Amphiphilic Design of a Discotic Liquid-Crystalline Molecule for Dipole Manipulation: Hierarchical Columnar Assemblies with a 2D Superlattice Structure^{**}

Ming-Che Yeh, Yu-Lou Su, Mei-Chun Tzeng, Chi Wi Ong,* Takashi Kajitani,* Hideo Enozawa, Masaki Takata, Yoshiko Koizumi, Akinori Saeki, Shu Seki, and Takanori Fukushima

Columnar liquid-crystalline (LC) materials composed of diskshaped aromatic molecules arranged in one-dimensional (1D) columns have attracted increasing attention owing to their potential utility for solution-processable organic electronic^[1] and ionic devices.^[2] Because carrier transport relies on these 1D columns, a long-range intracolumnar molecular order is particularly important. Charge-transfer complexation has been reported to be effective in reinforcing the intracolumnar 1D order of discotic columnar LC assemblies.^[3] Williams and co-workers demonstrated that the incorporation of electronwithdrawing substituents into aromatic mesogens results in the enhancement of π stacking to stabilize the LC state.^[4] This molecular-design strategy based on so-called "m polarization"[4,5] probably gives rise to a dipole in the aromatic mesogens. As a result, LC molecules tend to π stack in a headto-tail manner, and the dipole is canceled out within individual columns (Figure 1b). In this context, one may wonder how LC molecules composed of *n*-polarized mesogens assemble when they bear a particular functionality that would hamper head-to-tail stacking, and in turn, how the entire LC assembly would cope with the large intracolumnar dipole generated upon head-to-head stacking (Figure 1c). Herein we report the interesting finding that such a molecular

[*]	MC. Yeh, YL. Su, MC. Tzeng, Prof. Dr. C. W. Ong Department of Chemistry, National Sun Yat Sen University Kaohsiung 804 (Taiwan) E-mail: cong@mail.nsysu.edu.tw
	MC. Yeh, Dr. T. Kajitani, Dr. H. Enozawa, Dr. Y. Koizumi, Prof. Dr. T. Fukushima PIKEN Advanced Science Institute
	2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) E-mail: kajitani@riken.jp
	Prof. Dr. T. Fukushima Chemical Resources Laboratory, Tokyo Institute of Technology R1-1 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)
	Prof. Dr. M. Takata RIKEN SPring-8 Center 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)
	Dr. Y. Koizumi, Dr. A. Saeki, Prof. Dr. S. Seki Department of Applied Chemistry, Osaka University 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
[**]	This research was supported by KAKENHI (21350108 (T.F.) and 23750170 (T.K.)). The synchrotron X-ray diffraction experiments were performed at BL45XU in the SPring-8 Center with approval

(proposal 20110065).
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201207708.

Figure 1. a) Molecular structures of dibenzo[*a*,*c*]phenazine derivatives 1_{C10} , 1_{TEG} , and 1_{EG} and the benzo[*b*]triphenylene derivative 2_{TEG} . b,c) Schematic illustrations of 1D columnar assemblies with head-to-tail (b) and head-to-head arrangements (c) of the aromatic mesogen. Yellow arrows indicate the dipole moment of the dibenzo[*a*,*c*]phenazine core.

design, uncomfortable for the molecule in terms of dipole interactions, leads to the formation of a 2D superlattice structure that is unprecedented in columnar LC assemblies composed of disk-shaped aromatic molecules. We noticed that this hierarchical structure not only has the advantage that the dipoles are canceled out intercolumnarly but also that a homeotropic alignment of the LC columns is adopted.

