cephem-4-carboxylic Acid (20d).—19d (1.265 g, 2.99 mmoles) was reduced with PCl₃ (2.1 ml, 24.0 mmoles) in DMF (21 ml) at -35° (45 sec) and worked up as described above. The acidic fraction (439 mg, 36%) in EtOH was converted into the Na salt with NaOAc (88.3 mg) in MeOH. The pptd Na salt of 20d was recrystd from MeOH-EtOH: ir (mull) 1765, 1730, 1655, 1605, 1530 cm⁻¹; uv max (MeOH) 295 nm (ϵ 11,400); nmr (DMSO- d_{δ}) δ 1.98 (3 H, s), 3.78 (2 H, s), 4.85 (1 H, d, J = 12 Hz), 5.07 (1 H, d, J = 5 Hz), 5.21 (1 H, d, J = 12 Hz), 5.27 (1 H, s), 5.47 (1 H, s), 5.57 (1 H, d/d, J = 5 Hz, J = 8 Hz).¹⁵ ## Chemistry of Cephalosporin Antibiotics. 24. 2-Thiomethyl- and 2-Thiomethylenecephalosporins G. V. Kaiser, * C. W. Ashbrook, T. Goodson, I. G. Wright, and E. M. Van Heyningen The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206 Received September 30, 1970 2-Methylenecephalosporin sulfoxide trichloroethyl esters, 1, were treated with a variety of thiols to give the corresponding 2-thiomethyl adducts 2. These compounds are stable, but lose the elements of H₂O in HOAc-NaOAc to give 2-thiomethylene esters 3. Deesterification and sulfoxide reduction of compound type 2 and deesterification of 3 gave the corresponding 2-thiomethyl- and 2-thiomethylenecephalosporins. We have found that esters of 2-methylenecephalosporin sulfoxides1 (1) react rapidly with thiols at room temp to form 1:1 adducts (2) in high yields. The addition is general in that a variety of alkyl, aryl, alkaryl, and heterocyclic thiols add to the 2-exomethylene function. Although the adducts are generally stable, they lose the elements of H₂O in the presence of AcOH to give 2-thiomethylenecephalosporin esters 3. The unsaturated esters can be prepared directly by dissolving molar equiv of thiol and 2-methylene sulfoxide (1) in AcOH containing approximately a molar equiv of NaOAc. The isolated dehydration products (3) were not mixtures of cis and trans isomers but were single compounds in each case. In two cases we used nuclear Overhauser effects (NOE)2 to determine the configuration of the isolated product. If the compound were isomer 3 ($R_2 = H$), the nmr signal intensity for the vinvl proton should increase when the 3-Me is irradiated, due to the proximity of the two groups. However, if the compound were isomer 4 $(R_2 = H)$, no such signal intensity increase for the vinyl proton would be expected. We determined the NOE's for the cases listed in Table I. Both examples of 2-thiomethylene TABLE I NUCLEAR OVERHAUSER EFFECT RESULTS | Compd | Signal increase
for vinyl proton | | | |---|-------------------------------------|--|--| | $3h (R_1 = PhO; R_2 = H;$ | +29% | | | | R_3 = pyrimidinyl)
