G. Zinner und G. Isensee

Darstellung und Acylierungen von 1.1-Dialkyl-3-hydroxyharnstoffen¹⁾

Aus dem Institut für Pharmazeutische Chemie der Technischen Universität Braunschweig (Eingegangen am 4. Januar 1973)

Aus Hydroxylamin und den betreffenden Dialkylcarbomoylchloriden wurden 1.1-Dimethylund 1.1-Diäthyl-3-hydroxylamin sowie N.O-Bis(dimethylcarbamoyl)-hydroxylamin erhalten und in weitere Acylierungsreaktionen mit Isocyansäureestern, Chlorameisensäuremethylester und Säurechloriden eingesetzt.

Synthesis and Acylations of 1.1-Dialkyl-3-hydroxyureas 1)

The hitherto unknown 1.1-dimethyl- and 1.1-diethyl-3-hydroxyureas were prepared from hydroxylamine and dialkylcarbamoyl chlorides, and acylated with isocyanates, methyl chloroformate and acyl chlorides.

Versuche, Hydroxylamin durch Umsetzung mit Dimethyl- und Diäthylcarbamoylchlorid (1a und b) in die betreffenden 1.1-Dialkyl-3-hydroxyharnstoffe 4 überzuführen, sind nach der Literatur nicht erfolgreich verlaufen:

Hantzsch und Sauer²⁾ erhielten aus 1a und b nach Umsetzung im wäßrigen und im methanolischen Milieu nur ölige Produkte, die zwar die zu erwartende blaue Farbreaktion mit Eisen(III)-chlorid zeigten, sonst aber nicht identifiziert oder charakterisiert werden konnten. Hurd und Spence³⁾ arbeiteten mit 1b außerdem in Äthylacetat und in Benzol, kamen jedoch auch nur zu einem öligen Produkt.

Die Reindarstellung beider gesuchter Verbindungen 4a und b gelang uns durch Umsetzung der Carbamoylchloride 1a und b mit Hydroxylamin in Dioxan bei Gegenwart von Triäthylamin; es sind feste Substanzen mit den Schmp. $107-109^{\circ}$ (4a) bzw. $69-71^{\circ}$ (4b). Bei der Umsetzung zeigte sich 1a so reaktionsfähig, daß selbst bei Vorliegen der Reaktanten in äquimolarem Verhältnis unter weiterer Acylierung an der Hydroxylgruppe⁴) das N.O-biscarbamoylierte Hydroxylamin $2a^{5}$ gebildet wurde; 4a konnte dann aber bei Einsatz eines Überschusses an Hydroxylamin gewonnen werden.

^{1 56.} Mitt. über Hydroxylamin-Derivate; 55. Mitt.: G. Zinner und E.-U. Ketz, Synthesis 1973, 165.

² A. Hantzsch und A. Sauer, Liebigs Ann. Chem. 299, 67 (1898).

³ C.D. Hurd und L.U. Spence, J.Amer.chem.Soc. 49, 266 (1927).

⁴ Dies entspricht der Acylierungsweise der Säurechloride: G. Zinner, Arch. Pharmaz. 292, 329 (1959).

⁵ Entsprechende Verbindungen mit mono-substituierter Carbamoyl-Komponente am O-Atom lassen sich dagegen nicht auf direktem Wege herstellen, sondern nur über Schutzfunktionen: G. Zinner und M. Hitze, Arch.Pharmaz. 302, 788 (1969).

2a wurde mit Phenylisocyanat und 4a mit 2 Mol Äthyl- und Butylisocyanat zu den verschiedenartig-substituierten 3-Carbamoyloxy-biureten 3a, bzw. 5a und 6a umgesetzt⁶⁾. Mit 1 Mol Isocyanat ließen sich **4a** und **b** in die unsymmetrisch-substituierten 3-Hydroxybiurete 77) überführen, von denen die Derivate 7c und (ohne Isolierung) 7d mit Chlorameisensäuremethylester zu den in 2-Stellung dialkylcarbamoylierten 1.2.4-Oxadiazolidin-3,5-dionen 8 carbonyliert wurden⁸⁾. Neben 8c wurde dabei in etwa gleicher Ausbeute (um 40 %) das O-Acyl-Isomer 9c des 3-Hydroxybiuret-Derivats 7c erhalten; ausgehend von 7e und f wurden die entsprechenden O-Acyl-Derivate 9e und f als einzige Reaktionsprodukte, wenn auch nur in geringen Ausbeuten, isoliert. Im Gegensatz zu den 3-Hydroxybiureten 7 geben diese Substanzen keine Farbreaktionen mit Eisen(III)-chlorid; sie unterscheiden sich auch im IR-Spektrum durch die dort fehlende kurzwellige Bande eines "Urethan-Carbonyls" bei 1748 cm⁻¹. Durch direkte Reaktion der Hydroxyharnstoffe 4 mit Isocyansäureestern sind sie nicht zugänglich, da die zu 7 führende N-Acylierung immer bevorzugt ist und in solchen Fällen eine O-Acylierung ohne Schutz der NH-Gruppe nicht erreicht wird. Möglicherweise lief die zu 9 führende Reaktion über die Derivate des Ringsystems 8 und hydrolytische Herausspaltung des 3-ständigen Carbonyl-Ringgliedes, wenn die Reaktionsansätze wegen des zögernden Auskristallisierens wochenlang stehenblieben und aufgearbeitet wurden.