Dibenzo[a,c]phenazine, which possesses a dipole moment along the longer molecular axis,^[6] is known to serve as a mesogenic core for columnar LC assemblies (see Figure S1a and Table S2 in the Supporting Information).^[4a-d] We previously reported that the derivative with six decyloxy side chains, $\mathbf{1}_{C10}$ (Figure 1a), exhibits a hexagonal columnar (Col_b) mesophase over a wide temperature range.^[7] In study described herein, we designed an amphiphilic derivative, $\mathbf{1}_{\text{TEG}}$ (Figure 1a), with two triethylene glycol (TEG) chains on the phenazine ring and four decyloxy chains on the fused benzene rings. We anticipated that this amphiphilic derivative could adopt a head-to-head arrangement upon π stacking if microphase separation between immiscible TEG and paraffinic side chains occurred in preference to cancellation of the dipole (Figure 1 c). Compound $\mathbf{1}_{\text{TEG}}$ was synthesized by a procedure similar to that reported previously (see Scheme S1 in the Supporting Information). As reference molecules, we also prepared $\mathbf{1}_{EG}$ (Figure 1a), with shorter oxyethylene side chains, and 2_{TEG} , which was obtained by a ring-closing reaction of the corresponding 2,3-bisphenylnaphthalene derivative (see Scheme S2 in the Supporting Information). All new compounds were characterized unambiguously by ¹H

and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectroscopy and MALDI-TOF mass spectrometry. $^{[6]}$

In differential scanning calorimetry (DSC) studies, $\mathbf{1}_{\text{TEG}}$ displayed an LC mesophase between 69 and 80 °C (on heating) and between 76 and 57 °C (on cooling; Figure 2;

Figure 2. DSC trace for a second heating/cooling cycle (scan rate: 5 °C min⁻¹) of $\mathbf{1}_{\text{TEC}}$. Cr: crystal, Col_h: hexagonal columnar LC phase, Iso: isotropic melt.

see also Table S1 in the Supporting Information). The powder X-ray diffraction (XRD) pattern of the LC mesophase of $\mathbf{1}_{TEG}$ in a glass capillary showed four peaks with *d* spacings of 2.21, 1.27, 1.10, and 0.84 nm (Figure 3 a; see also Figure S3 in the Supporting Information), which were indexed as diffractions from the (100), (110), (200), and (210) planes, respectively. Thus, LC $\mathbf{1}_{TEG}$ forms a Col_h structure with a lattice parameter (*a*) of 2.55 nm (Figure 3b, orange hexagon). This value

Figure 3. a) Synchrotron radiation XRD pattern of $\mathbf{1}_{\text{TEC}}$ at 75 °C on heating in a glass capillary (ϕ =1.5 mm) and a magnification of the pattern (inset: ×20, scattering vector q=1–9 nm⁻¹). Values in parentheses are Miller indices. b) Schematic illustration of the small (orange) and large (green) hexagonal lattices observed by XRD for LC $\mathbf{1}_{\text{TEG}}$.

corresponds to the lateral core-to-core distance between 1D columns of $\mathbf{1}_{\text{TEG}}$. The diffraction peak at $q = 17.8 \text{ nm}^{-1}$ can be assigned to the face-to-face distance (0.35 nm) of the π -stacked $\mathbf{1}_{\text{TEG}}$ molecules along the columnar axis. Two diffraction peaks with *d* spacings of 4.11 and 2.40 nm were detected in a smaller-angle region (Figure 3 a). By considering the reciprocal spacing ratio $(1:\sqrt{3})$, we attributed these peaks to diffractions from the (100) and (110) planes of an additional hexagonal lattice with a lattice parameter (*a'*) of 4.75 nm (Figure 3b, green hexagon). These observations clearly indicate that LC $\mathbf{1}_{\text{TEG}}$ forms a 2D hexagonal superlattice structure.

As reported previously,^[7] compound $\mathbf{1}_{C10}$, which bears decyloxy side chains (Figure 1 a), forms a Col_h structure in the LC mesophase with a lattice parameter identical to that of the smaller hexagonal structure observed for LC $\mathbf{1}_{\text{TEG}}$ (2.55 nm). However, even in a detailed XRD study of 1_{C10} with a synchrotron radiation source, we were unable to detect diffraction peaks indicative of the presence of a 2D superlattice (see Figure S5).^[6] We also investigated the phase behaviors of $\mathbf{1}_{EG}$ and $\mathbf{2}_{TEG}$ (Figure 1 a) by means of DSC and temperature-dependent XRD and found that neither compound exhibited a LC mesophase but rather that both underwent a crystal-to-melt or glass-to-melt transition (see Figures S2, S4, and S6, and Table S1).^[6] There is a clear difference between the structures of $\mathbf{1}_{\text{TEG}}$ and $\mathbf{1}_{\text{C10}}$, which only bears paraffinic side chains. Compound $\mathbf{1}_{EG}$ has oxyethylene side chains, but they are too short to endow the molecule with a distinct amphiphilic character. Although 2_{TEG} is similar in structure to $\mathbf{1}_{\text{TEG}}$, its benzo[b]triphenylene core is devoid of nitrogen atoms, and the existence of a dipole along the longer molecular axis can hardly be expected (see Figure S1b and Table S3).^[6]