$3k (R_1 = PhO; R_2 = H; R_3 = N$ -methyltetrazolyl | +31% | | | | 5 | На, 0%; Нь, 8% | | | compounds exhibit large increases in vinyl proton intensity. This strongly suggests that the compounds we isolated are substituted as in 3-not as in 4. The NOE determination on the 2-CH₂ compound¹ (5) was instructive. Irradiation of the 3-Me group did not affect the Ha signal, but the Hb signal intensity increased 8%. The increase in signal intensity of H_b (2) (a) We are grateful to Dr. P. V. DeMarco and Mr. L. A. Spangle of The Lilly Research Laboratories for the NOE measurements and helpful discussions concerning their interpretation. (b) F. A. L. Anet and A. J. R. Bourn, J. Amer. Chem. Soc., 87, 5250 (1965). (c) R. A. Bell and J. K. Saunders, Can. J. Chem., 46, 3421 (1968). ⁽¹⁾ I. G. Wright, C. W. Ashbrook, T. Goodson, G. V. Kaiser, and E. M. Van Heyningen, J. Med. Chem., 14, 420 (1971). is smaller than that seen in the case of the 2-thiomethylene compounds 3 because H_a provides a much more effective relaxation pathway than the protons on the 3-Me group. The dehydration reaction, $2 \rightarrow 3$, resembles the Pummerer reaction which involves the reduction of a sulfonium S with oxidation of the α -C.³ However, this dehydration did not proceed smoothly under the normal conditions for a Pummerer reaction—Ac₂O in refluxing benzene. We suggest that the reaction proceeds according to Scheme I. The 2-thiomethyl sulfoxide (2) in AcOH-NaOAc gives an ylide intermediate, which undergoes acid-catalyzed elimination of OH. The resulting S-stabilized carbonium ion loses a proton to yield 3. The 7-acyl side chain can be removed from 3 to yield the 2-thiomethylene amino ester.4 The amino esters can then be reacylated with other groups to generate new cephalosporin esters. For example, 3a ($R_1 =$ PhO; $R_2 = H$; $R_3 = 4$ -BrC₆H₄) was cleaved to the amino ester 6, which was treated with phenylmercaptoacetyl chloride to give 3i ($R_1 = PhS$; $R_2 = H$; $R_3 =$ $4-BrC_6H_4$). 2-thiomethylenecephalosporin trichloroethyl esters 3 were converted into the corresponding cephalosporanic acids 7 with Zn dust and AcOH.5 The 2-thiomethylcephalosporin sulfoxide esters (2) are frequently mixtures of C-2 epimers if the reactions are run at room temp. However, when the reagent thiol is added at -80° only one epimer is obtained; to this we have assigned the α configuration by analogy with the corresponding 2-Me compounds.1 Treatment of α -2 (R₁ = 2-thienyl; R₂ = AcO; R₃ = 4-BrC₆H₄) with a variety of sulfoxide reducing reagents⁶ (PCl₃; SnCl₂-AcCl; KI-AcCl) resulted in a mixture of sulfide epimers, α - and β -8 (R₁ = 2-thienvl; R₂ = AcO; R₃ = 4-BrC₆H₄). We were unable to separate these; silica gel chromatography converted the mixture into the Δ^2 isomer 9 (R₁ = 2-thienyl; R₂ = AcO; R₃ = 4-Br- C_6H_4). R_1 , 2-thienyl; R_2 , AcO; R_3 , 4-BrC₈H₄ Ester cleavage of 9 with Zn dust and AcOH gave the Δ^2 -cephalosporanic acid 10 (R₁ = 2-thienyl; R₂ = AcO; $R_3 = 4$ - BrC_6H_4), which was inactive. Using an alternate route, the sulfoxide α -2 (R₁ = 2-thienyl; R₂ = AcO; R₃ = 4-BrC₆H₄) was first deesterified