Synthetic Studies of the Pyrroloquinoline Nucleus of the Makaluvamine Alkaloids. Synthesis of the Topoisomerase II Inhibitor Makaluvamine D

James D. White,* Kraig M. Yager, and Takayuki Yakura

Contribution from the Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 Received November 5, 1993®

Abstract: A new synthesis of the pyrrolo[4,3,2-de]quinoline system characteristic of a class of marine alkaloids which includes the prianosins, discorhabdins, and other antineoplastic agents has been developed. The approach is exemplified in a total synthesis of makaluvamine D, a topoisomerase II inhibitor isolated from the sponge Zyzzya cf. marsailis. The route begins with a Fischer indole synthesis employing (2,3-dimethoxyphenyl)hydrazine (29) and dihydrofuran, and the resulting tryptophol 32 is protected as its ditosylate 34. Nitration at C4 of the indole, followed by reduction and cyclization, affords the tricycle 41, which is oxidized to the iminoquinone 42 with ceric ammonium nitrate. Replacement of the C7 methoxy substituent of the pyrrologuinoline by tryptamine could only be effected via the salt 42 and, after cleavage of the N-tosyl group followed by treatment with trifluoroacetic acid, gives makaluvamine D (3), which was isolated as its trifluoroacetate 48. Exposure of iminoquinone 42 to sodium azide unexpectedly produced the fully unsaturated pyrroloquinoline 44.

Introduction

A new class of highly cytotoxic metabolites based on the pyrrolo-[4,3,2-de]quinoline skeleton 1 has emerged from screening of marine sources for antineoplastic agents.¹ These include the prianosins,² discorhabdins,³ damirones,⁴ batzellines, and isobatzellines,⁵ all isolated from sponges, and wakayin, isolated from the Fijian ascidian Clavelina sp.6 Several additional members of the pyrroloiminoquinone family have recently been discovered by Ireland in the Fijian sponge Zyzzya cf. marsailis.⁷ These substances, named makaluvamines, have been found to possess striking and potentially valuable biological properties, including inhibition of the function of mammalian topoisomerase II. They also exhibit potent in vitro cytotoxicity toward the human colon tumor cell line HCT 116. The novel molecular framework represented by these marine alkaloids together with the promising indication of a new lead into cancer chemotherapy has prompted intense interest in the synthesis of these sensitive structures. Thus far, two routes to discorhabdin C (2) have been reported,⁸ and other novel but as yet incomplete approaches to the prianosin family have been disclosed.9 Herein, we describe a new route to the pyrroloquinoline nucleus of these marine metabolites and we apply it to the synthesis of makaluvamine D (3), a pyrrolo-

(2) Kobayashi, J.; Cheng, J.-F.; Ishibashi, M.; Nakamura, H.; Ohizumi,

(2) Kobayashi, J.; Cheng, J.-F.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Hirata, Y.; Sasaki, T.; Lu, H.; Clardy, J. Tetrahedron Lett. 1987, 28, 4939. Cheng, J.-F.; Ohizumi, Y.; Wälchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1988, 53, 4621. Kobayashi, J.; Cheng, J.-F.; Yamamura, S.; Ishibashi, M. Tetrahedron Lett. 1991, 32, 1227.
(3) Perry, N. B.; Blunt, J. W.; McCombs, J. D.; Munro, M. H. G. J. Org. Chem. 1986, 51, 5476. Perry, N. B.; Blunt, J. W.; Munro, M. H. G. J. Org. Chem. 1988, 53, 4127. Blunt, J. W.; Munro, M. H. G.; Higa, T.; Sakai, R. J. Org. Chem. 1988, 53, 4127. Blunt, J. W.; Munro, M. H. G.; Battershill, C. N.; Copp, B. R.; McCombs, J. D.; Perry, N. B.; Prinsep, M. R.; Thompson, A. M. New J. Chem. 1990, 14, 761.
(4) Stierle D. B.; Faulter, D. L. Nat. Prod. 1991, 54, 1131

(4) Stierle, D. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1131.

(5) Sun, H. H.; Sakemi, S.; Burres, N.; McCarthy, P. J. Org. Chem. 1990, 55,4964. Sakemi, S.; Sun, H. H.; Jefford, C. W.; Bernardinelli, G. Tetrahedron Lett. 1989, 30, 2517.

(6) Copp, B. R.; Ireland, C. M.; Barrows, L. R. J. Org. Chem. 1991, 56, 4596

(7) Radisky, D. C.; Radisky, E. S.; Barrows, L. R.; Copp, B. R.; Kramer,
(7) Radisky, D. C.; Radisky, E. S.; Barrows, L. R.; Copp, B. R.; Kramer,
R. A.; Ireland, C. M. J. Am. Chem. Soc. 1993, 115, 1632.
(8) (a) Nishiyama, S.; Cheng, J.-F.; Tao, X. L.; Yamamura, S. Tetrahedron
Lett. 1991, 32, 4151. (b) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. J. Am. Chem. Soc. 1992, 114, 2175.

iminoquinone bearing a tyramine side chain at C7. Our route employs a novel variant of the Fischer indole synthesis and a subsequent nitration to introduce the N5 nitrogen substituent. The annulation sequence to 3 proceeds in the order A-C-B and in this respect is similar to that utilized by Yamamura^{8a} and Kita^{8b} in their syntheses of discorhabdin C. Elevation to the oxidation level of the iminoquinone nucleus present in 3 is accomplished with ceric ammonium nitrate.

Results and Discussion

The strategy initially explored for construction of the tricyclic system of 3 envisioned simultaneous closure of rings B and C by

(9) (a) Kubiak, G. G.; Confalone, P. N. Tetrahedron Lett. 1990, 31, 3845. (b) Confalone, P. N. J. Heterocycl. Chem. 1990, 27, 31. (c) Knölker, H.-J.; Hartmann, K. Synlett. 1991, 428

© 1994 American Chemical Society

[•] Abstract published in Advance ACS Abstracts, February 1, 1994. (1) Molinski, T. F. Chem. Rev. 1993, 93, 1825.

Scheme 1

double cyclization of an aromatic diamine such as 4. The feasibility of this approach clearly hinged upon several delicate maneuvers which included oxidation, but not overoxidation, of the two amino functions. Also, the correct orientation of electrophilic attack on the activated benzene nucleus was required to produce the desired substitution pattern of 5. Although this plan was not successful, it did afford a novel entry into certain quinoline derivatives.