All of the above observations allow us to rationalize the formation of the 2D superlattice structure in LC $\mathbf{1}_{\text{TEG}}$ as shown in Figure 4. We assume that side-chain miscibility prevails over the dipole–dipole interaction and results in a head-to-head π -stacking arrangement of $\mathbf{1}_{\text{TEG}}$ (Figure 4b). To minimize both the net dipole of the LC system and the contact area of the immiscible side chains, π -stacked columns of $\mathbf{1}_{\text{TEG}}$ assemble triangularly into a cylindrical architecture (Figure 4c), with the TEG side chains localized in the center. It is likely that the resultant cylinders, each of which consists of three columns of π -stacked $\mathbf{1}_{\text{TEG}}$, arrange laterally to form an extended hexagonal lattice (Figure 4d). Indeed, the small (a = 2.55 nm) and large lattice parameters (a' = 4.75 nm) determined by XRD are consistent with the geometry of the proposed hierarchical structure.

Interestingly, the LC columns of hierarchically assembled $\mathbf{1}_{TEG}$ spontaneously align homeotropically on a glass substrate. Under a polarized optical microscope (POM), a film of $\mathbf{1}_{TEG}$ sandwiched between glass plates at a mesophase temperature (75 °C) showed a dark field over a large area (Figure 5 a, inset). On the other hand, optical microscopy (OM) showed dendritic textures (Figure 5 a). These observations are typical for homeotropically aligned Col_h assemblies.^[8] In contrast, a POM image of an LC film of paraffinic $\mathbf{1}_{C10}$ showed both bright birefringent texture and a dark field as a result of LC domains of horizontally and homeotropically aligned col-

1032 www.angewandte.org

Figure 4. Hierarchical self-assembly of $\mathbf{1}_{\text{TEG}}$: a) $\mathbf{1}_{\text{TEG}}$ molecule; b) π -stacked column of $\mathbf{1}_{\text{TEG}}$ with a head-to-head arrangement; c) triangular assembly of π -stacked columns; d) hexagonal superlattice with structural parameters indicated. The yellow arrows indicate the dipole moment of the dibenzo[*a,c*]phenazine core.

Figure 5. a) OM micrograph (inset: POM micrograph) of 1_{TEG} at 75 °C and b) POM micrograph of 1_{C10} at 100 °C, on cooling from the isotropic melt (scale bar: 50 µm). c) Schematic illustration of an LC film of 1_{TEG} sandwiched between quartz plates for an FP-TRMC experiment. d,e) FP-TRMC profiles at 70 °C of LC films of 1_{TEG} (d) and 1_{C10} (e) as measured perpendicular (orange) and parallel (green) to the microwave electric-field vector.

umns, respectively (Figure 5 b). Thus, LC $\mathbf{1}_{C10}$ does not adopt a homeotropic orientation predominantly.