with Zn and AcOH. The result was a single acid epimer, α -11 (R₁ = 2-thienyl; R₂ = AcO; R₃ = 4-BrC₆H₄). However, when this sulfoxide acid was subjected to the reduction conditions, an epimeric mixture of antimicrobials α - and β -12 (R₁ = 2-thienyl; $R_2 = AcO$; $R_3 = 4-BrC_6H_4$) was obtained. The new cephalosporins were all active against penicillin-resistant Staphylococcus aureus (Table II), but no significant Gram-negative activity was noted. Serum binding is a severe problem with these compounds. When the in vitro Gram-positive tests are done in the presence of 25% human serum, the activities are greatly reduced (MIC values $> 50 \,\mu\text{g/ml}$). (6) G. V. Kaiser, R. D. G. Cooper, R. E. Koehler, C. F. Murphy, J. A. Webber, I. G. Wright, and E. M. Van Heyningen, J. Org. Chem., 35, 2430 (1970). ⁽³⁾ C. R. Johnson and W. G. Phillips, J. Amer. Chem. Soc., 91, 682 (1969). (4) R. R. Chauvette, P. A. Pennington, C. W. Ryan, R. D. G. Cooper, F. L. Jose, I. G. Wright, E. M. Van Heyningen, and G. W. Huffman, J. Org. Chem., in press. ⁽⁵⁾ R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen J. Amer. Chem. Soc., 88, 852 (1966). Table II In Vitro Activity of 2-Thiomethyl- and 2-Thiomethylenecephalosporins against Penicillin G Resistant S. aureus^{a,b} | Compd | R_1 | \mathbf{R}_2 | R_3 | \mathbf{V}_{30} | $\mathbf{V}_{\mathfrak{z}_2}$ | V_{84} | |--------------------------|-----------|----------------|----------------------------------------------------|-------------------|-------------------------------|----------| | 7a | PhO | H | 4-BrC ₆ H ₄ | 12.4 | 10.4 | 10.1 | | 7b | PhO | H | Ph | 8.2 | 12.8 | 8.8 | | 7e | PhO | H | $PhCH_2$ | 8.7 | 9.9 | 8.6 | | 7d | 2-Thienyl | AcO | $PhCH_2$ | 1.0 | 1.0 | 1.2 | | 7e | 2-Thienyl | AcO | 4-ClC ₆ H ₄ | 0.4 | 0.5 | 0.5 | | 7 f | PhO | H | CH_3 | 7.7 | 9.1 | 9.2 | | 7g | PhO | H | CH_3CH_2 | 4.8 | 5.9 | 1.4 | | 7h | PhO | H | Pyrimidinyl | 5.2 | 8.7 | 8.6 | | 7 i | PhO | H | 3-CH ₂ OCOC ₆ H ₄ | 1.9 | 7.7 | 7.4 | | 7j | PhS | Н | 4-BrC ₆ H ₄ | 2.8 | 3.1 | 5.8 | | α and β -12 | 2-Thienyl | AcO | 4-BrC ₆ H ₄ | 0.6 | 0.6 | 0.6 | a Test by gradient plate procedure, MIC in $\mu {\rm g/ml.}$ b We thank Dr. John Ott and his associates of the Lilly Research Laboratories for determining these values. ## Experimental Section⁷ The following are specific representative procedures used to prep the compounds in this study. 2,2,2-Trichloroethyl 2-(4-Bromophenyl)thiomethyl-3-methyl-7phenoxyacetamido-3-cephem-4-carboxylate 1-Oxide (2, R_1 = PhO; $\mathbf{R}_2 = \mathbf{H}$; $\mathbf{R}_3 = 4 - \mathbf{BrC}_6 \mathbf{H}_4$).