The requisite 2-aryl-1,4-diaminobutane 4 was synthesized from 3,4-dimethoxybenzaldehyde (6), via the succinonitrile 7. The latter was obtained by the method of Crider,¹⁰ in which Knoevenagel condensation of 6 with ethyl cyanoacetate is followed by simultaneous hydrocyanation and decarboxylation. Hydrogenation of 7 over a palladium catalyst in acetic acid resulted in a surprisingly selective reduction of the benzylic cyano function to give the monoamide 8 in 76% yield. A minor product (10%) isolated from the reduction-acetylation proved to be the diamide. It is probable that the selectivity observed in the hydrogenation of 7 has its origin in the greater ease of tautomerization of the benzylic nitrile to ketenimine 9. Further hydrogenation of 8, in this instance using methanolic HCl as the solvent, furnished 10 in excellent yield. However, when hydrogenation of 7 was carried out in this solvent system, the 3-arylpyrrolidine 11 was the principal product, accompanied by the diamine 12. Thus, although controlled saturation of both nitrile groups of 7 required two steps, it did permit convenient differentiation of the resultant amino functions. (See Scheme 1.)

Of several methods explored for oxidative cyclization of 10 and 12, iodobenzene diacetate in 2,2,2-trifluoroethanol¹¹ appeared to be the most promising. In fact, 10 was found to undergo smooth oxidative cyclization with this system to yield 13, in which solvent had entered the product to afford a stereoisomeric mixture of iminoquinone acetals.¹² The ¹⁹F-NMR spectrum (triplet, J_{FH} 9 Hz) and mass spectrum, which showed loss of the 2,2,2trifluoroethoxy substituent (m/z 264), permitted confident assignment of structure to this material. The structure of 13 was further supported by hydrogenation to the tetrahydroquinoline 14. The latter upon treatment with *p*-toluenesulfonyl chloride afforded a crystalline sulfonamide 15, whose constitution was fully confirmed by X-ray analysis.

15, R = Ts

In the hope that 14 could be induced to cyclize to the tricyclic nucleus 1, it is oxidized with ceric ammonium nitrate (CAN) to the unstable iminoquinone 16. However, upon exposure to basic reagents such as sodium hydride which were intended to promote intramolecular nucleophilic addition of the acetamide anion to the iminoquinone, only the quinoline 18 was obtained. The latter is believed to arise by formation of the enolate 17 and subsequent dehydrogenative aromatization. An alternative strategy designed to enhance the acidity of the side chain amide proton via a sulfonamide was briefly explored from 19, the product of acidic hydrolysis of 14. Unfortunately, sulfonation of 19 was not selective, delivering both the monobenzenesulfonamides 20 and 21 as well as the bis derivative 22. Furthermore, although 20 underwent efficient oxidation with CAN to an iminoquinone analogous to 16, the outcome upon treatment of this species with base was again formation of a quinoline, in this instance 23. (See Scheme 2.) Finally, in a move intended to enhance the electrophilicity of the iminoquinone system by quaternization at the nitrogen atom, 16 was reacted with methyl chloroformate. Although activation occurred to form transiently 24, the result was the chloro-substituted tetrahydroquinoline 25 rather than cyclization to a pyrroloquinoline.

Our failure to effect closure to the five-membered ring C present in the core structure of 3 forced reconsideration of a strategy based on this A-B-C approach. The alternative sequence in which the pyrroloquinoline system was elaborated from an indole nucleus seemed initially unattractive since the required 3-alkyl-

⁽¹⁰⁾ Crider, A. M.; Hemdi, T. F.; Hassan, M. N.; Fahn, S. J. Pharm. Sci. 1984, 73, 1585.

 ⁽¹¹⁾ Cruickshank, K. A.; Sumoto, K.; Leonard, N. J. Tetrahedron Lett.
 1985, 26, 2723.
 (12) Barrat, B.; Daudan, M. Tetrahedron Lett. 1991, 23, 2133.

⁽¹²⁾ Barret, R.; Daudon, M. Tetrahedron Lett. 1991, 32, 2133.

Scheme 2

6.7-dimethoxyindole precursor appeared to be relatively inaccessible. In fact, although both the Yamamura^{8a} and Kita^{8b} syntheses of discorhabdin C (2) used this A-C-B route, their pathways required considerable functional group manipulation in order to set the stage for closure to the tricyclic nucleus. On the other hand, a Fischer indolization which simultaneously installed a two-carbon side chain¹³ would obviate the need for lengthy synthetic maneuvers at the indole 3-position and could lead in reasonably direct fashion to a precursor for cyclization to 3. This tactic therefore became the focal point of our plan.

The starting point for this route to 1 was 2,3-dimethoxybenzoic acid (26) which was converted to urethane 27 in quantitative vield using Yamada's modification¹⁴ of the Curtius rearrangement.¹⁵ Basic hydrolysis of 27 afforded 2,3-dimethoxyaniline (28) in 95% yield. The latter was nitrosated, and the crude diazonium salt was reduced with stannous chloride to afford crystalline (3,4-dimethoxyphenyl)hydrazine (29).¹⁶ This hydrazine was condensed with dihydrofuran following a protocol developed by McKittrick¹⁷ and produced a 1:1 mixture of the tetrahydrofuran 30 and the hydrazone 31, the latter as an E/Zmixture. The mixture was subjected to Fischer indolization conditions with zinc chloride to yield the expected tryptophol 32 accompanied by the 4-methoxyindole derivative 33. The latter, which is the result of the so-called "abnormal Fischer indolization"18 from ipso substitution was always a byproduct even though many variations of the Fischer synthesis were explored with the mixture of 30 and 31. The removal of 33 from the desired product 32 proved difficult, and to avoid losses during purification, the mixture of 32 and 33 was directly sulfonated with excess p-toluenesulfonyl chloride. The bis sulfonyl derivative 34 was produced in good yield and after separation from 35 was readily converted to azide 36. Reduction of 36 with triphenylphosphine¹⁹ afforded the tryptamine derivative 37, which, it was hoped, would undergo oxidative cyclization to the tricyclic pyrroloquinoline nucleus 1. However, treatment of 37 with iodobenzene diacetate as well as other mild oxidants resulted in intractable tars. (See Scheme 3.)

The disappointing outcome with 37 necessitated revision of the planned route to 3 which, while preserving the A-C-B ring construction sequence, closed the tricyclic system at C4-N5 rather than at C5a of the aromatic ring. This new strategy therefore required introduction of a nitro substituent at C4 of the indole nucleus,²⁰ a transformation which was achieved by treating 34 with acetyl nitrate²¹ in the presence of acetic anhydride at low temperature. Although this reaction gave a ca. 1:1 mixture of the 4-nitroindole 38 and its 2-nitro isomer 39, these substances were separable by chromatography. They were easily distinguished by means of their 1H-NMR spectra, 38 displaying isolated (singlet) proton signals whereas 39 had ortho coupled benzenoid protons. The site of nitration in 38 was further confirmed by locating the single benzenoid proton at C5 through a 5% nuclear Overhauser enhancement with the adjacent methoxy protons. Competing nitration at C2 of the indole nucleus was unexpected with 34, where a highly activated benzenoid ring is present, but careful analysis of the progress of the reaction showed that 38 and 39 were formed at comparable rates under all nitration conditions investigated and that no selectivity was possible. The nitro group of 38 was cleanly reduced to an amine by hydrogenation over Adams' catalyst, but due to the air-sensitive nature of the aminoindole 40, the latter was treated immediately with

⁽¹³⁾ Robinson, B. The Fischer Indole Synthesis; Wiley: New York, 1982; pp 501-505.