The contrasting orientational behavior of LC $\mathbf{1}_{TEG}$ and $\mathbf{1}_{CI0}$ was clearly demonstrated by the measurement of flashphotolysis time-resolved microwave conductivity (FP-TRMC). The FP-TRMC technique enables the evaluation, without electrodes, of the intrinsic carrier-transport properties of materials.^[9] For this experiment, an LC film of $\mathbf{1}_{TEG}$ sandwiched between two quartz plates was placed in a microwave resonant cavity in such a way that the microwave electric-field (*E*-field) vector could be polarized either perpendicular or parallel to the substrate surface (Figure 5 c). Upon exposure of the LC film to laser light, the transient conductivity of the LC film displayed a rise and decay profile, whereby the transient conductivity is given by $\phi \Sigma \mu$, and ϕ and $\Sigma\mu$ are the photocarrier-generation yield and the sum of the mobilities of generated charge carriers, respectively (Figure 5 d). From the FP-TRMC profile, the maximum transient conductivities ($\phi\Sigma\mu_{max}$) along the perpendicular (orange) and parallel (green) directions to the substrate surface were evaluated as 1.0×10^{-4} and 2.7×10^{-5} cm²V⁻¹s⁻¹, respectively. Accordingly, the degree of anisotropy ($\phi\Sigma\mu_{\perp}/\phi\Sigma\mu_{\parallel}$) in the LC film of **1**_{TEG} was calculated to be 3.7. Although an LC film of **1**_{C10} also displayed a FP-TRMC signal (Figure 5 e), the value of $\phi\Sigma\mu_{\perp}$ (1.7×10^{-4} cm²V⁻¹s⁻¹) was lower than that of $\phi\Sigma\mu_{\parallel}$ (2.6×10^{-4} cm²V⁻¹s⁻¹), and the degree of anisotropy was as small as 0.7.

It has been suggested that the homeotropic columnar orientation of LC materials is possible when nucleation occurs from a glass/LC interface rather than from the bulk.^[10] A recent report also showed that long-range 2D lattice order can be a dominant factor for such a columnar orientation.^[11] In light of these notions, the strong preference of LC 1_{TEG} for a homeotropic orientation most likely results from the hierarchical superlattice structure, which could enhance the 2D order of columnarly assembled 1_{TEG} to a certain upper length scale. Furthermore, the TEG side chains of 1_{TEG} localize at each lattice point of the superlattice (Figure 4d), and this arrangement gives rise to hydrophilic domains that can potentially interact with hydroxy groups on a SiO₂ substrate. Presumably, such a surface event also plays a role in the development of homeotropic alignment.

In conclusion, we demonstrated that the LC dibenzo-[*a*,*c*]phenazine $\mathbf{1}_{\text{TEG}}$, which contains decyloxy and TEG side chains, self-assembles to form a 2D hexagonal superlattice. This type of hierarchical structure has not previously been reported for columnar LC assemblies composed of diskshaped aromatic molecules. In contrast to most reported examples,^[12] we ventured to adopt a molecular design that could hamper a head-to-tail packing arrangement, which is favorable for the canceling out of dipoles between adjacent molecules. As a consequence, $\mathbf{1}_{\text{TEG}}$ chooses an unprecedented way to cancel out the dipoles in the LC material: 1D triangular assemblies consisting of three π -stacked columns of $\mathbf{1}_{\text{TEG}}$ arrange laterally to form a large hexagonal lattice

(Figure 4). Interestingly, the hierarchically assembled LC columns of $\mathbf{1}_{\text{TEG}}$ tend to align homeotropically on a glass substrate over a large area and could thus provide pathways for directional charge transport perpendicular to the substrate.

Received: September 24, 2012 Published online: November 26, 2012

Keywords: amphiphiles · dipole–dipole interactions · liquid crystals · organic semiconductors · self-assembly