—2,2,2-Trichloroethyl 3-methyl-2-methylene-7-phenoxyacetamido-3-cephem-4-carboxylate 1-oxide¹ (507 mg, 1.0 mmole) and 4-bromothiophenol (189 mg, 1.0 mmole) were dissolved in 100 ml of CH₂Cl₂. The soln was stirred for 2 hr at room temp and then evapd to dryness in vacuo. The crude solid material was recrystd from hot i-PrOH to give 605 mg (87%) of the 1:1 adduct: mp 148-149°; ir (CHCl₃) 3350, 1790, 1730, 1700 cm⁻¹; uv max (EtOH) 253 m μ (ϵ 15,000), 313 (4000); nmr (CDCl₃) δ 2.12 (s, 3 H), $2.80 \, (d/d, 1 \, H, J = 9 \, Hz, J = 15 \, Hz), 3.30 \, (d/d, 1 \, H, J = 4.5)$ Hz, J = 15 Hz), 3.71 (d/d, 1 H, J = 4.5 Hz, J = 9 Hz), 4.58 (s, 2 H), 4.72 (d, 1 H, J = 5 Hz), 4.86 (d, 1 H, J = 12 Hz), 5.01 (d, 1 H, J = 12 Hz), 6.33 (d/d, 1 H, J = 5 Hz, J = 10 Hz),6.9-7.7 (m, 9 H), 7.89 (d, 1 H, J = 10 Hz). Anal. (C₂₅H₂₂-BrCl₃N₂O₆S₂) C, H, Br, Cl, N, S. 2-(4-Bromophenyl)thiomethylene-3-2,2,2-Trichloroethyl methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (3a, R₁ = PhO; $\mathbf{R}_2 = \mathbf{H}$; $\mathbf{R}_3 = \mathbf{4}\text{-BrC}_6\mathbf{H}_4$).—2,2,2-Trichloroethyl 2-(4-bromophenyl)thiomethyl-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate 1-oxide (3.34 g, 4.80 mmoles) was dissolved in 150 ml of AcOH. NaOAc (500 mg, 6.1 mmoles) was added, and the resulting soln was stirred for 74 hr at room temp. The AcOH was removed in vacuo, and the residue was taken up in 150 ml of EtOAc. The org layer was thoroughly washed with H₂O and dried (MgSO₄). Removal of the solvent yielded 3.20 g (93%) of crude product, which was purified by column chromatography (Florisil support eluting with 20% EtOAc, 80% CH₂Cl₂). The chromatographed material (60% recovery) was recrystd from hot i-PrOH: mp 158-160°; ir (CHCl₃) 3400, 3000, 1785, 1745, 1695 cm⁻¹; uv max (EtOH) 272 m μ (ϵ 5000), 363 (10,000); nmr (CDCl₃) δ 2.32 (s, 3 H), 4.58 (s, 2 H), 4.77 (d, 1 H, J = 13 Hz), 5.07 (d, 1 H, J = 13 Hz), 5.18 (d, 1 H, J = 4 Hz), 5.96 (d/d, 1 H, J = 4 Hz, J = 10 Hz), 6.8-7.7 (m, 11 H). Anal. $(C_{25}H_{20}BrCl_3N_2O_5S_2)$ C, H, Br, Cl, N, S. 2,2,2-Trichloroethyl 2-Ethylthiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (3g, $R_1 = PhO$; R_2 = H; R_3 = Et).—2,2,2-Trichloroethyl 2-methylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate 1-oxide (5.0 g, 9.8 mmoles) was dissolved in 75 ml of AcOH and 30 ml of ethanethiol. The soln was stirred overnight at 45° and then evapd to dryness in vacuo. The residue was taken up in hot i-PrOH and allowed to cryst. The crude product was recrystd from i-PrOH to give 1.9 g (37%) of pure product: mp 155-156°.7 Anal. (C₂₁H₂₁-Cl₃N₂O₅S₂) C, H, Cl, N, S. 2,2,2-Trichloroethyl 2-(1-Methyl-1H-tetrazol-5-yl)thiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (3k, $R_1 = PhO$; $R_2 = H$; $R_3 = N$ -Methyltetrazolyl).—1 ($R_1 =$ PhO; R₂ = H) was treated with 1-methyl-5-thiotetrazole in AcOH-NaOAc as above to give the product: mp 198-200°; ir (CHCl₃) 3300, 1790, 1740, 1695 cm⁻¹; uv max (EtOH) 342 m μ (\$\inp 21,000); nmr (CDCl₃) \$\delta 2.41 (s, 3 H), 4.00 (s, 3 H), 4.60 (s, 2 H), 4.80 (d, 1 H, J = 12 Hz), 5.05 (d, 1 H, J = 12 Hz), 5.26 (d, 1 H, J = 4 Hz), 5.99 (d/d, 1 H, J = 4 Hz, J = 8 Hz), 6.9-7.6 (m, 6 H), 7.73 (s, 1 H). Anal. (C₂₁H₁₉Cl₃N₆O₅S₂) C, H, Cl, 2,2,2-Trichloroethyl 2-(2-Pyrimidinyl)thiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (3h, R₁ = PhO; $R_2 = H$; $R_3 = Pyrimidinyl$).