⁽¹⁴⁾ Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203

 ⁽¹⁵⁾ Smith, P. A. S. Org. React. 1946, 3, 337.
 (16) Nozoe, T.; Takase, K.; Yasunami, M.; Ando, M.; Saito, H.; Imafuku,
 K.; Yin, B.-Z.; Honda, M.; Goto, Y.; Hanaya, T.; Hara, Y.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1989, 62, 128.

⁽¹⁷⁾ McKittrick, B.; Failli, A.; Steffan, R. J.; Soll, R. M.; Hughes, P.; Schmid, J.; Asselin, A. A.; Shaw, C. C.; Noureldin, R.; Gavin, G. J. Heterocycl. Chem. 1990, 27, 2151.

⁽¹⁸⁾ Ishii, H. Acc. Chem. Res. 1981, 14, 275.

⁽¹⁹⁾ Vaultier, M.; Knouzi, N.; Carrié, R. Tetrahedron Lett. 1983, 24, 763. (20) Nakatsuka, S.; Masuda, T.; Goto, T. Tetrahedron Lett. 1987, 28,

^{3671.} (21) Bordwell, F. G.; Garbisch, E. W., Jr. J. Am. Chem. Soc. 1960, 82, 3588.

Scheme 3

N,N-diisopropylethylamine to give the desired tricycle 41 in 85% yield based on 38.

With the indole nucleus of **41** protected as its *N*-tosyl derivative, oxidation of the electron-rich para-disubstituted benzenoid ring to a quinonoid system was expected to be facile. In fact, a similar conversion was effected in Yamamura's synthesis of discorhabdin C,^{8a} although the product was not characterized. In the event, oxidation of 41 with ceric ammonium nitrate proceeded smoothly to give the yellow iminoquinone 42 in 60% yield. This substance is a presumed (but unisolated) intermediate in Kita's synthesis of discorhabdin C,^{8b} and the acquisition of 42, which in our hands was sufficiently stable as the free base for characterization, constitutes a formal synthesis of 2. The stability of 42 is considerably improved as its imine salt, and for this reason it was preserved as its tosylate 43.

An assumption underlying our approach to 3 was that, with an iminoquinone such as 42, replacement of the methoxy group at C7 by an amine substituent would be straightforward. Indeed, the published syntheses of 2 not only lent credence to this supposition but gave an explicit protocol for the transformation. It therefore came as a surprise to discover that 42 was inert to ammonia and primary amines, including tyramine, even under forcing conditions. Furthermore, it was found that treatment of 42 with azide, a normally potent nucleophile which was expected to effect substitution at C7, gave the aromatized system 44, resulting from elimination of the N-tosyl residue. Although this unanticipated result affords a potential entry to the fully unsaturated pyrrologuinoline nucleus found, for example, in makaluvamine B (45), it blocks access to the broader group of iminoquinones such as 3 which bear an amine substituent at C7. Fortunately, the tosylate 43 was much more cooperative, reacting rapidly with ammoniacal ethanol to furnish 46 in high yield. Condensation of 43 with tyramine was similarly productive, yielding initially 47. More prolonged exposure to tyramine in refluxing ethanol removed the N-tosyl substituent from 47 and led to makaluvamine D (3). The latter was isolated and characterized as its trifluoroacetate 48, which was identical by comparison of its ¹H and ¹³C NMR spectra, IR spectrum, and mass spectrum with a sample of natural makaluvamine D trifluoroacetate supplied by Professor Ireland.

In summary, a new route to the pyrroloiminoquinone system 1 characteristic of the makaluvamines and related marine alkaloids has been opened. The synthesis of makaluvamine D (3) required eight steps from the known hydrazine $29.^{16}$ An important finding from this study is that the nitrogen atom of the iminoquinone moiety must be protonated for substitution of a methoxy group at C7 by an amine to take place.

Experimental Section

Solvents were purified and dried prior to use by distillation from an appropriate drying agent. Tetrahydrofuran and toluene were distilled from sodium benzophenone ketyl under an argon atmosphere. Methylene chloride, pyridine, and triethylamine were distilled from calcium hydride under an argon atmosphere. Bulk solvents for chromatography were distilled through glass prior to use. Starting materials were obtained from commercial sources and, unless stated otherwise, used without further purification.

Solvents were removed at water aspirator pressure by rotary evaporation, and residual solvent was removed by vacuum pump at less than 1.0 Torr. Glassware and syringes were dried in an oven at 165 °C overnight and cooled in a desiccator over CaSO₄ prior to use. Alternatively, flasks were flame-dried under a stream of argon.

Analytical thin-layer chromatography (TLC) was performed on E. Merck precoated TLC plates (silica gel 60 F-254, layer thickness 0.2 mm). Flash chromatography was performed with E. Merck silica gel 60 (230-400 mesh ASTM). Radial chromatography was carried out on individually prepared rotors with layer thicknesses of 1, 2, or 4 mm using a Chromatotron manufactured by Harrison Research, Palo Alto, CA.

Melting points were determined using a Büchi melting-point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Nicolet Model 5DXB FT-IR spectrometer. Nuclear magnetic resonance (NMR) spectra were obtained on a Bruker AM300 or AM400 spectrometer; chemical shifts are expressed as parts per million downfield from tetramethylsilane. Mass spectra (MS) were obtained with either a Varian MAT CH-7 or a Finnigan 4500 spectrometer at an ionization potential of 70 eV. High-resolution mass spectra (HRMS) were determined on a Kratos MS-50 spectrometer. Elemental analyses were performed by Desert Analytics, Tucson, AZ.

4-Acetamido-3-(3,4-dimethoxyphenyl)butyronitrile (8). To a Parr reaction vessel were added 710 (235 mg, 1.1 mmol), acetic anhydride (9 mL), sodium acetate (89 mg, 1.1 mmol) and 10% palladium on carbon (125 mg). The mixture was shaken under hydrogen at 46 psi at 25 °C for 6 h, after which TLC indicated complete reaction. The catalyst was removed by filtration over Celite, and the mixture was concentrated under reduced pressure. Chromatography (silica gel 60, ethyl acetatemethanol-chloroform 1:1:8) gave 218 mg (76%) of 8 as an oily wax: IR (neat) 3369, 3296, 2944, 2246, 1655, 1516, 1270, 1137, 1031 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.86 (d, J = 8 Hz, 1H), 6.81 (d, J = 2 Hz, 1H), 6.77 (dd, J = 2, 7 Hz, 1H), 5.81 (bt, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.73 (m, 1H), 3.39 (m, 1H), 3.18 (m, 1H), 2.66 (m, 2H), 1.95 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 170.5, 149.2, 148.5, 131.4, 119.2, 118.2, 111.5, 110.3, 55.9, 55.8, 43.5, 41.4, 23.0, 22.3; MS m/z 262 (M⁺), 203 (100), 190 (54), 175 (14), 91 (8), 72 (26); HRMS m/z obsd 262.1317 (M^+) , calcd for $C_{14}H_{18}N_2O_3$ 262.1317.

