath in an *ex vivo* preparation of mouse ileum. As shown in Figure 5D, **10bm** strongly inhibited spontaneous isometric contractions of ileum in a concentration-dependent manner.

CONCLUSION

In conclusion, we identified a new inhibitor of TMEM16A (**10aa**) by screening. The scaffold (designated AACT) is modular, allowing the synthesis and characterization of 48 analogs (**10ab-10bw**). The synthesis utilized substituted aryl cyanoacetamides (**6a-6k**) which were converted to 2-amino-cycloalkylthiophene-3-carboxylic acid arylamides (**9a-9v**) and acylated to afford the final library. The most potent compound in the series (**10bm**) had an IC₅₀ of 0.030 μM, making it currently the most potent reported TMEM16A inhibitor. Patch-clamp analysis supported reversible inhibition of TMEM16A by **10bm** by a mechanism involving direct interaction. **10bm** had remarkably greater metabolic stability than the previously reported compound **4**. Finally, **10bm** was shown to inhibit smooth muscle contractions in mouse ileum in concentration-dependent manner, illustrating one of its potential biomedical applications. The high potency and microsomal stability of AACT **10bm** supports its potential as a pharmacological tool to study TMEM16A function and as a potential candidate for further development.

EXPERIMENTAL SECTION

Chemistry

The detailed synthesis of all newly reported synthetic precursor molecules and final inhibitor candidates is presented in Supporting Information. Purity of assayed compounds was >95% based on HPLC-LCMS analysis at 254 nm, and absence of impurities was additionally confirmed by inspection of ¹H NMR spectra, and examination of at least one other wavelength (typically 320 nm).

Biology

Cell lines and culture. Fischer Rat Thyroid (FRT) cells stably co-expressing TMEM16A, TMEM16B and human wild-type CFTR and the halide-sensitive yellow fluorescent protein (YFP)-H148Q were cultured as described.²⁹ HT-29 expressing YFP were cultured as described.²⁸ FRT cells

Journal of Medicinal Chemistry

were cultured on plastic in Coon's-modified Ham's F12 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL streptomycin. For plate reader assays, cells were plated in black 96-well microplates (Corning-Costar Corp., New York, N.Y.) at a density of 20,000 cells per well and assayed 24-48 hours after plating.

TMEM16A functional assay. TMEM16A functional plate-reader assay was done as previously described.²⁹ Briefly, each well of 96-well plate containing the TMEM16A-expressing FRT cells was washed twice with phosphate buffer saline (PBS) leaving 50 μ l. Test compounds (0.5 μ l in DMSO) were added to each well at specified concentration. After 10 min each well was assayed individually for TMEM16A-mediated Γ influx by recording fluorescence continuously (400 ms/point) for 2 s (baseline), then 50 μ l of 140 mM Γ solution containing 300 μ M ATP was added at 2 s, and fluorescence was further read for 12 s. The initial rate of I- influx following each of the solution additions was computed from fluorescence data by nonlinear regression. TMEM16B activity was assayed similarly as described²⁹ using FRT cells co-expressing YFP and TMEM16B.

In silico PAINS assay. A computational screen for pan-assay interference compounds (PAINS)⁴² was employed to identify substructures associated with promiscuous inhibition. The full series of inhibitor candidates (**10aa-10bw**) was converted to SMILES strings, and submitted to an internet-based implementation of the PAINS filter (http://cbligand.org/PAINS), maintained by Prof. Xiang-Qun (Sean) Xie's laboratory at University of Pittsburgh School of Pharmacy.

Short-circuit current measurement. Short-circuit current measurements were done as described.³⁰ Briefly, Snapwell inserts (Corning Costar, Corning, NY) containing TMEM16A-expressing FRT cells were mounted in Ussing chambers (Physiological Instruments, San Diego, CA). The hemichambers were filled with 5 ml of HCO_3^- buffered solution (basolateral) and half-Cl⁻ solution (apical), and the basolateral membrane was permeabilized with 250 µg/ml amphotericin B. Solutions were bubbled with 95% $O_2/5\%$ CO₂ and maintained at 37°C, and short-circuit current was

measured on a DVC-1000 voltage clamp (World Precision Instruments Inc., Sarasota, FL) using Ag/AgCl electrodes and 3 M KCl agar bridges.