—1 ($R_1 = PhO$; $R_2 = H$) was treated with 2-mercaptopyrimidine in AcOH-NaOAc to give the desired product as a viscous oil: ir (KBr) 3400, 1770, 1720, 1680 cm⁻¹; uv max (EtOH) 270 m μ (ϵ 8000), 352 (19,000); nmr (CDCl₃) δ 2.50 (s, 3 H), 4.63 (s, 2 H), 4.86 (d, 1 H, J = 12 Hz), 5.06 (d, 1 H, J = 12 Hz), 5.24 (d, 1 H, J = 5 Hz), 6.00 (d/d, 1 H, J = 5 Hz, J = 9 Hz, 6.9-7.6 (m, 7 H), 8.30 (s, 1 H), 8.62 $\begin{array}{l} (\mathrm{d}, 2~\mathrm{H}, J=5~\mathrm{Hz}), 9.03~(\mathrm{d}, 1~\mathrm{H}, J=9~\mathrm{Hz}). \\ \mathbf{2,2,2-Trichloroethyl} \qquad \qquad \mathbf{7-Amino-2-(4-bromophenyl)} \\ \end{array}$ lene-3-methyl-3-cephem-4-carboxylate, Tosylate Salt (6).-2,2,2-Trichloroethyl 2-(4-bromophenyl)thiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (3.12 g, 4.6 mmoles) was dissolved in 150 ml of C6H6 containing pyridine (540 mg, 6.8 mmoles). The soln was placed in a H_2O bath at 65°, and PCl_5 (1.40 g, 6.8 mmoles) was added. The mixt was stirred under N₂ for 2.5 hr at 65°. After cooling to room temp, the flask contents were evapd to dryness in vacuo. Anhyd MeOH (250 ml) was added, and the soln was stirred at room temp overnight. The MeOH was removed in vacuo, and the residue was dissolved with 50 ml of H₂O and 50 ml of THF and stirred for 15 min at room temp. The THF was removed in vacuo. EtOAc (100 ml) was added to the residue, and the pH of the resulting slurry was adjusted to 6.5. The org layer was washed with H₂O and dried (MgSO₄). p-TsOH·H₂O (875 mg, 4.6 mmoles), dissolved in 25 ml of EtOAc, was added to the soln; and 2.10 g (66%) of the amine salt pptd: mp 179-182°.7 2,2,2-Trichloroethyl 2-(4-Bromophenyl)thiomethylene-3-methyl-7-phenylmercaptoacetamido-3-cephem-4-carboxylate (3j, $R_1 = PhS$; $R_2 = H$; $R_3 = 4-BrC_6H_4$).—2,2,2-Trichloroethyl 2-(4-bromophenyl)thiomethylene-3-methyl-7-amino-3-cephem-4-carboxylate, tosylate salt (2.10 g, 2.94 mmoles) was suspended in a slurry of 50 ml of EtOAc and 50 ml of H_2O . The pH was adjusted to 7, liberating the free amine. The EtOAc layer was washed with H2O and dried (MgSO4). Removal of solvent in vacuo gave the amine as a yellow oil. The oil was dissolved in 50 ml of dry Me₂CO. Then urea (354 mg, 5.88 mmoles) was added. The resulting suspension was stirred at room temp while phenylmercaptoacetyl chloride (546 mg, 2.94 mmoles) in 25 ml of dry Me₂CO was added dropwise over a period of 15 min. Stirring was contd for an addl 30 min. By this time all the urea had dissolved. The Me₂CO was removed in vacuo; the residue was dissolved in EtOAc and washed with 5% aq HCl, satd aq NaHCO3, and then with H2O. After drying (MgSO₄), the EtOAc soln was evapd to dryness to give the product (1.90 g, 93%) as a viscous oil which readily crystd from hot i-PrOH: mp $131-132^{\circ}$. Anal. (C₂₅H₂₀BrCl₃N₂O₄S₃) C, H, N, S. 2-(4-Bromophenyl)thiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylic Acid (7a, $R_1 = PhO$; $R_2 = H$; R₃ = 4-BrC₈H₄).