Further elution gave 34 mg (10%) of (\pm)-1,4-di-*N*-acetyl-2-(3,4-dimethoxyphenyl)-1,4-diaminobutane as a colorless wax: IR (KBr) 3329, 2964, 1649, 1629, 1529, 1246, 1144, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.82 (d, J = 8 Hz, 1H), 6.71 (d, J = 2 Hz, 1H), 6.69 (s, 1H), 6.28 (bt, 1H), 6.02 (bt, 1H), 3.87 (3, 3H), 3.86 (s, 3H), 3.63 (m, 1H), 3.16 (m, 3H), 2.75 (m, 1H), 1.92 (s, 3H), 1.91 (s, 3H), 1.77 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 170.4, 170.3, 149.1, 147.9, 134.4, 119.5, 111.3, 110.4, 55.9, 55.8, 44.9, 43.1, 37.8, 33.2, 23.2(2); MS *m/z* 308 (M⁺), 249 (81), 190 (69), 177 (100); HRMS *m/z* obsd 308.1736 (M⁺), calcd for C₁₆H₂₄N₂O₄ 308.1736.

1-Acetamido-4-amino-2-(3,4-dimethoxyphenyl)butane (10). A mixture of 8 (1.0 g, 3.8 mmol), absolute methanol (38 mL), concentrated hydrochloric acid (0.6 mL), and 10% palladium on carbon (0.5 g) was stirred under a hydrogen atmosphere at 25 °C for 20 h. The mixture was filtered over Celite, and the solvent was removed at reduced pressure to give 1.1 g (96%) of the hydrochloride salt of 10. This was suspended in chloroform, cooled to 0 °C, and treated with excess 1% ammoniacal chloroform. The precipitated ammonium chloride was removed by filtration. Chromatography of the concentrate (silica gel 60, 20% methanol in 1% ammoniacal chloroform) afforded 0.89 g (89%) of 10 as a colorless oil: IR (neat) 3296, 2931, 1649, 1516, 1264, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.84 (d, J = 8 Hz, 1H), 6.72 (dd, J = 2, 8 Hz, 1H), 6.68 (d, J = 2 Hz, 1H), 5.59 (bt, 1H), 3.87 (s, 6H), 3.69 (m, 1H), 3.17 (m, 1H), 2.81 (m, 1H), 2.61 (m, 2H), 1.88 (s, 3H), 1.73 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 169.9, 149.1, 147.8, 134.7, 119.6, 111.3, 110.4, 55.8(2 OMe), 45.1, 42.9, 39.9, 37.5, 23.2; MS m/z 266 (M⁺), 207 (100), 178 (87), 165 (49), 91 (29), 77 (27), 73 (53); HRMS m/z obsd 266.1630 (M⁺), calcd for C14H22N2O3 266.1630. Anal. Calcd for C₁₄H₂₄N₂O₄: C, 59.14; H, 8.51; N, 9.85. Found: C, 59.05; H, 8.24; N, 9.57

1,4-Diamino-2-(3,4-dimethoxyphenyl)butane (12). A suspension of 7 (100 mg, 0.46 mmol) and 10% palladium on carbon (50 mg) in methanol was treated with concentrated hydrochloric acid (155 μ L, 2 mmol) and stirred under an atmosphere of hydrogen for 22 h. The catalyst was removed by filtration over Celite, and the solvent was evaporated in vacuo. The solid residue was treated with 1% ammoniacal chloroform at 0 °C, and the ammonium chloride was removed by filtration. Chromatography of the concentrate (silica gel 60, 20% methanol in 1% ammoniacal chloroform) yielded 24.4 mg (24%) of 12 as a colorless oil: IR (neat) 3356 (b), 2937, 1589, 1516, 1264, 1144, 1031 cm⁻¹; ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 6.82 \text{ (d}, J = 8 \text{ Hz}, 1\text{H}), 6.74 \text{ (m}, 2\text{H}), 3.88 \text{ (s}, 3\text{H}),$ 3.86 (s, 3H), 2.88 (m, 2H), 2.64 (m, 3H), 2.31 (bs, 4H), 1.82 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 149.1, 147.8, 134.4, 119.6, 111.4, 110.5, 55.8 (2), 48.2, 45.8, 39.1, 35.7; MS m/z 224 (M⁺), 207 (13), 195 (82), 178 (100), 152 (22); HRMS m/z obsd 224.1525 (M⁺), calcd for C12H20N2O2 224.1525. Anal. Calcd for C12H20N2O2: C, 64.26; H, 8.99; N, 12.49. Found: C, 64.09; H, 9.10; N, 12.22.

There was also obtained 41.5 mg (44%) of (\pm) -3-(3,4-dimethoxyphenyl)pyrrolidine (11) as a colorless oil: IR (neat) 3402 (b), 2950, 1520, 1423, 1257, 1144, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.80 (m, 3H), 3.88 (s, 3H), 3.86 (s, 3H), 3.36 (dd, J = 8 Hz, 1H), 3.11 (m, 3H), 3.00 (bs, 1H), 2.85 (dd, J = 8 Hz, 1H), 2.23 (m, 1H), 1.85 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 148.8, 147.3, 136.4, 118.8, 111.1, 110.5, 55.8, 55.7, 54.9, 47.1, 45.1, 34.4; MS m/z 207 (M⁺, 100), 178 (26), 165 (21), 164 (36), 147 (30); HRMS m/z obsd 207.1259 (M⁺), calcd for C₁₂H₁₇NO₂ 207.1259.