⁶ Über andere N.N.O-Tris(carbamoyl)-hydroxylamine s.: G. Zinner, R.-O. Weber und W. Ritter, Arch.Pharmaz. 298, 869 (1965); G. Zinner und R. Stoffel, Arch.Pharmaz. 302, 838 (1969).

⁷ Unsymmetrisch-substituierte 3-Hydroxybiurete wurden erstmals beschrieben von G. Zinner, R. Stoffel, M. Hitze und R.-O. Weber, Arch. Pharmaz. 302, 958 (1969).

⁸ Dieses Ringsystem wurde erstmals synthetisiert von G. Zinner, Naturwissenschaften 46, 14 (1959); in 2-Stellung mit mono-substituierter Carbamoyl-Komponente: G. Zinner und R.-O. Weber, Arch.Pharmaz. 298, 580 (1965); G. Zinner und M. Hitze, Arch.Pharmaz. 303, 139 (1970).

Acylierung von 4 mit Carbonsäurechloriden führte zu den O-Acyl-Derivaten 11; 4a wurde mit 4-Nitrobenzoylchlorid über 11f auch zum N.O-bisacylierten Derivat 12 umgesetzt. Mit dem gleichen Säurechlorid wurde aus 7f die Verbindung 10 erhalten.

Beschreibung der Versuche

Umsetzung von Hydroxylamin mit Dialkylcarbamoylchloriden

In 50 ml Dioxan löste man 10 mMol Hydroxylamin und 10 mMol Triäthylamin (= TÄA) und ließ 10 mMol Diäthylcarbamoylchlorid (1b) in 10 ml Dioxan zutropfen. Nach Abtrennen des TÄA-HCl und Entfernen des Lösungsmittels erhielt man in 68proz. Ausb. *1.1-Diäthyl-3-hydroxyharnstoff* (4b); Schmp. $69-71^{\circ}$ (Äther); IR (KBr) 1608 cm⁻¹; Blaufärbung mit FeCl₃.

In gleicher Weise erhielt man mit 10 mMol Dimethylcarbamoylchlorid (1a) in 81 proz. Ausb. (ber. auf 1a) N.O-Bis(dimethylcarbamoyl)-hydroxylamin (2a); Schmp. 101-103° (Äthanol u. Äther); IR (KBr) 1730 u. 1701 cm⁻¹; keine Farbreaktionen mit FeCl₃. Im Ansatz mit 20 mMol Hydroxylamin erhielt man mit 1a in 86 proz. Ausb. 1.1-Dimethyl-3-hydroxyharnstoff (4a); Schmp 107 - 109° (Äthanol u. Äther); IR (KBr) 1650 cm⁻¹; Blaufärbung mit FeCl₃.

- 2a: C₆H₁₃N₃O₃ (175,2) Ber.: C 41,13; H 7,48; N 23,98. Gef.: C 40,86; H 7,67; N 23,95.
- 4a: C₃H₈N₂O₂ (104,1) Ber.: C 34,61; H 7,74; N 26,90. Gef.: C 34,69; H 7,72; N 27,20.
- 4b: C₅ H₁₂ N₂ O₂ (132,2) Ber.: C 45,44; II 9,15; N 21,20. Gef.: C 45,63; H 9,03; N 21,16.

1.1-Dimethyl-3-dimethylcarbamoyloxy-5-phenyl-biuret (3a)

wurde aus je 10 mMol 2a und Phenylisocyanat durch etwa 100stdg. Rückflußerhitzen in 50 ml absol. Benzol in 72proz. Ausb. erhalten; Schmp. 122 – 124° (Äthanol u. Äther); IR (KBr) 1748, 1701 u. 1681 cm⁻¹.