—2,2,2-Trichloroethyl 2-(4-bromophenylthiomethylene)-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylate (950 mg, 1.40 mmoles) was dissolved in 15 ml of DMF. AcOH (3.0 ml) was added, and the soln was cooled to 0°. Zn dust (975 mg, 15.0 mmoles) was added, and the resulting mixt was stirred in an ice-H₂O bath for 1.5 hr. The Zn was filtered, and the soln was poured into a slurry of $100\,\mathrm{ml}$ of EtOAc and 100 ml of H₂O. The org layer was sepd and washed twice with 100-ml portions of H_2O . It was then stirred with 100 ml of H_2O , and the pH was adjusted to 8. The aq layer was sepd and combined with 100 ml of EtOAc, and the pH was adjusted to 3. The EtOAc layer was sepd, washed with H₂O, and dried (MgSO₄). Removal of the solvent in vacuo yielded 570 mg (74%) of the acid, which was recrystd from hot i-PrOH: mp 196-197°; ir (mull) 3240, 1780, 1725, 1665 cm $^{-1}$; uv max (EtOH) 272 mµ (ϵ 8000), 344 (21,000); nmr (CDCl₃ plus DMSO-d₆) δ 2.27 (s, 3 H), 4.58 (s, 2 H), 5.13 (d, 1 H, J=4.5 Hz), 5.93 (d/d, 1 H, $J=4.5~{\rm Hz},\ J=9~{\rm Hz}),\ 6.9-7.7~{\rm (m,\ 12\ H)}.\ Anal.\ (C_{23}{\rm H}_{19}-{\rm BrN}_2{\rm O}_5{\rm S}_2)~{\rm C,\ H,\ Br,\ N,\ S.}$ 3-Methyl-2-phenylthiomethylene-7-phenoxyacetamido-3- ⁽⁷⁾ Melting points are uncorrected. Nmr spectra were recorded for all of the compounds on a Varian HA-100 spectrometer, but only spectra necessary for structure identification were included in the manuscript. The same policy was used for ir and uv spectra. Elemental analyses were determined by the microanalytical group of the Lilly Research Laboratories. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within ±0.4%. cephem-4-carboxylic acid (7b, $R_1 = PhO$; $R_2 = H$; $R_3 = Ph$) had mp 177-178°. Anal. (C₂₃H₂₀N₂O₅S₂) C, H, N, S. 2-Benzylthiomethylene-3-methyl-7-phenoxyacetamido-3cephem-4-carboxylic acid (7c, $R_1 = PhO$; $R_2 = H$; $R_3 = PhCH_2$) had mp 180-182°.7 3-Acetoxymethyl-2-benzylthiomethylene-7-(2-thienyl)acetamido-3-cephem-4-carboxylic acid (7d, $R_1 = 2$ -thienyl; R_2 OAc; $R_3 = PhCH_2$) had mp 144-145°. Anal. ($C_{24}H_{22}$ -N₂O₆S₃) C, H, N, S. 3-Acetoxymethyl-2-(4-chlorophenyl)thiomethylene-7-(2-thienyl)acetamido-3-cephem-4-carboxylic acid (7c, $R_1=2$ -thienyl; $R_2 = OAc$; $R_3 = 4-ClC_6H_4$) had mp 220-222°. Anal. (C₂₃-H₁₉ClN₂O₆S₃) C, H, Cl, N, S. 2-Methylthiomethylene-3-methyl-7-phenoxyacetamido-3cephem-4-carboxylic acid (7f, $R_1 = PhO$; $R_2 = H$; $R_3 = CH_3$) had mp 198-199°.7 Anal. (C₁₈H₁₈N₂O₅S₂) C, H, N, S. 2-Ethylthiomethylene-3-methyl-7-phenoxyacetamido-3cephem-4-carboxylic acid (7g, $R_1 = PhO$; $R_2 = H$; $R_3 = Et$) had mp 186-187°. Anal. (C₁₉H₂₀N₂O₅S₂) C, H, N, S. 3-Methyl-2-pyrimidinylthiomethylene-7-phenoxyacetamido-3cephem-4-carboxylic