Patch clamp. Currents were recorded from inside-out membrane patches excised from FRT cells stably expressing TMEM16A. The pipette (extracellular) solution contained (in mM): 150 NaCl, 1 CaCl₂, 1 MgCl₂, 10 glucose, 10 mannitol, 10 Na-Hepes (pH 7.3). The bath (intracellular) solution contained (in mM): 130 CsCl, 1 MgCl₂, 10 EGTA, 10 Na-Hepes (pH 7.3), and 8 CaCl₂ to obtain the desired free Ca²⁺ concentration of 305 nM. The electrical resistance of micropipettes was 3-7 MΩ. The protocol for stimulation consisted of 600 ms voltage steps in the range from -100 to +100 mV (with 20 mV increments) starting from a holding potential of -60 mV. The interval between steps was 4 s. Membrane currents were filtered at 1 kHz and digitized at 5 kHz. Data were analyzed using the Igor software (Wavemetrics, Portland, OR) with custom software kindly provided by Dr. Oscar Moran.

In vitro metabolic stability. Compounds (each 10 uM) were incubated for specific time points (2, 5, 15, 30, 60, 180 min) with shaking at 37 °C with rat liver microsomes (1 mg protein/mL, Sigma-Aldrich, St. Louis, MO) in potassium phosphate buffer (100 mM) containing 1 mM NADPH. The mixture was then chilled on ice, and 0.5 mL of ice-cold ethyl acetate was added. Samples were centrifuged for 15 min at 3000 RPM. The supernatant was evaporated to dryness, and the residue was dissolved in 80 μ L of mobile phase (acetonitrile:/water, 3:1, containing 0.1% formic acid) for LC/MS. Reverse-phase HPLC separation was carried out using a Waters C₁₈ column (2.1 mm × 100 mm, 3.5 mm particle size) equipped with a solvent delivery system (Waters model 2690, Milford, MA). The solvent system consisted of a linear gradient from 5% to 95% acetonitrile run over 16 min (0.2 mL/min flow rate).

Plate reader assays of chloride channel function. CFTR inhibition was assayed as described.⁴⁵ Briefly, FRT cells co-expressing YFP and wildtype CFTR were washed with phosphate-buffered saline (PBS) and then incubated for 15 min with test compounds in PBS containing 20 μM forskolin.

Journal of Medicinal Chemistry

Γ influx was measured in a plate reader with initial baseline read for 2 s and then for 12 s after rapid addition of an Γ containing solution. Activity of non-TMEM16A CaCC was assayed as described²⁸ in HT-29 cells expressing YFP. In each assay initial rates of I– influx were computed as a linear measure of channel function.

Cytotoxicity. FRT cells were cultured overnight in black 96-well Costar microplates and incubated with 5 μ M test compounds for 8 h. Cytotoxicity was measured by Alamar Blue assay (Invitrogen, Carlsbad, CA) as per the manufacturer's instructions.

Ex vivo intestinal contractility. Adult mice (CD1 genetic background) were euthanized by avertin overdose (200 mg/kg, 2,2,2-tribromethanol, Sigma-Aldrich) and ileal segments of ~2 cm length were isolated and washed with Krebs-Henseleit buffer (pH 7.4, in mM: 118 NaCl, 4.7 KCl, 1.2 MgSO₄, 1.2 KH₂PO₄, 25 NaHCO₃, 2.5 CaCl₂, 11 D-glucose). The ends of the ileal segments were tied, connected to a force transducer (Biopac Systems, Goleta, CA) and tissues were transferred to an organ chamber (Biopac Systems) containing Krebs-Henseleit buffer at 37°C aerated with 95% O₂, 5% CO₂. Tissues were stabilized for 60 min with resting tension of 0.5 g and solutions were changed every 15 min. Effects of **10bm** on baseline isometric intestinal contractions were recorded. Animal protocols were approved by the UCSF Institutional Animal Care and Use Committee (approval number: AN108711-02A) and were conducted according with the NIH guidelines for the care and use of animals.