1.1-Dimethyl-3-äthylcarbamoyloxy-5-äthyl-biuret (5a)

wurde aus 10 mMol 2a und 20 mMol Äthylisocyanat in 100 ml absol. Benzol durch Rückflußerhitzen (bis zum Verschwinden der Farbreaktion mit FeCl₃), Einengen i. Vak. und Zusatz von Äther in 81 proz. Ausb. erhalten. Schmp. 127 – 129° (Äthanol u. Äther); IR (KBr) 1761, 1689 u. 1667 cm⁻¹.

1.1-Dimethyl-3-butylcarbamoyloxy-5-butyl-hiuret (6a)

wurde auf gleiche Weise mit 20 mMol Butylisocyanat in 53proz. Ausb. erhalten. Schmp. 111 – 113° (Äthanol u. Äther); IR (KBr) 1761, 1689 u. 1667 cm⁻¹.

- 3a: C₁₃H₁₈N₄O₄(294,3) Ber.: C 53,05; H 6,16; N 19,04. Gef.: C 53,09; H 6,48; N 19,11.
- 5a: C₉H₁₈N₄O₄ (246,3) Ber.: C 43,89; H 7,36; N 22,75. Gef.: C 43,91; H 7,45; N 22,64.
- **6a:** $C_{13}H_{26}N_4O_4(302,4)$ Ber.: C 51,64; H 8,66; N 18,53. Gef.: C 52,32; H 8,76; N 18,37.

1.1.5-Trisubstituierte 3-Hydroxybiurete (7)

Je 10 mMol 4 und Isocyansäureester erhitzte man in 100 ml absol. Benzol zum Rückfluß, bis die Farbreaktion mit FeCl₃ zu intensiver Rotfärbung führte, engte i. Vak. ein und ließ auskristallisieren; man erhielt:

- aus 4b und Phenylisocyanat in 84proz. Ausb. 1.1-Diäthyl-5-phenyl-3-hydroxybiuret (7a), Schmp. 130 132° (Äthanol u. Äther), IR (KBr) 1718 u. 1637 cm⁻¹;
- aus 4b und Cyclohexylisocyanat in 90proz. Ausb. 1.1-Diäthyl-5-cyclohexyl-3-hydroxybiuret
 (7b), Schmp. 94 96° (Äther), IR (KBr) 1689 u. 1661 cm⁻¹;
- aus 4a und Phenylisocyanat in 60proz. Ausb. 1.1-Dimethyl-5-phenyl-3-hydroxybiuret (7c), Schmp. 138 140° (Äthanol u. Äther), IR (KBr) 1718 u. 1661 cm⁻¹.
- aus 4a und Cyclohexylisocyanat in 70proz. Ausb. 1.1-Dimethyl-5-cyclohexyl-3-hydroxy-biuret (7f), Schmp. 127-129° (Äthanol u. Äther), IR (KBr) 1701 u. 1647 cm⁻¹;
- 7a: C₁₂H₁₇N₃O₃ (251,3) Ber.: C 57,35; H 6,81; N 16,72. Gef.: C 57,69; H 6,81; N 16,41.
- 7b: $C_{12}H_{23}N_3O_3$ (257,3) Ber.: C 56,01; H 9,01; N 16,33. Gef.: C 56,16; H 9,23; N 16,57.
- 7c: C₁₀H₁₃N₃O₃ (223,3) Ber.: C 53,80; H 5,87; N 18,82. Gef.: C 53,80; H 5,84; N 18,21.
- 7f: C₁₀H₁₉N₃O₃ (229,3) Ber.: C 52,39; H 8,35; N 18,33. Gef.: C 52,17; H 8,13; N 18,21.

Umsetzung von 7 mit Chlorameisensäuremethylester (=CAM)

erfolgte im 10 mMol Ansatz in Benzol ohne Isolierung von 7 nach Zugabe von 12 mMol Triäthylamin (≈TÄA) durch Zutropfen von 12mMol CAM (in Benzol gelöst) und 30min. Nachrühren bei Raumtemp. Nach Abtrennen des TÄA-HCl und Einengen wurde zur Kristallisation gebracht; man isolierte:

- aus dem Ansatz von 7c 1) 2-Dimethylcarbamoyl-4-phenyl-1.2.4-oxadiazolidin-3.5-dion (8c) in 40proz. Ausb., Schmp. 123 125° (Äthanol u. Äther), IR (KBr) 1818, 1754 u. 1718 cm⁻¹;
 2) 1.1-Dimethyl-3-phenylcarbamoyloxy-harnstoff (9c) in 36proz. Ausb., Schmp. 128 130° (Äthanol u. Äther), IR (KBr) 1748, 1701 u. 1681 cm⁻¹;
- aus dem Ansatz von 7d (1.1-Dimethyl-5-äthyl-3-hydroxybiuret) in 45proz. Ausb. 2-Dimethyl-amino-4-äthyl-1.2.4-oxadiazolidin-3.5-dion (8d), Schmp. 104 106° (Äthanol), IR (KBr) 1818, 1739 u. 1718 cm⁻¹;
- aus dem Ansatz von 7e (1.1-Dimethyl-5-butyl-3-hydroxybiuret) in 20proz. Ausb. I.1-Dimethyl-3-butylcarbamoyloxy-harnstoff (9e), Schmp. 88 90° (Äthanol u. Äther), IR (KBr) 1760, 1718 u. 1672 cm⁻¹;
- aus dem Ansatz von 7f in 13proz. Ausb. 1.1-Dimethyl-3-cyclohexylcarbamoyloxy-harnstoff (9f), Schmp. 149 151° (Äthanol), IR (KBr) 1748, 1695 u. 1672 cm⁻¹.
- 8c: C₁₁H₁₁N₃O₄ (249,2) Ber.: C 53,01; H 4,45; N 16,86. Gef.: C 52,56; H 4,83; N 16,55.
- 8d: C₇H₁₁N₃O₄ (201,2) Ber.: C 41,79; H 5,51; N 20,89. Gef.: C 41,84; H 5,47; N 20,67.
- 9c: $C_{10}H_{13}N_3O_3$ (223,2) Ber.: C 53,80; H 5,87; N 18,82. Gef.: C 53,20; H 5,72; N 18,78.
- 9e: C₈H₁₇N₃O₃ (203,3) Ber.: C 47,28; H 8,43; N 20,68. Gef.: C 47,70; H 8,17; N 20,53.
- 9f: C₁₀H₁₉N₃O₃ (229,3) Ber.: C 52,39; H 8,35; N 18,33. Gef.: C 51,95; H 8,19; N 18,47.

Umsetzung von 7f mit 4-Nitrobenzoylchlorid

erfolgte im 10 mmol. Ansatz in Benzol ohne Isolierung von 7f nach Zugabe von 10 mMol Triäthylamin (=TÄA) durch Zutropfen von 10 mMol 4-Nitrobenzoylchlorid in 50 ml Benzol und 30min. Nachrühren. Nach Abtrennen des TÄA-HCl und Einengen wurde zur Kristallisation gebracht; man erhielt in 56proz. Ausb. 1.1-Dimethyl-5-cyclohexyl-3-(4-nitrobenzoyloxy)-biuret (10), Schmp. 111 – 113° (Äthanol u. Äther), schwach gelbgefärbte Kristalle, IR (KBr) 1748, 1718 u. 1689 cm⁻¹.

C₁₇H₂₃N₄O₆ (378,4) Ber.: C 53,96; H 6,12; N 14,81. Gef.: C 54,13; H 5,79; N 14,91.

Umsetzung von 4 mit Säurechloriden zu 11 a-g und zu 12:

In eine Lösung von je 10 mMol 4 und Triäthylamin (=TÄA) in 100 ml Dioxan tropfte man 10 mMol des betreffenden Säurechlorids in 50 ml Benzol, rührte 30 Min. nach, trennte vom TÄA-HCl ab und brachte nach Einengen zur Kristallisation; man isolierte:

- aus 4a und Propionylchlorid in 56proz. Ausb. 1.1-Dimethyl-3-propionyloxy-harnstoff (11a),
 Schmp. 70 72° (Äther), IR (KBr) 1779 u. 1672 cm⁻¹;
- aus 4a und Benzoylchlorid in 39proz. Ausb. 1.1-Dimethyl-3-benzoyloxy-harnstoff (11b), Schmp. 107 109° (Äthanol u. Äther), IR (KBr) 1761 u. 1661 cm⁻¹;
- aus 4b und Benzoylchlorid in 21proz. Ausb. 1.1-Diäthyl-3-benzoyloxy-harnstoff (11c), Schmp. 78 80° (Äthanol u. Äther), IR (KBr) 1748 u. 1658 cm⁻¹;
- aus 4a und 4-Chlorbenzoylchlorid in 62proz. Ausb. 1.1-Dimethyl-3-(4-chlorbenzoyloxy)-harnstoff (11d), Schmp. 154 156° (Äthanol), IR (KBr) 1748 u. 1658 cm⁻¹;
- aus 4b und 4-Chlorbenzoylchlorid in 56proz. Ausb. 1.1-Diäthyl-3-(4-chlorbenzoyloxy)-harnstoff (11e), Schmp. 114 116° (Äthanol u. Äther), IR (KBr) 1748 u. 1650 cm⁻¹;

