NOTES

The fluorination of methoxy-groups by tungsten hexafluoride

(Received 20 June 1971)

ALTHOUGH the methoxy- and phenoxy-groups in methylmethoxy- and methylphenoxy-silanes, $Me_nSi-(OR)_{4-n}$ (n = 1-3) are completely replaced by fluorine using tungsten hexafluoride under mild conditions [1, 2], the formation of fluorosulphite esters, ROS(O)F, (R = Me, Et, or Ph) and dimethyl-fluorophosphite, (MeO)₂PF, from similar reactions with sulphite esters and trimethylphosphite respectively [3] indicate the replacement is not always complete. The overall reactions may be complicated by steps involving the alkoxytungsten(VI) fluorides that are formed initially, for example methoxytungsten(VI) pentafluoride readily looses a Me⁺ cation in the presence of (MeO)₃P or (MeO)₂SO[3, 4]. The present work was undertaken to determine if other RO-containing compounds would be fluorinated by WF₆ and how far the F, OR exchange processes would be complicated by additional reactions.

EXPERIMENTAL

All operations were carried out in a conventional vacuum system or in a dry box. Mixtures of reactants, in pyrex ampoules fitted with P.T.F.E., glass stop-cocks, were allowed to react under appropriate conditions. Volatile products were removed and subjected to fractional distillation; in most cases it was not possible to separate mixtures of involatile products, but unambiguous identification of the components was usually possible by spectroscopic methods. NMR spectra were recorded at 33° C using a Perkin–Elmer R.10 spectrometer at $60\cdot0$ MHz (¹H), $56\cdot4$ MHz (¹⁹F), and $24\cdot3$ MHz (³¹P), with internal Me₄Si, internal CCl₃F, and external 85% H₃PO₄ as references. A positive chemical shift indicates that resonance occurred at a lower applied field. IR spectra were obtained using Perkin–Elmer 457 or 257 spectrometers, the spectra of authentic samples of BF₃, MeF, SiF₄, PF₃, and POF₃ being used for comparison, and UV visible spectra using a Pye–Unicam SP800D spectrometer. Mass spectra were obtained using an A.E.I. MS12 instrument. Tungsten was determined as WO₃ using cinchonine hydrochloride and other analyses were performed by A. Bernhardt, Elbach-u-Engel-skirchen, and Laboratorium Beller, Göttingen.

Tungsten hexafluoride (Allied Chemical Co.) was purified by low temperature trap-to-trap distillation over NaF. WF_5OMe was prepared from WF_6 and $(MeO)_2SO[3]$ and titanium tetramethoxide from titanium tetraisopropoxide and methanol[5]. Other reactants and solvents were commercial products and were purified by distillation and storage over 4A molecular sieves or by vacuum drying as appropriate.

RESULTS AND DISCUSSION

The reactions of WF_6 with $M(OMe)_n$ (M = B, n = 3; M = Si, n = 4; M = Nb, n = 5) and with some phosphorus esters are shown in Tables 1 and 2. Only in the WF_6 , tetramethoxy-silane system is simple exchange observed. The degree of substitution at tungsten depends on the reactant stoichiometry but the other product is always SiF_4 even when an excess of $Si(OMe)_4$ is used. Although BF_3 and WF_5OMe are formed from WF_6 and trimethoxyborane when the mole ratio is $\ge 3:1$ at lower mole ratios the major product is an involatile liquid, which from its NMR spectra appears to contain MeO-groups (five singlets in the range $3\cdot55-7\cdot1$ ppm), F-W (singlet at 67 ppm, half-height width = 20 Hz.) and F-B groups (singlet at -150 ppm, half-height width = 90 Hz). WF_5OMe is partially decomposed to WOF_4 and MeF in the presence of BF_3 , possibly as the co-ordination of BF_3 at the

- 1. L. B. Handy and F. E. Brinckman, Chem. Comm. 214 (1970).
- 2. A. M. Noble and J. M. Winfield, J. chem. Soc. A, 2574 (1970).
- 3. A. M. Noble and J. M. Winfield, J. chem. Soc. A 501 (1970).
- 4. W. McFarlane, A. M. Noble and J. M. Winfield, J. chem. Soc. A 948 (1971).
- 5. D. C. Bradley, Prepar. Inorg. Reac. 2, 169 (1965).