4-(Acetamidomethyl)-6,7-dimethoxy-6-(2,2,2-trifluoroethoxy)-2,3,4,6tetrahydroquinoline (13). A solution of 10 (43 mg, 0.16 mmol) in 2,2,2trifluoroethanol (2.5 mL) was treated with iodobenzene diacetate (103 mg, 0.32 mmol), and the solution was stirred at 25 °C under argon for 23 h. The mixture was concentrated, and the residue was purified by chromatography (silica gel 60, ethyl acetate-methanol-chloroform 1.5: 1.5:7) to yield 42.0 mg (72%) of 13 as an unstable, waxy solid: IR (neat) 3289, 2937, 1656, 1630, 1284, 1210, 1164 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃, diastereomeric mixture) δ 5.95, 5.90 (d, 1H), 5.87 (s, 1H), 3.99 (m, 2H), 3.84 (m, 2H), 3.78 (s, 3H), 3.40 (m, 1H), 3.30 (s, 3H), 2.75 (m, 1H), 2.01 (s, 3H), 1.90 (m, 1H), 1.69 (m, 1H); ¹⁹F-NMR (280 MHz, CDCl₃) δ -6.45 (t, J = 9 Hz); ¹³C-NMR (75 MHz, CDCl₃, diastereomeric mixture) δ 174.8, 170.6, 170.4, 159.5, 159.4, 157.5, 131.6, 131.2, 129.4, 129.0, 121.9, 103.3, 94.8, 94.7, 61.7, 61.6, 61.3, 55.6, 51.5, 51.4, 46.5, 46.3, 41.5, 41.1, 35.6, 35.2, 24.7, 23.2, 23.0, 21.5; MS m/z 332 (-OMe), 264 (-OCH₂CF₃, 56), 260 (73), 217 (32), 205 (32), 192 (100).

4-(Acetamidomethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroquinoline (14). A mixture of 13 (85 mg, 0.23 mmol) and 10% palladium on carbon (45 mg) in absolute methanol (1.5 mL) was stirred for 6 h at 25 °C under a hydrogen atmosphere. The catalyst was removed by filtration over Celite, and the concentrate was purified by chromatography (silica gel 60, ethyl acetate-methanol-chloroform 1:1:8) to give 45.0 mg (73%) of 14 as a waxy solid: IR (neat) 3355, 2930, 1649, 1509, 1370, 1237, 1151, 958, 858, 819 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.61 (s, 1H), 6.11 (s, 1H), 5.60 (bt, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.48 (t, J = 6 Hz, 2H), 3.26 (m, 2H), 2.94 (quin, J = 6 Hz, 1H), 1.99 (s, 3H), 1.85 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 170.3, 148.8, 141.3, 139.1, 113.3, 112.5, 99.5, 56.8, 55.7, 44.5, 38.6, 34.9, 25.1, 23.4; MS m/z 264 (M⁺), 205 (34), 192 (100), 190 (17), 161 (21); HRMS m/z obsd 264.1474 (M⁺), calcd for C₁₄H₂₀N₂O₃ 264.1474. Anal. Calcd for C₁₄H₂₀N₂O₃: C, 63.62; H, 7.63; N, 10.60. Found: C, 63.58; H, 7.61; N, 10.33.

4-(Acetamidomethyl)-6,7-dimethoxy-1-(p-tolylsulfonyl)-1,2,3,4tetrahydroquinoline (15). To a solution of 14 (18 mg, 0.07 mmol) in dry pyridine (0.3 mL) at 0 °C was added a solution of p-toluenesulfonyl chloride (13 mg, 0.07 mmol) in methylene chloride (0.1 mL) under argon, and the solution was stirred for 15.5 h at 0 °C. The mixture was diluted with chloroform (7 mL) and transferred to ice-cold saturated aqueous sodium bicarbonate (2.5 mL). The aqueous layer was extracted with chloroform (4 \times 2.5 mL), and the combined organic extracts were dried over anhydrous sodium sulfate. Removal of the solvent and purification by chromatography (silica gel 60, ethyl acetate-methanol-chloroform 1:1.5:7.5) gave 24.0 mg (84%) of 15 as a tan solid: mp 168 °C; IR (KBr) 3396, 3250, 3077, 2938, 1636, 1511, 1443, 1343, 1271, 1224, 1160, 859, 680 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 8 Hz, 2H), 7.28 (s, 1H), 7.22 (d, J = 2 Hz, 2H), 6.65 (s, 1H), 5.56 (bt, J = 6 Hz, 1H),3.86 (s, 3H), 3.85 (s, 3H), 3.79 (m, 1H), 3.72 (m, 1H), 3.35 (m, 1H), 2.95 (m, 1H), 2.83 (m, 1H), 2.39 (s, 3H), 1.91 (s, 3H), 1.53 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 170.4, 147.5, 146.8, 143.8, 136.0, 130.0, 129.6 (2 Ar), 127.3 (2 Ar), 122.6, 110.6, 108.7, 55.9, 55.8, 44.4, 44.3, 34.7, 24.1, 23.2, 21.5; MS m/z 418 (M⁺), 264 (11), 207 (19), 204 (19), 195 (80), 190 (28), 178 (100), 164 (22), 152 (30), 91 (40).

Compound 15 crystallized from 5% aqueous methanol in space group *Pbca* (no. 61) with a = 19.929(6) Å, b = 23.169(5) Å, c = 9.234(4) Å, z = 8, and $d_{calc} = 1.304$ g/cm³. The intensity data were measured on a Rigaku AFC6R diffractometer (Mo K α ($\lambda_1 = 0.71069$ Å) radiation). Of the 3417 reflections collected, 1587 were considered to be observed $[I > 3.00\sigma(I)]$. The structure was solved by direct methods, and the final discrepancy indices were R = 0.048 and $R_w = 0.054$.

4-(Acetamidomethyl)-7-methoxy-2,3,4,6-tetrahydroquinolin-6one (16). To a solution of 14 (13 mg, 0.05 mmol) in acetonitrile (0.3 mL) at 0 °C was added a solution of ceric ammonium nitrate (57 mg, 0.10 mmol) in water (0.1 mL). After 1 h at 0 °C the mixture was diluted with chloroform (1 mL) and carefully treated with saturated aqueous sodium bicarbonate until neutral, and the layers were separated. The aqueous layer was washed with chloroform (7 × 1 mL), and the combined organic extracts were concentrated to give 12.3 mg (~100%) of 16 as a bright yellow oil that was not purified due to its instability: IR (neat) 3309, 1656, 1636, 1556, 1510 cm⁻¹; H-NMR (300 MHz, CDCl₃) 6.26 (s, 1H), 6.24 (s, 1H), 5.92 (bt, 1H), 4.09 (m, 2H), 3.78 (s, 3H), 3.49 (quin, J = 7 Hz, 1H), 3.41 (quin, J = 7 Hz, 1H), 2.85 (quin, J = 6 Hz, 1H), 2.02 (s, 3H), 1.97 (m, J = 6 Hz, 1H), 1.75 (m, J = 6 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 181.73 (C=O), 154.3 (C=N).