acid (7h, $R_1 = PhO$; $R_2 = H$; $R_3 = 2$ pyrimidinyl) had mp 237-238°. Anal. (C₂₁H₁₈N₄O₅S₂) C, H, N, 2-(3-Carbomethoxyphenyl)thiomethylene-3-methyl-7-phenoxyacetamido-3-cephem-4-carboxylic acid (7i, $R_1 = PhO$; $R_2 =$ H; $R_3 = 3-CH_3OCOC_6H_4$) had mp $206-208^{\circ,7}$ Anal. (C₂₅- $H_{22}N_2O_7S_2)$ C, H, N, S. 2-(4-Bromophenyl)thiomethylene-3-methyl-7-phenylmercaptoacetamido-3-cephem-4-carboxylic acid (7j, $R_1 = PhS$; $R_2 =$ H; R₃ = 4-BrC₆H₄) had mp 203-205°.⁷ Anal (C₂₃H₁₉BrN₂-O₄S₃) C, H, N. 2,2,2-Trichloroethyl 3-Acetoxymethyl- α -2-(4-bromophenyl)- thiomethyl-7-(2-thienyl)acetamido-3-cephem-4-carboxylate Oxide $(\alpha$ -2, $\hat{R}_1 = 2$ -Thienyl; $\hat{R}_2 = AcO$; $\hat{R}_3 = 4$ -BrC₆H₄).—1 $(\hat{R}_1 = 2$ -thienyl; $\hat{R}_2 = AcO$) (10.0 g, 18.0 mmoles) was dissolved in 500 ml of CH₂Cl₂ and cooled to -80°. 4-Bromophenylmercaptan (3.4 g, 18.0 mmoles) in 100 ml of CH2Cl2 was added dropwise over a period of 30 min. Stirring was contd for 1 hr while the temp was gradually raised to -15° . Then the soln was concd in vacuo and crystd from hot i-PrOH to give 11.2 g (83%) of a single epimer: mp 150-151°; ir (CHCl₃) 3290, 1800, 1735, 1682 cm⁻¹; uv max (EtOH) 234 m μ (ϵ 18,000), 274 (11,-000), 318 (3000); nmr (CDCl₃) δ 1.97 (s, 3 H), 2.73 (d/d, 1 H, J=15 Hz, J=9.5 Hz), 3.43 (d/d, 1 H, J=15 Hz, J4.5 Hz), 3.85 (s, 2 H), 3.99 (d/d, 1 H, J = 9.5 Hz, J = 4.5 Hz), 4.69 (d, 1 H, J = 5 Hz), 4.76 (d, 1 H, J = 14 Hz), 4.82 (d, 1 H, J = 11.5 Hz), 5.03 (d, 1 H, J = 11.5 Hz), 5.10 (d, 1 H, J = 14Hz), 6.19 (d/d, 1 H, J = 5 Hz, J = 9 Hz), 6.8-7.6 (m, 8 H). Anal. (C₂₅H₂₂BrCl₃N₂O₇S₃) C, H, N, S. 2,2,2-Trichloroethyl 3-Acetoxymethyl-2-(4-bromophenyl)thiomethyl-7-(2-thienyl)acetamido-2-cephem-4-carboxylate (9, R₁ = 2-Thienyl; R_2 = AcO; R_3 = 4-BrC₆H₄).— α -2 (R_1 = 2-thienyl; R_2 = AcO; R_3 = 4-BrC₆H₄) (8.0 g, 10.1 mmoles) was added to a chilled soln of 25 ml of DMF (-20°). Then 2 ml of PCl₃ was added, and the soln was allowed to warm to -10° . At this time, 3 more ml of PCl3 was added and stirred until the soln warmed to $+5^{\circ}$. Then it was poured into 300 ml of ice-cold satd NaCl soln and extd 5 times with 80 ml of CH2Cl2. The combined exts were washed with H₂O, dried (MgSO₄), and evapd in vacuo to give 5.3 g (68%) of reduced material, α - and β -8, as a glass. Tlc using silica gel plates and C₆H₆-EtOAc (2:1) as an eluent showed two spots which were almost superimposible. The nmr of the glass confirmed the presence of two reduced materials in a 7:2 ratio. Elution chromatography of α - and β -8, using silica gel and C₆H₆-EtOAc, gave a new, faster running material 9 (R_f 0.85 in 7:3 C₆H₆-EtOAc) which crystd from i-PrOH: mp 149-150°; uv max (EtOH) 233 m μ (ϵ 16,000), 256 (9000); ir (CHCl₃) 3280, 1780, 1740, 1680 cm⁻¹; nmr (CDCl₃ plus DMSO- d_6) δ 2.01 (s, 3 H), 3.58 (d, 1 H, J=14 Hz), 3.82 (s, 2 H), 4.01 (d, 1 H, J=14 Hz), 4.45 (d, 1 H, J=13 Hz), 4.77 (d, 1 H, J = 13 Hz), 4.82 (s, 2 H), 5.24 (s, 1 H), 5.30 (d, 1 H, J = 4 Hz), 5.55 (d/d, 1 H, J = 4 Hz, J = 9 Hz), 6.9-7.6(m, 8 H). Anal. $(C_{25}H_{22}BrCl_3N_2O_6S_3)$ C, H, N, O, S. 3-Acetoxymethyl-2-(4-bromophenyl)thiomethyl-7-(2-thienyl)acetamido-2-cephem-4-carboxylic Acid (10, $R_1=2$ -Thienyl; $R_2=AcO$; $R_3=4$ -BrC₆H₄).