- aus 4a und 4-Nitrobenzoylchlorid in 87proz. Ausb. 1.1-Dimethyl-3-(4-nitrobenzoyloxy)-harn-stoff (11f), Schmp. 156-158° (Benzol), IR (KBr) 1761 u. 1650 cm⁻¹;
- aus 4b und 4-Nitrobenzoylchlorid in 43proz. Ausb. 1.1-Diäthyl-3-(4-nitrobenzoyloxy)-harn-stoff (11g), Schmp. 101-103° (Äthanol), IR (KBr) 1761 u. 1659 cm⁻¹.
- In gleicher Weise wurden 10 mMol 4a in Gegenwart von 20 mMol TÄA mit 20 mMol 4-Nitrobenzoylchlorid in 45proz. Ausb. zu *N-Dimethylcarbamoyl-N.O-bis(4-nitrobenzoyl)-hydroxyl-amin* (12) umgesetzt; Schmp. 172-174° (Benzol u. Äther), IR (KBr) 1770, 1709 u. 1701 cm⁻¹.
- 11a: $C_6H_{12}N_2O_3$ (160,2) Ber.: C 44,99; H 7,55; N 17,49. Gef.: C 44,83; H 7,59; N 17,51.
- 11b: C₁₀H₁₂N₂O₃ (208,2) Ber.: C 57,68; H 5,80; N 13,46. Gef.: C 57,65, H 5,47; N 13,67.
- 11c: C₁₂H₁₆N₂O₃ (236,3) Ber.: C 61,00; H 6,82; N 11,86. Gef.: C 60,77; H 6,70; N 11,87.
- 11d: C₁₀H₁₁ClN₂O₃ (242,7) Ber.: C 49,49; H 4,56; N 11,55; Cl 14,61. Gef.: C 49,65; H 4,66; N 11,63; Cl 15,28.
- 11e: C₁₂H₁₅ClN₂O₃ (270,7) Ber.: C 53,24; H 5,58; N 10,32; Cl 13,10, Gef.: C 53,44; H 5,60; N 10,41; Cl 13,38.
- 11f: C₁₀H₁₁N₃O₅ (253,2) Ber.: C 47,43; H 4,38; N 16,60, Gef.: C 47,15; H 4,17; N 16,40.
- 11g: $C_{12}H_{15}N_3O_5$ (281,3) Ber.: C 51,24; H 5,25; N 14,94. Gef.: C 51,65; H 5,42; N 14,62.
- 12: C₁₇H₁₄N₄O₈ (402,3) Ber.: C 50,75; H 3,50; N 13,92. Gef.: C 50,56; H 3,59; N 14,12.

Anschrift: Prof.Dr. G. Zinner, 33 Braunschweig, Beethovenstr. 55

[Ph 272]

F. Eiden und W. Luft

Chromonyl-(3)-methanol- und Bischromonyl-(3)-methan-Derivate

46. Mitt. über Untersuchungen an 4-Pyronen¹⁾

Aus dem Institut für Pharmazie und Lebensmittelchemie der Universität München und dem Pharmazeutischen Institut der Freien Universität Berlin (Eingegangen am 24. Januar 1973)

Aus o-Hydroxy- ω formylacetophenon (2) und Aldehyden entstehen Chromonyl-(3)-methanoloder Bischromonyl-(3)-methan-Derivate (1, 3). Durch Hydrolyse von 3 können Bissalicyloyl-propan-Derivate (5) erhalten werden, die sich durch Reaktion mit Dimethylformamid-dimethylacetal wieder zu 3 umsetzen lassen.

Chromonyl-(3)-methanol- and Bischromonyl-(3)-methane-derivatives

Chromonyl-(3)-methanol- and bischromonyl-(3)-methane-derivatives (1, 3) were prepared from o-hydroxy- ω -formylacetophenone (2) and aldehydes. Hydrolysis of 3 leads to the bissalicyloyl-propane-derivatives (5), which react with dimethylformamide-dimethylacetal to 3.

^{1 45.} Mitt. F. Eiden und G. Bachmann, Arch. Pharmaz. 306, 876 (1973).