Aqueous stability. Duplicate HPLC samples were prepared in H₂O (20% DMSO) containing 10bm (100 μ M) and aqueous stable internal standard 5-chloro-3-phenyl-2,1-benzisoxazole (100 μ M). The samples were incubated at 25 °C for 3 days, and analyzed daily by ESI-LCMS showing gradual decomposition to the corresponding oxalamic acid.

Aqueous kinetic solubility. To a series of 2 mL aliquots of PBS solution were added increasing quantities of 10bm (30 mM DMSO stock solution). The titration point was determined at 6.5 μ L of added stock solution, corresponding to 0.04 mg/ml kinetic solubility.

AUTHOR INFORMATION

Corresponding Author. *Phone: 415-338-6495. Fax: 415-405-0377. E-mail: marc@sfsu.edu. Notes. Drs. Anderson, Phuan and Verkman are named co-inventors on a provisional patent filing with rights owned by UCSF and SFSU.

ACKNOWLEDGEMENTS

This study was supported by NIH grants R15 GM102874, P30 DK072517, R01 DK099803, R01 DK075302, R01 DK101373, and R01 EY13574, and a grant from the Cystic Fibrosis Foundation. Patch-clamp studies were supported by grants from Ministero della Salute (Ricerca Corrente: Cinque per mille) and Telethon Foundation to LJVG (TMLGCBX16TT). The authors acknowledge Dr. Robert Yen at the SFSU Mass Spectrometry Facility and Dr. Mark Swanson at SFSU NMR Facility.

ABBREVIATIONS USED

AACT, 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamide; ANO1, anoctamin 1; CaCC, calcium-activated chloride channel; CFTR, cystic fibrosis transmembrane regulator; DCM, dichloromethane; 4-DMAP, N,N-dimethylaminopyridine; DMF, N,N-dimethylformamide; DMSO, dimethyl sulfoxide; EDCI-HCl, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; FPR, fluorescent plate reader; FRT, Fischer Rat Thyroid; PAINS, pan assay interference compounds; PBS, phosphate-buffered saline; RT, room temperature; TLC, thin layer chromatography; TMEM16A, transmembrane protein 16A; YFP, yellow fluorescent protein.

ASSOCIATED CONTENT

Supporting Information Available. Supporting Information is available free of charge on the ACS Publications Website at DOI: xxxxxxx/yyyyyyyy:

Control measurement of short-circuit current in non-transfected cells; time-course and proposed mechanism of aqueous degradation of inhibitor **10bm**; synthesis details and spectroscopic

characterization of new molecules (PDF).

Molecular strings for all final inhibitor candidates (CSV).

REFERENCES

1. Pedemonte, N.; Galietta, L. J. Structure and function of TMEM16 proteins (anoctamins). *Physiol. Rev.* **2014**, *94*, 419-459.

2. Picollo, A.; Malvezzi, M.; Accardi, A. TMEM16 proteins: unknown structure and confusing functions. *J. Mol. Bio.* **2015**, *427*, 94-105.

Oh, U.; Jung, J. Cellular functions of TMEM16/anoctamin. *Pfluegers Arch.* 2016, 468, 443-453.

4. Qu, Z.; Yao, W.; Yao, R.; Liu, X.; Yu, K.; Hartzell, C. The Ca²⁺ -activated Cl⁻ channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. *Cancer Med.* **2014**, *3*, 453-461.