—9 ($R_1=2$ -thienyl; $R_2=AcO$; $R_3=4$ -BrC₆H₄) was deesterified using Zn-AcOH in the same fashion used with 3 to give the Δ^2 -cephalosporanic acid which crystd from a soln of C_6H_6 -petr ether: mp 156-157°; ir (mull) 3300, 1760, 1720, 1670 cm⁻¹; uv max (EtOH) 232 m μ (ϵ 25,000), 254 (10,000); nmr (CDCl₃ plus DMSO-d₆) δ 2.00 (s, 3 H), 3.52 (d, 1 H, J = 14 Hz), 3.84 (s, 2 H), 3.97 (d, 1 H, J = 14 Hz), 4.37 (d, 1 H, J = 13 Hz), 4.66 (d, 1 H, J = 13 Hz), 5.01 (s, 1 H), 5.34 (d, 1 H, J = 4 Hz), 5.55 (d/d, 1 H, J = 4 Hz, J = 8 Hz), 6.9-7.6 (m, 7 H), 7.94 (d, 1 H, J = 8 Hz). Anal. (C₂₈H₂₁BrN₂- O_6S_3) C, H, N. A bioautograph (Bacillus subtilis) showed that this 2-cephem derivative was not active at the level at which 7 were quite 3-Acetoxymethyl-2-(4-bromophenyl)thiomethyl-7-(2-thienyl)acetamido-3-cephem-4-carboxylic Acid 1-Oxide (α -11, R_1 = **2-Thienyl**; $R_2 = AcO$; $R_3 = 4-BrC_6H_4$).— $\alpha-2$ ($R_1 = 2$ -thienyl; $R_2 = AcO$; $R_3 = 4-BrC_6H_4$) was deesterified in the same manner used for 3 to give the sulfoxide acid, which crystd from EtOAc: mp $185-186^{\circ}$. Anal. (C₂₃H₂₁BrN₂O₇S₃) C, H, Br, N, S. A bioautograph (B. subtilis) showed that this sulfoxide derivative was not active at the level at which compounds α - and β -12 were quite active. 3-Acetoxymethyl-2-(4-bromophenyl)thiomethyl-7-(2-thienyl)acetamido-3-cephem-4-carboxylic Acid (α - and β -12, $R_1=2$ -Thienyl; $R_2 = AcO$; $R_3 = 4-BrC_6H_4$).— α -11 ($R_1 = 2$ -thienyl; $R_2 = AcO$; $R_3 = 4$ -BrC₈H₄) (2.0 g, 3.26 mmoles) was dissolved in 25 ml of DMF cooled to -50° . PCl₃ (3 ml) was added, and the soln was allowed to warm to 0° over a period of 35 min. The reaction soln was poured into 250 ml of ice-cold satd NaCl soln which was extd 4 times with 150 ml of CH₂Cl₂. The org layer was extd into a satd NaHCO3 soln, and the acidic material obtained was back extracted into fresh CH2Cl2 by adjusting the pH of the aq soln to 2 with 5% HCl. The org layer was washed with H₂O, dried (MgSO₄), and evapd in vacuo to give 500 mg (25%) of an oil which crystd from C_6H_6 -petr ether: mp 153-155°; ir (mull) 3250, 1785, 1730, 1670 cm⁻¹; uv max (EtOH) 233 m μ (ϵ 19,000), 264 (15,000). Anal. (C₂₃H₂₁BrN₂O₆S₃) C, H, Br. N. S. Although tlc (using silica gel plates and 4:1 CHCl₃-AcOH as eluent) showed a single spot $(R_f \ 0.6)$, the bioautograph (B.subtilis) established the presence of two antimicrobials. Nmr confirmed the presence of two compounds: all of the bands in the sulfoxide were present in the reduced material with the expected shifts, but they were present in sets of two.