4-(Acetamidomethyl)-6-hydroxy-7-methoxyquinoline (18). To a solution of 14 (21 mg, 0.08 mmol) in acetonitrile (0.5 mL) at 0 °C was added a solution of ceric ammonium nitrate (177 mg, 0.32 mmol) in water (0.4 mL). The bright yellow mixture was stirred for 2 h, poured into chloroform (3 mL), and treated with saturated aqueous sodium bicarbonate (35 drops) and water (30 drops). The mixture was extracted with chloroform $(4 \times 5 \text{ mL})$, and the combined organic washings were passed through a plug of anhydrous sodium sulfate. Removal of the solvent gave 20 mg of a 2:1 mixture of 18 and 16. The crude material was dissolved in chloroform (2.5 mL) and was stirred under an atmosphere of oxygen for 18 h. Concentration and purification by radial chromatography (Chromatotron, 1-mm rotor, 20% methanol-chloroform) afforded 18 mg (90%) of 18 as a wax: IR (KBr) 3283, 2930, 1649, 1516, 1483, 1264, 1032, 852 cm⁻¹; ¹H-NMR (300 MHz, CD₃OD) δ 8.49 (d, J = 5 Hz, 1H), 7.31 (s, 1H), 7.28 (s, 1H), 7.21 (d, J = 5 Hz, 1H), 4.70 (s, 2H), 3.99 (s, 3H), 2.04 (s, 3H); ¹³C-NMR (75 MHz, CD₃OD) δ 173.4, 153.4, 149.2, 147.7, 145.3, 144.1, 123.9, 118.8, 107.8, 105.8, 56.4, 41.2, 22.5; MS m/z 246 (M⁺, 96), 203 (67), 176 (100); HRMS m/z obsd 246.1004 (M⁺), calcd for $C_{13}H_{14}N_2O_3$ 246.1004. Anal. Calcd for C13H14N2O3: C, 63.40; H, 5.73; N, 11.38. Found: C, 63.52; H, 5.60; N, 11.11.

4-(Aminomethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroquinoline (19). A mixture of 14 (20 mg, 0.076 mmol) in ethanol (2 mL) and 3 M aqueous hydrochloric acid (3 mL) was heated to reflux for 17 h and concentrated. The residue was suspended in chloroform (2 mL) and was treated with an excess of 1% ammoniacal chloroform at 0 °C. The resulting ammonium chloride was removed by filtration, and the concentrate was purified by chromatography (silica gel 60, 5% methanol in 1% ammoniacal chloroform) to afford 13 mg (78%) of 107 as a tan oil: IR (neat) 3369, 2931, 2851, 1616, 1514, 1463, 1230, 1138, 1031, 859 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.61 (s, 1H), 6.10 (s, 1H), 3.78 (s, 6H), 3.22 (m, 2H), 2.89 (m, 2H), 2.69 (m, 1H), 1.93 (m, 2H), 1.25 (bs, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 148.5, 141.2, 138.9, 113.9, 113.5, 99.4, 56.8, 55.7, 47.7, 38.7, 38.3, 24.7; MS m/z 222 (M⁺), 192 (100), 161 (20), 160 (17); HRMS m/z obsc 222.1368 (M⁺), calcd for Cl₂H₁₈N₂O₂ 222.1368.

Sulfonation of 19. To a solution of 19 (19 mg, 0.08 mmol) in dry pyridine (0.3 mL) at 0 °C under argon was added a solution of benzenesulfonyl chloride (14 mg, 0.08 mmol) in dry methylene chloride (0.1 mL) during 20 min, and the solution was stirred for 24 h. The mixture was concentrated and purified by chromatography (silica gel 60, 10% methanol-ammoniacal chloroform) to afford 4.3 mg (15%) of 20 as a foam: IR (neat) 3276, 2931, 2851, 1616, 1516, 1450, 1323, 1158, 726 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.84 (m, J = 1, 2, 7 Hz, 2H), 7.54 (m, 3H), 6.44 (s, 1H), 6.07 (s, 1H), 4.60 (bt, J = 6 Hz, 1H), 3.78 (s, 3H), 3.72 (s, 3H), 3.15 (m, 4H), 2.87 (bm, 1H), 1.91 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 149.2, 141.4, 139.9, 139.3, 132.6, 129.2 (2), 126.9 (2), 113.2, 111.3, 99.5, 56.8, 55.7, 48.1, 38.3, 35.0, 24.6; MS m/z 362 (M⁺), 192 (100), 161 (7); HRMS m/z obsd 362.1300 (M⁺), calcd for C₁₈H₂₂N₂O₄S 362.1300.

There was also obtained 11.5 mg (40%) of (±)-4-(aminomethyl)-1-N-(phenylsulfonyl)-6,7-dimethoxy-1,2,3,4-tetrahydroquinoline (**21**) as a foam: IR (neat) 3389, 2937, 1609, 1509, 1450, 1343, 1164 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.56 (m, 3H), 7.40 (m, 3H), 6.60 (s, 1H), 3.97 (m, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 3.66 (m, 1H), 2.63 (m, 2H), 2.40 (m, 1H), 1.56 (bm, 4H); ¹³C-NMR (75 MHz, CDCl₃) δ 147.5, 146.9, 139.4, 132.8, 130.1, 128.9 (2), 127.3 (2), 123.3, 110.5, 109.1, 56.0 (2 OMe), 46.8, 44.9, 37.9, 23.9; MS m/z 362 (M⁺), 204 (16), 192 (100), 190 (69); HRMS m/z obsd 362.1300 (M⁺), calcd for C₁₈H₂₂N₂O₄S 362.1300.

In addition, a third component of the reaction mixture was obtained as 15.3 mg (39%) of (\pm)-4-((benzenesulfonamido)methyl)-1-*N*-(phenylsulfonyl)-6,7-dimethoxy-1,2,3,4-tetrahydroquinoline (**22**): IR (neat) 3283, 2937, 1616, 1513, 1330, 1164 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.77 (m, 2H), 7.55 (m, 6H), 7.40 (m, 4H), 6.46 (s, 1H), 4.25 (bt, *J* = 6 Hz, 1H), 3.89 (s, 3H), 3.82 (m, 1H), 3.77 (s, 3H), 3.66 (m, 1H), 2.89 (m, 1H), 2.69 (m, 2H), 1.47 (m, 2H); MS *m/z* 502 (M⁺), 361 (10), 204 (70), 192 (94), 190 (56), 77 (100); HRMS *m/z* obsd 502.1232 (M⁺), calcd for C₂₄H₂₆N₂O₆S 502.1232.