Reactants (m-mole)	Read condi (°C)	ction itions (hr)	Identified products (m-mole)	
$WF_{6}(17.0) + B(OMe)_{3}(5.9)$	20	20	BF ₃ , MeF ^(a)	Wt. of $BF_3 + MeF = 0.31$ g
			WF ₅ OMe ^(b) *	Unchanged WF ₆ recovered
$WF_{\theta}(9.9) + B(OMe)_{3}(4.7)$	20	20	BF ₃ , MeF ^(a)	A viscous, yellow liquid from
$WF_{6}(18.4) + B(OMe)_{3}(18.5)$	20	20	WF ₅ OMe ^(c) BF ₃ , MeF ^(a)	which BF ₃ and MeF were evolved on standing was also formed
				Ratio C: H: B: $F \approx 6:18:1:12$
$WF_6(32\cdot3) + Si(OMe)_4(5\cdot2)$	20	12	SiF ₄ (4·2) ^(d) WF ₅ OMe(20·8) ^(e) †	Unchanged WF ₆ recovered
$WF_6(13.1) + Si(OMe)_4(13.0)$	20	12	$SiF_4(12.2)^{(d)}$ cis-WF ₂ (OMe) ₄ (10.0) ^(f) ‡	
$WF_6(4\cdot 2) + Nb(OMe)_5(2\cdot 1)$	20	2	MeF ^(a)	Mixture of a white solid and an involatile, brown liquid was formed

Table 1. Reactions with $M(OMe)_n$

*Calcd. for CH_3F_5OW : C, 3·9; H, 1·0; F, 30·7; W, 59·3. Found: C, 2·5; H, 1·0; F, 27·2; W, 58·35 †Calcd. for CH_3F_5OW : C, 3·9; H, 1·0; F, 30·7; W, 59·3. Found: C, 3·6; H, 1·0; F, 29·0; W, 58·7. ‡Calcd. for $C_4H_{12}F_2O_4W$: C, 13·9; H, 3·5; F, 11·0; W, 53·1. Found: C, 12·7; H, 3·0; F, 11·6; W, 52·6. ^(a)By IR and NMR spectroscopy.

^(b)By NMR spectroscopy [3] and analysis. The ¹⁹F spectrum also contained a singlet at 68 ppm, half-height width = 60 Hz, which is tentatively assigned to WOF₄.

^(c)By NMR spectroscopy [3].

^(d)By i.r. spectroscopy and molecular weight. Found 103; required 104.

(e) By NMR spectroscopy [3] and analysis.

(f) By NMR spectroscopy [1] and analysis.

oxygen atom facilitates the loss of a Me⁺ cation, and it is suggested that the liquid results from the decomposition of WF₅OMe and its reaction with further B(OMe)₃, to give species possibly containing B-O-W bonds. No free methoxydifluoroborane, which has been previously prepared from BF₃ and B(OMe)₃[6], was observed in these reactions, but it may be present in the liquid.

A similar liquid is the major product from WF₆ and pentamethoxyniobium(V); its ¹H and ¹⁹F NMR spectra comprised five singlets in the range 4·0-5·1 ppm and a singlet at 70 ppm, half-height width = 60 Hz. However, there is no evidence for the formation of niobium and tungsten methoxyfluorides and the characteristic behaviour of WF₆ towards Nb(OMe)₅, Ti(OMe)₄, and $M(OPr^i)_4$ (M = Ti or Zr) is the formation of ill-defined adducts from which the appropriate alkyl fluoride is readily eliminated. This contrasts with the formation of TiF_{4-n}(OEt)_n[7] and MF_{5-n}(OEt)_n (M = Nb or Ta)[8] from reactions of TiF₄ and MF₅ with the corresponding alkoxides.