- a) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, *Chem. Rev.* 2005, *105*, 1491–1546; b) J. Wu, W. Pisula, K. Müllen, *Chem. Rev.* 2007, *107*, 718–747; c) S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, *Angew. Chem.* 2007, *119*, 4916–4973; *Angew. Chem. Int. Ed.* 2007, *46*, 4832–4887; d) M. O'Neill, S. M. Kelly, *Adv. Mater.* 2011, *23*, 566–584.
- [2] a) M. Yoshio, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc.
 2004, 126, 994–995; b) K. Binnemans, Chem. Rev. 2005, 105, 4148–4204; c) H. Shimura, M. Yoshio, K. Hoshino, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc. 2008, 130, 1759–1765.
- [3] a) H. Bengs, M. Ebert, O. Karthaus, B. Kohne, K. Praefcke, H. Ringsdorf, J. H. Wendroff, R. Wüstefeld, *Adv. Mater.* 1990, 2, 141–144; b) N. Boden, R. J. Bushby, J. Clements, *J. Chem. Phys.* 1993, *98*, 5920–5931; c) A. Okabe, T. Fukushima, K. Ariga, T. Aida, *Angew. Chem.* 2002, *114*, 3564–3567; *Angew. Chem. Int. Ed.* 2002, *41*, 3414–3417.
- [4] a) E. J. Foster, C. Lavigueur, Y.-C. Ke, V. E. Williams, J. Mater. Chem. 2005, 15, 4062-4068; b) E. J. Foster, R. B. Jones, C. Lavigueur, V. E. Williams, J. Am. Chem. Soc. 2006, 128, 8569-8574; c) C. Lavigueur, E. J. Foster, V. E. Williams, J. Am. Chem.

Soc. **2008**, *130*, 11791–11800; d) E. Voisin, E. J. Foster, M. Rakotomalala, V. E. Williams, *Chem. Mater.* **2009**, *21*, 3251–3261; e) J. A. Paquette, C. J. Yardley, K. M. Psutka, M. A. Cochran, O. Calderon, V. E. Williams, K. E. Maly, *Chem. Commun.* **2012**, *48*, 8210–8212.

- [5] a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525-5534; b) F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer, J. S. Siegel, J. Am. Chem. Soc. 1992, 114, 5729-5733; c) F. Cozzi, M. Cinquini, R. Annuziata, J. S. Siegel, J. Am. Chem. Soc. 1993, 115, 5330-5331; d) F. Cozzi, F. Ponzini, R. Annunziata, M. Cinquini, J. S. Siegel, Angew. Chem. 1995, 107, 1092-1094; Angew. Chem. Int. Ed. Engl. 1995, 34, 1019-1020.
- [6] See the Supporting Information.
- [7] C. W. Ong, J.-Y. Hwang, M.-C. Tzeng, S.-C. Liao, H.-F. Hsu, T.-H. Chang, J. Mater. Chem. 2007, 17, 1785–1790.
- [8] I. Dierking, *Textures of Liquid Crystals*, Wiley-VCH, Weinheim, 2003, chap. 11, pp. 145–153.
- [9] A. Saeki, S. Seki, T. Takenobu, Y. Iwasa, S. Tagawa, Adv. Mater. 2008, 20, 920–923.
- [10] E. Grelet, H. Bock, Europhys. Lett. 2006, 73, 712-718.
- [11] T. Osawa, T. Kajitani, D. Hashizume, H. Ohsumi, S. Sasaki, M. Takata, Y. Koizumi, A. Saeki, S. Seki, T. Fukushima, T. Aida, *Angew. Chem.* **2012**, *124*, 8114–8117; *Angew. Chem. Int. Ed.* **2012**, *51*, 7990–7993.
- [12] a) J. A. Rego, S. Kumar, H. Ringsdorf, *Chem. Mater.* 1996, *8*, 1402–1409; b) S. T. Trzaska, T. M. Swager, *Chem. Mater.* 1998, *10*, 438–443; c) K. Kishikawa, S. Furusawa, T. Yamaki, S. Kohmoto, M. Yamamoto, K. Yamaguchi, *J. Am. Chem. Soc.* 2002, *124*, 1597–1605; d) R. J. Bushby, N. Boden, C. A. Kilner, O. R. Lozman, Z. Lu, Q. Liu, M. A. Thornton-Pett, *J. Mater. Chem.* 2003, *13*, 470–474; e) S. J. Mahoney, M. M. Ahmida, H. Kayal, N. Fox, Y. Shimizu, S. H. Eichhorn, *J. Mater. Chem.* 2009, *19*, 9221–9232; f) H.-C. Chang, K. Komasaka, K. Kishida, T. Shiozaki, T. Ohmori, T. Matsumoto, A. Kobayashi, M. Kato, S. Kitagawa, *Inorg. Chem.* 2011, *50*, 4279–4288.