N-(Ethoxycarbonyl)-3,4-dimethoxyaniline (27). To a solution of 26 (5.35 g, 29.4 mmol) in dry tetrahydrofuran (100 mL) under argon were added diphenylphosphoryl azide (9.7 g, 35.2 mmol), absolute ethanol (13.5 g, 0.3 mol), and dry triethylamine (3.57 g, 35.2 mmol). The mixture was stirred for 1.5 h at 60 °C, cooled to ambient temperature, diluted with ethyl acetate (300 mL), and washed with saturated aqueous sodium

bicarbonate (4 × 50 mL), water (3 × 50 mL), and saturated aqueous sodium chloride (3 × 20 mL). The organic layer was separated and was dried over anhydrous sodium sulfate. The concentrate was purified by chromatography (silica gel 60, 60% ether-hexane) to give 6.23 g (94%) of 27 as colorless crystals: mp 47.0-48.0 °C (ether-hexane); IR (neat) 3429, 1736, 1602, 1530, 1231, 1052, 779 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8 Hz, 1H), 7.26 (s, 1H), 7.02 (t, J = 8 Hz, 1H), 6.62 (dd, J = 1, 8 Hz, 1H), 4.24 (q, J = 7 Hz, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 1.33 (t, J = 7 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 153.5, 152.0, 136.9, 132.2, 124.2, 110.9, 106.4, 61.1, 60.6, 55.8, 14.5; MS m/z 225 (M⁺, 100), 138 (28), 95 (10), 92 (15); HRMS m/z obsd 225.1001 (M⁺), calcd for C₁₁H₁₅NO₄ 225.1001.

2,3-Dimethoxyaniline (28). To a suspension of powdered potassium hydroxide (2.81 g, 50 mmol) in absolute ethanol (25 mL) was added **27** (1.13 g, 5 mmol). The mixture was refluxed for 4 h, cooled to room temperature, concentrated, and diluted with diethyl ether (50 mL). The ethereal solution was washed with saturated aqueous sodium chloride (3 \times 25 mL) and dried over anhydrous sodium sulfate. Removal of the solvent afforded 0.73 g (95%) of **28** as an orange oil that was homogeneous by ¹H- and ¹³C-NMR: IR (neat) 3467, 3370, 2937, 1617, 1496, 1317, 1271, 1131, 1005, 785 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 6.84 (t, J = 8 Hz, 1H), 6.38 (dd, J = 1, 8 Hz, 1H), 6.33 (dd, J = 1, 8 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.83 (bs, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 152.9, 140.6, 135.6, 124.1, 108.7, 102.2, 59.7, 55.6; MS *m/z* 153 (M⁺, 100), 138 (14), 95 (32), 84 (41); HRMS *m/z* obsd 153.0790 (M⁺), calcd for C₈H₁₁NO₂ 153.0790.

(2,3-Dimethoxyphenyl)hydrazine (29). To a solution of 28 (3.8 g, 24.8 mmol) in 6 M aqueous hydrochloric acid (10 mL) at 0 °C was added a solution of sodium nitrite (1.9 g, 28.7 mmol) in water (5.4 mL) during 30 min, and the yellow mixture was stirred for 1.5 h. To this mixture was added dropwise a solution of stannous chloride (33.0 g, 146 mmol) in concentrated hydrochloric acid (30.0 mL) during 2 h. After stirring for 1 h the mixture was poured into 10 M aqueous sodium hydroxide (80 mL) at 0 °C, and the solids were filtered and washed with benzene (5 \times 50 mL). The gray solid residue was suspended in water (30 mL) and extracted with diethyl ether (5 \times 100 mL), and the combined benzene and diethyl ether extracts were dried over anhydrous sodium sulfate. Filtration and removal of the solvent gave the crude product, which was recrystallized from diethyl ether to yield 3.05 g (73%) of 29 as a pale yellow solid: mp 78-81 °C (lit.16 78-82 °C); IR (neat) 3335, 2937, 1603, 1503, 1477, 1264, 772 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.00 (t, J = 8 Hz, 1H), 6.65 (dd, J = 1, 8 Hz, 1H), 6.43 (dd, J = 1, 8 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 152.3, 145.3, 134.8, 124.4, 140.5, 103.0, 60.0, 55.8; MS m/z 168 (M⁺), 153 (33), 138 (100), 95 (63)

Condensation of 29 with Dihydrofuran. A stream of hydrogen chloride gas was bubbled through a solution of 29 (1.50 g, 8.9 mmol) in absolute methanol (20 mL) at 0 °C for 1 min, and the solution was concentrated. The residual hydrochloride salt was taken up in tetrahydrofuran (22 mL) and water (2.2 mL) at 0 °C and to this solution was added dropwise 2,3-dihydrofuran (0.81 mL, 10.7 mmol). After stirring for 18 h at 4 °C the mixture was cooled to 0 °C and diluted with diethyl ether (40 mL). The layers were separated, and the yellow organic layer was washed with saturated aqueous sodium chloride $(1 \times 5 \text{ mL})$ and dried over anhydrous magnesium sulfate. Concentration of the solution followed by chromatography (silica gel 60, 5% methanol-chloroform) gave 1.80 g (85%) of an approximately 1:1 mixture of 30 and 31 as an amber-colored oil. The following spectral data is for a homogeneous sample of 30 obtained by collection of the more highly retained chromatographic fractions: IR (neat) 3329, 2937, 1603, 1476, 1264, 1125, 773, 732 cm⁻¹; ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.20 (t, J = 5 \text{ Hz}, 1\text{H}), 6.98 (m, 2\text{H}), 6.40 (dd, J)$ J = 1, 8 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.72 (t, J = 6 Hz, 2H), 2.41 (td, J = 5, 7 Hz, 2H), 1.84 (quin, J = 7 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 152.4, 141.8, 139.1, 133.5, 124.6, 106.1, 102.8, 62.3, 60.2, 55.7, 29.4, 28.9; MS m/z 238 (M⁺), 168 (10), 153 (10), 138 (55), 95 (33), 77 (100); HRMS m/z obsd 238.1317 (M⁺), calcd for C₁₂H₁₈N₂O₃ 238.1317.

3-(2-Hydroxyethyl)-6,7-dimethoxyindole (32) and 3-(2-Hydroxyethyl)-4-methoxyindole (33). A mixture of 30 and 31 (2.24 g, 8.3 mmol) and anhydrous zinc chloride (2.6 g, 19.1 mmol) in ethylene glycol (30 mL) was degassed by evacuating the flask and back-filling with argon (3×). The suspension was stirred at 160 °C for 1.5 h. The dark red mixture was poured onto a mixture of ice (30 mL) and 10% hydrochloric acid (20 mL) and was stirred for 15 min. The resulting brown solution was extracted with ether (3 × 20 mL) and ethyl acetate (3 × 20 mL). The combined organic layers were washed with 10% hydrochloric acid (2 × 20 mL) and saturated aqueous sodium chloride (2 × 20 mL) and dried over anhydrous magnesium sulfate. Concentration of the solution and chromatography (silica gel 60, 80% ether-hexane) gave 586 mg (32%) of an approximately 1.7:1 mixture of 32 and 33 as an oil. The following spectral data is for a homogeneous sample of 32 obtained by collection of the more highly retained chromatographic fractions: IR (neat) 3409, 2937, 1629, 1510, 1257, 1091, 1038, 792 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 8.25 (bs, 1H), 7.25 (d, J = 9 Hz, 1H), 6.98 (d, J = 2 Hz, 1H), 6.85 (d, J = 9 Hz, 1H), 4.00 (s, 3H), 3.93 (s, 3H), 3.89 (t, J = 6 Hz, 2H), 3.98 (td, J = 2, 6 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 147.2, 134.5, 131.0, 124.2, 122.8, 113.7, 112.5, 108.2, 62.5, 60.8, 57.4, 28.8; MS m/z 221 (M⁺), 206 (12), 190 (68), 160 (100); HRMS m/z obsd 221.1052 (M⁺), calcd for C₁₂H₁₅NO₃ 221.1052.