5. Wanitchakool, P.; Wolf, L.; Koehl, G. E.; Sirianant, L.; Schreiber, R.; Kulkarni, S.; Duvvuri, U.; Kunzelmann, K. Role of anoctamins in cancer and apoptosis. *Philos. Trans. R. Soc., B* **2014,** *369*, 20130096.

6. Guan, L.; Song, Y.; Gao, J.; Gao, J.; Wang, K. Inhibition of calcium-activated chloride channel ANO1 suppresses proliferation and induces apoptosis of epithelium originated cancer cells. *Oncotarget* **2016**, *7*, 78619-78630.

7. Li, Q.; Zhi, X.; Zhou, J.; Tao, R.; Zhang, J.; Chen, P.; Roe, O. D.; Sun, L.; Ma, L. Circulating tumor cells as a prognostic and predictive marker in gastrointestinal stromal tumors: a prospective study. *Oncotarget* **2016**, *7*, 36645–36654.

Shang, L.; Hao, J. J.; Zhao, X. K.; He, J. Z.; Shi, Z. Z.; Liu, H. J.; Wu, L. F.; Jiang, Y. Y.; Shi, F.; Yang, H.; Zhang, Y.; Liu, Y. Z.; Zhang, T. T.; Xu, X.; Cai, Y.; Jia, X. M.; Li, M.; Zhan, Q. M.; Li, E. M.; Wang, L. D.; Wei, W. Q.; Wang, M. R. ANO1 protein as a potential biomarker for esophageal cancer prognosis and precancerous lesion development prediction. *Oncotarget* 2016, *7*, 24374-24382.

Journal of Medicinal Chemistry

9.	Wu, H.; Guan, S.; Sun, M.; Yu, Z.; Zhao, L.; He, M.; Zhao, H.; Yao, W.; Wang, J
Jin, F	.; Xiao, Q.; Wei, M. Ano1/TMEM16A Overexpression is associated with good
progr	osis in PR-positive or HER2-negative breast cancer patients following tamoxifen
treatn	nent. PLoS One 2015, 10, e0126128.
10.	Caputo, A.; Caci, E.; Ferrera, L.; Pedemonte, N.; Barsanti, C.; Sondo, E.; Pfeffer,
Rava	zzolo, R.; Zegarra-Moran, O.; Galietta, L. J. TMEM16A, a membrane protein assoc
with	calcium-dependent chloride channel activity. Science 2008, 322, 590-594.
11.	Yang, Y. D.; Cho, H.; Koo, J. Y.; Tak, M. H.; Cho, Y.; Shim, W. S.; Park, S. P.; J
J.; Le	e, B.; Kim, B. M.; Raouf, R.; Shin, Y. K.; Oh, U. TMEM16A confers receptor-activ
calciu	m-dependent chloride conductance. Nature 2008, 455, 1210-1215.
12.	Schroeder, B. C.; Cheng, T.; Jan, Y. N.; Jan, L. Y. Expression cloning of TMEM
as a c	alcium-activated chloride channel subunit. Cell 2008, 134, 1019-1029.
13.	Ferrera, L.; Caputo, A.; Ubby, I.; Bussani, E.; Zegarra-Moran, O.; Ravazzolo, R.;
Pagai	ii, F.; Galietta, L. J. Regulation of TMEM16A chloride channel properties by altern
splici	ng. J. Biol. Chem. 2009, 284, 33360-33368.
14.	Tian, Y.; Kongsuphol, P.; Hug, M.; Ousingsawat, J.; Witzgall, R.; Schreiber, R.;
Kunz	elmann, K. Calmodulin-dependent activation of the epithelial calcium-dependent
chlor	de channel TMEM16A. FASEB J. 2011, 25, 1058-1068.
15.	Tian, Y.; Schreiber, R.; Kunzelmann, K. Anoctamins are a family of Ca ²⁺ -activate
Cl- cl	nannels. J. Cell. Sci. 2012, 125, 4991-4998.
16.	Sung, T. S.; O'Driscoll, K.; Zheng, H.; Yapp, N. J.; Leblanc, N.; Koh, S. D.; Sand
K. M	Influence of intracellular Ca ²⁺ and alternative splicing on the pharmacological pro
of AN	101 channels. Am. J. Physiol. Cell Physiol. 2016, 311, C437-451.