Both MeO groups in dimethyl methylphosphonate can be replaced by F using WF₆. The reaction is not quantitative as further reactions occur between WF₅OMe and (MeO)₂P(O)Me to give products similar to those obtained from WF₆ and (MeO)₃P[3]; a separate NMR experiment confirmed that the $[(MeO)_3PMe]^+$ cation is present in a solution of WF₅OMe in (MeO)₂P(O)Me. The reaction of WF₆ with trimethyl phosphate is similar but the yield of POF₃ is very low and the PF₆⁻ anion is present in the involatile product mixture. The major signal in its ¹⁹F NMR spectrum, a doublet with doublet satellite bands is tentatively assigned to tungsten oxotetrafluoride complexed by trimethyl phosphate,

6. W. Gerrard, E. F. Mooney and W. G. Peterson, J. inorg. nucl. Chem. 29, 943 (1967).

7. R. Latham and R. S. Drago, Inorg. Chem. 3, 291 (1964).

8. Yu. A. Buslaev, Yu. V. Kokunov, S. M. Kremer and V. A. Shcherbakov, Inorg. Mat. 3, 1242 (1967).

Table 2. Reactions with phosphorus esters

Reactants (m-moles)	Read condi (°C)	ction itions (hr)	Identified products (m-moles)	
WF ₆ (17·9) + (MeO) ₂ P(O)Me(17·6	20	0.5	$MeP(O)F_2(3\cdot 8)^{(a)}$	Using a 1:2 mole ratio
			MeF (2·15) ^(b)	(MeO)(Me)P(O)F and unchanged
			$WOF_4 \cdot OP(OMe)_2 Me^{(c)}$	(MeO) ₂ P(O)Me were identified
			$[(MeO)_3)PMe^+][W_2O_2F_9^-]^{(c)}$	by NMR spectroscopy [9]
$WF_6(7\cdot8) + (MeO)_2P(O)H(8\cdot5)$	-80	0 ∙2	PF ₃ , SiF ₄ ^(d)	An involatile, colourless liquid which rapidly turned blue at 20°C was also formed
$WF_6 + (MeO)_3PO$	20	2	POF_3 , $MeF^{(e)}$	
mole ratios in the range 3:1– 1:1 gave the same results			WF ₅ OMe, PF ₆ ⁻ , W ₂ O ₂ F ₉ ^{-(f)} WOF ₄ ·OP(OMe) ₃ (?) ^(g)	
$WF_6(10.1) + (PhO)_3PO(7.5)$	20 in C	0·5 C ₆ F ₆	$WF_6 \cdot [OP(OPh)_3]_n^{(h)}$	Unchanged WF ₆ (9.0) recovered

^(a)By i.r., NMR[9] and mass spectroscopy. Molecular ion peak at m/e = 100.

^(b)By i.r. spectroscopy and molecular weight. Found 34.2; required 34.0.

(c)By ¹H, ¹⁹F, and ³¹P NMR spectroscopy [4].

^(d)By i.r. spectroscopy and molecular weight. Found 91.8; PF₃ requires 88.0, SiF₄ requires 104. ^(e)By i.r. spectroscopy.

^(f)By ¹H, ¹⁹F, and ³¹P NMR spectroscopy [3, 4, 10].

^(g)Tentatively identified from its NMR spectrum; $\delta(Me) = 4 \cdot 2$, $\delta(F) = 62$, $\delta(P) = 2 \text{ ppm}$; J(MeOP) = 11, J(FW) = 69, J(FP) = 4 Hz.

^(h)Calcd. for WF₆·12·80P(OPh)₃: C, 61·9; H, 4·3; F, 2·5; P, 8·9; W, 4·1. Found C, 60·3; H, 4·3; F, 2·4; P, 8·7; W, 4·1.

by analogy with $WOF_4 \cdot OP(OMe)_2Me$ (see Table 2). A separate experiment indicated that this species, MeF, and PF_6^- , are formed also from WF_3OMe and $(MeO)_3PO$. Although no direct evidence was obtained for the presence of the $(MeO)_4P^+$ cation[10] in these reactions a doublet at 3.90 ppm, J(MeOP) = 10 Hz. and a broad singlet at 0 ppm in the ¹H and ³¹P NMR spectra of the involatile mixture are assigned to both free $(MeO)_3PO$ and $(MeO)_4P^+$. Exchange between free and co-ordinated $(MeO)_3PO$ is unlikely due to the observation of $^{19}F_{-}^{31}P$ coupling in the ^{19}F signal assigned to $WOF_4 \cdot$ $OP(OMe)_3$. The formation of PF_6^- suggests that fluorination of the P=O group has occurred, possibly to give $(MeO)_2PF_3$ which exists both in the solid state and in solution as $[(MeO)_4P]^+[PF_6]^-[10]$. Fluorination of the P=O group in dimethyl phosphite is also suggested to account for the formation of PF_3 as PF_4H , which would be the initial product, readily decomposes to PF_3 and HF[11].