17. Yu, K.; Duran, C.; Qu, Z.; Cui, Y. Y.; Hartzell, H. C. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. *Circ. Res.* **2012**, *110*, 990-999.

18. Tien, J.; Peters, C. J.; Wong, X. M.; Cheng, T.; Jan, Y. N.; Jan, L. Y.; Yang, H. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. *Elife* **2014**, *3*, e02772.

Yuan, H.; Gao, C.; Chen, Y.; Jia, M.; Geng, J.; Zhang, H.; Zhan, Y.; Boland, L. M.;
 An, H. Divalent cations modulate TMEM16A calcium-activated chloride channels by a common mechanism. *J. Membr. Biol.* 2013, *246*, 893-902.

20. Peters, C. J.; Yu, H.; Tien, J.; Jan, Y. N.; Li, M.; Jan, L. Y. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, 3547-3552.

Cruz-Rangel, S.; De Jesus-Perez, J. J.; Contreras-Vite, J. A.; Perez-Cornejo, P.;
 Hartzell, H. C.; Arreola, J. Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B. *J. Physiol.* 2015, *593*, 5283-5298.

22. Fallah, G.; Romer, T.; Detro-Dassen, S.; Braam, U.; Markwardt, F.; Schmalzing, G. TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. *Mol. Cell. Proteomics* **2011**, *10*, M110 004697.

Sheridan, J. T.; Worthington, E. N.; Yu, K.; Gabriel, S. E.; Hartzell, H. C.; Tarran, R. Characterization of the oligomeric structure of the Ca²⁺-activated Cl⁻ channel
 Ano1/TMEM16A. *J. Biol. Chem.* 2011, 286, 1381-1388.

24. Tien, J.; Lee, H. Y.; Minor, D. L., Jr.; Jan, Y. N.; Jan, L. Y. Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, 6352-6357.

Journal of Medicinal Chemistry

2
3
4
5
5
6
7
8
à
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
00
31
32
33
34
25
35
36
37
38
20
39
40
41
42
12
40
44
45
46
17
41
48
49
50
51
51
52
53
54
55
55
56
57
58
50
03
60

 Scudieri, P.; Musante, I.; Gianotti, A.; Moran, O.; Galietta, L. J. Intermolecular interactions in the TMEM16A dimer controlling channel activity. *Sci. Rep.* 2016, *6*, 38788.
 Brunner, J. D.; Lim, N. K.; Schenck, S.; Duerst, A.; Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. *Nature* 2014, *516*, 207-212.

27. Jia, L.; Liu, W.; Guan, L.; Lu, M.; Wang, K. Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. *PLoS One* **2015**, *10*, e0136584.

28. De La Fuente, R.; Namkung, W.; Mills, A.; Verkman, A. S. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. *Mol. Pharmacol.* **2008**, *73*, 758-768.

29. Namkung, W.; Phuan, P. W.; Verkman, A. S. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. *J. Biol. Chem.* **2011**, *286*, 2365-2374.

Piechowicz, K. A.; Truong, E. C.; Javed, K. M.; Chaney, R. R.; Wu, J. Y.; Phuan, P. W.; Verkman, A. S.; Anderson, M. O. Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. *J. Enzyme Inhib. Med. Chem.* 2016, *31*, 1362-1368.

31. Oh, S. J.; Hwang, S. J.; Jung, J.; Yu, K.; Kim, J.; Choi, J. Y.; Hartzell, H. C.; Roh, E.
J.; Lee, C. J. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1. *Mol. Pharmacol.* 2013, *84*, 726-735.

32. Seo, Y.; Lee, H. K.; Park, J.; Jeon, D. K.; Jo, S.; Jo, M.; Namkung, W. Ani9, A novel potent small-molecule ANO1 inhibitor with negligible effect on ANO2. *PLoS One* **2016**, *11*, e0155771.

33. Davis, A. J.; Shi, J.; Pritchard, H. A.; Chadha, P. S.; Leblanc, N.; Vasilikostas, G.;

Yao, Z.; Verkman, A. S.; Albert, A. P.; Greenwood, I. A. Potent vasorelaxant activity of the TMEM16A inhibitor T16A_{inh} -A01. *Br. J. Pharmacol.* **2013**, *168*, 773-784.

34. Sun, H.; Xia, Y.; Paudel, O.; Yang, X. R.; Sham, J. S. Chronic hypoxia-induced upregulation of Ca²⁺-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. *J. Physiol.* **2012**, *590*, 3507-3521.

35. Mroz, M. S.; Keely, S. J. Epidermal growth factor chronically upregulates Ca^{2+} dependent Cl⁻ conductance and TMEM16A expression in intestinal epithelial cells. *J. Physiol.* **2012**, *590*, 1907-1920.

36. Li, R. S.; Wang, Y.; Chen, H. S.; Jiang, F. Y.; Tu, Q.; Li, W. J.; Yin, R. X. TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway. *Mol. Med. Rep.* **2016**, *13*, 3691-3699.

37. Bill, A.; Hall, M. L.; Borawski, J.; Hodgson, C.; Jenkins, J.; Piechon, P.; Popa, O.; Rothwell, C.; Tranter, P.; Tria, S.; Wagner, T.; Whitehead, L.; Gaither, L. A. Small moleculefacilitated degradation of ANO1 protein: a new targeting approach for anticancer therapeutics. *J. Biol. Chem.* **2014**, *289*, 11029-11041.

38. Boedtkjer, D. M.; Kim, S.; Jensen, A. B.; Matchkov, V. M.; Andersson, K. E. New selective inhibitors of calcium-activated chloride channels - T16A_{inh}A01, CaCC_{inh}A01 and MONNA - what do they inhibit? *Br. J. Pharmacol.* **2015**, *172*, 4158-4172.

39. Liu, Y.; Zhang, H.; Huang, D.; Qi, J.; Xu, J.; Gao, H.; Du, X.; Gamper, N.
Characterization of the effects of Cl⁻ channel modulators on TMEM16A and bestrophin-1
Ca²⁺ activated Cl⁻ channels. *Pfluegers Arch.* 2015, *467*, 1417-1430.

40. Namkung, W.; Yao, Z.; Finkbeiner, W. E.; Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. *FASEB J.* **2011**, *25*, 4048-4062.

41. Oh, S.; Kwon, B.; Kong, S.; Yang, G.; Lee, N.; Han, D.; Goo, J.; Siqueira-Neto, J. L.;
Freitas-Junior, L. H.; Liuzzi, M.; Lee, J.; Song, R. Synthesis and biological evaluation of 2acetamidothiophene-3-carboxamide derivatives against Leishmania donovani. *MedChemComm* 2014, *5*, 142-146.

42. Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* **2010**, *53*, 2719-2740.

43. Pietra, G.; Dibattista, M.; Menini, A.; Reisert, J.; Boccaccio, A. The Ca²⁺-activated Cl⁻ channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. *J. Gen. Physiol* **2016**, *148*, 293-311.

44. Cherian, O. L.; Menini, A.; Boccaccio, A. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. *Biochim. Biophys. Acta* **2015**, *1848*, 1005-1013.

45. Tradtrantip, L.; Sonawane, N. D.; Namkung, W.; Verkman, A. S. Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. *J. Med. Chem.* **2009**, *52*, 6447-6455.

TABLE OF CONTENTS FIGURE

10bm IC₅₀ = 30 nM

TMEM16A short-circuit current