Exchange between F and PhO- groups is not observed in the WF₆, triphenyl phosphate system at 20°C, although a red solid is formed. Its analysis, ¹H and ¹⁹F NMR spectra in C₆F₆ (singlets at 6.70 and 163 ppm, half-height width = 90 Hz), and electronic spectrum in Me₄Si (high energy bands characteristic of (PhO)₃PO and a broad band at 27,300 cm⁻¹, $\epsilon_{molar} \sim 10^4$) indicate that a weak complex is formed whose colour is probably due to a charge transfer interaction[12].

- 9. G. S. Reddy and R. Schmutzler, Z. Naturforsch. 25B, 1199 (1970).
- 10. L. Kolditz, K. Lehmann, W. Wieker and A.-R. Grimmer, Z. anorg. allg. Chem. 360, 259 (1968).
- 11. R. Schmutzler, Adv. Fluorine Chem. 5, 31 (1965).
- H. J. Clase, A. M. Noble and J. M. Winfield, Spectrochim. Acta, 25A, 293 (1969); R. R. McLean, D. W. A. Sharp and J. M. Winfield, Chem. Comm. 452 (1970).

From these reactions it is apparent that WF_5OMe is decomposed both by strong Lewis acids and by Lewis bases, ionic species being formed when the base is capable of accepting Me⁺. Some evidence for the fluorination of P=O groups by WF₆ has also been obtained. The absence of exchange between WF₆ and (PhO)₃PO and its presumed absence in WF₆, transition metal alkoxide systems may be due to the inability of the RO- groups to co-ordinate to tungsten. A similar explanation has been advanced to explain why no reaction occurs between SiCl₄ and WF₆ even at 150°C, whereas halogen exchange is observed between Me₃SiCl and WF₆ at -30°[13].

Acknowledgement-We thank Dr. A. M. Noble, R. R. McLean, and G. Oates for their respective investigations of the dimethyl phosphite and transition metal alkoxide systems.

Chemistry Department The University Glasgow W2 Scotland D. W. WALKER J. M. WINFIELD

13. G. W. Fraser, C. J. W. Gibbs and R. D. Peacock, J. chem. Soc. A 1708 (1970).

J. inorg. nucl. Chem., 1972, Vol. 34, pp. 762-763. Pergamon Press. Printed in Great Britain

$Ba_3Y_2MoO_9$, a new molybdate with perovskite structure

(First received 14 June 1971; in revised form 2 July 1971)

INVESTIGATING the systems $MeO-Y_2O_3-MoO_3$, with Me = Ca, Sr, Ba, Mg, Zn or Cd, a new compound was found, viz. $Ba_3Y_2MoO_9$. This compound was prepared by heating an intimate mixture of luminescent grade $BaCO_3$, Y_2O_3 and MoO_3 (samples of 5g) for 2 hr at 1200°C in air; after the heating process the reaction product was ground, sieved and heated a second time for 2 hr at 1300°C.

The X-ray diffraction of the reaction product only showed the diffraction lines of a cubic perovskite with $a = 4.260 \pm 0.002$ Å. No superlattice lines were found, even after annealing at 1000°C; this is probably caused by the nearly equal scattering factors of the Y- and Mo-ions.

 $Ba_3Y_2MoO_9$ has a bright yellow body colour. Its diffuse reflection spectrum is given in Fig. 1, together with that of Y_4MoO_9 . The latter phase was recently described by Fournier *et al.*[1] and was

Fig. 1. Diffuse reflection spectra of $Ba_3Y_2MoO_9$ (curve 1), Y_4MoO_9 (curve 2), $BaMoO_4$ (curve 3) and Y_2MoO_6 (curve 4).

1. J. P. Fournier, J. Fournier and R. Kohlmuller, Bull. Soc. chim. Fr. 4-277 (1970).