A solution of 32 and 33 (459 mg, 2.2 mmol) and p-toluenesulfonyl chloride (1.7 g, 8.9 mmol) in dry tetrahydrofuran (3 mL) under argon was cooled to 0 °C, treated with sodium hydride (895 mg, 22.1 mmol, 60% dispersion in mineral oil), and slowly warmed to ambient temperature during 5 days. The mixture was diluted with diethyl ether (5 mL) and water (1 mL), and the aqueous layer was extracted with diethyl ether (6 \times 5 mL). The combined organic extracts were washed with saturated aqueous sodium chloride $(2 \times 5 \text{ mL})$ and dried over anhydrous magnesium sulfate. Removal of the solvent and chromatography of the residual oil (silica gel 60, 60% ether-hexane) gave 689 mg (58%) of a mixture of 34 and the tosylate of 33 as an oil. Further purification of the mixture gave pure 34 as a waxy solid: IR (neat) 2937, 1596, 1503, 1357, 1177, 1091, 905, 812 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 8 Hz, 2H), 7.68 (d, J = 8 Hz, 2H), 7.46 (t, J = 1 Hz, 1H), 7.23 (m, 4H), 7.03 (d, J = 9 Hz, 1H), 6.85 (d, J = 9 Hz, 1H), 4.26 (t, J = 7 Hz, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.01 (td, J = 1, 7 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 150.7, 144.8, 144.2, 136.7, 132.6, 129.7 (2), 129.5 (2), 128.6, 127.7 (2), 127.3 (2), 127.0, 126.4, 125.8, 114.8, 113.6, 109.8, 68.9, 60.5, 56.6, 24.8, 21.5 (2); MS m/z 529 (M+), 331 (13), 246 (12), 202 (54), 138 (29), 91 (100); HRMS m/z obsd 529.1228 (M⁺), calcd for C₂₆H₂₇NO₇S₂ 529.1228. Anal. Calcd for C₂₆H₂₇NO₇S₂: C, 58.96; H, 5.14; N, 2.64. Found: C, 58.99; H, 5.30; N, 2.45.

In addition, pure **35** was isolated as a waxy solid: IR (neat) 2950, 1596, 1503, 1363, 1177, 978, 898, 819 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8 Hz, 2H), 7.52 (d, J = 8 Hz, 1H), 7.48 (d, J = 8 Hz, 2H), 7.24 (d, J = 8 Hz, 2H), 7.21 (d, J = 1 Hz, 1H), 7.16 (t, J = 8 Hz, 1H), 7.04 (d, J = 8 Hz, 2H), 6.50 (d, J = 8 Hz, 1H), 4.27 (t, J = 6 Hz, 2H), 3.72 (s, 3H), 3.07 (td, J = 1, 6 Hz, 2H), 2.33 (s, 3H), 2.32 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 153.9, 144.9, 144.4, 136.7, 135.1, 132.5, 129.9 (2), 129.4 (2), 127.5 (2), 126.2 (2), 125.5, 123.3, 119.5, 117.0, 106.6, 103.4, 69.8, 55.1, 26.8, 21.5 (2); MS m/z 499 (M⁺), 327 (23), 172 (100), 91 (81); HRMS m/z obsd 499.1123 (M⁺), calcd for C₂₅H₂₅-NO₆S 499.1123.

1-N-(p-Tolylsulfonyi)-3-(2-azidoethyl)-6,7-dimethoxyindole (36). A mixture of 34 (55 mg, 0.104 mmol) and sodium azide (136 mg, 2.08 mmol) in dry N,N-dimethylformamide (0.5 mL) was stirred at 50 °C for 45 min under argon. The mixture was diluted with diethyl ether (20 mL) and filtered through Celite. The filtrate was washed with water (3×3) mL) and saturated aqueous sodium chloride $(1 \times 3 \text{ mL})$ and dried over anhydrous magnesium sulfate. Concentration followed by chromatography of the residual oil (silica gel 60, 40% ethyl acetate-hexane) afforded 34 mg (82%) of 36 as a glass: IR (film) 2938, 2100, 1603, 1503, 1357, 1257, 1091, 806 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8 Hz, 2H), 7.59 (s, 1H), 7.22 (d, J = 8 Hz, 2H), 7.13 (d, J = 9 Hz, 1H), 6.90 (d, J = 9 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.58 (t, J = 7 Hz, 2H),2.94 (t, J = 7 Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 150.7, 144.0, 136.8, 136.7, 129.5 (2), 128.8, 127.2 (3), 125.6, 116.4, 113.5, 109.9, 60.5, 56.6, 50.6, 24.7, 21.5; MS m/z 400 (M⁺, 100), 245 (44), 189 (78), 160 (72), 129 (30), 91 (84); HRMS m/z obsd 400.1205 (M^+) , calcd for $C_{19}H_{20}N_4O_4S$ 400.1205.

1-N-(p-Tolylsulfonyl)-3-(2-aminoethyl)-6,7-dimethoxyindole (37). To a solution of 36 (33 mg, 0.082 mmol) in tetrahydrofuran (0.5 mL) were added triphenylphosphine (24 mg, 0.091 mmol) and water (2 drops), and the mixture was stirred for 17 h at ambient temperature. Concentration followed by chromatography of the residual oil (silica gel 60, 5% methanolchloroform to 10% methanol-1% ammoniacal chloroform) gave 27 mg (88%) of 37 as a colorless oil: IR (neat) 3370 (b), 2944, 1596, 1503, 1350, 1257, 1171, 1091, 806 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8 Hz, 2H), 7.75 (s, 1H), 7.21 (d, J = 8 Hz, 2H), 7.15 (d, J = 9 Hz, 1H), 6.87 (d, J = 9 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.05 (t, J = 7 Hz, 2H), 2.83 (t, J = 7 Hz, 2H), 2.34 (s, 3H), 2.21 (bs, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 150.6, 144.0, 136.8 (2), 129.5 (2), 128.8, 127.6, 127.2 (2), 125.2, 117.7, 113.9, 109.7, 60.5, 56.6, 41.2, 28.6, 21.5; MS m/z 374 (M⁺), 190 (100); HRMS m/z obsd 374.1300 (M⁺), calcd for C₁₉H₂₂N₂O₄S 374.1300.

1-N-(p-Tolylsulfonyl)-3-(2-p-((tolylsulfonyl)oxy)ethyl)-4-nitro-6,7dimethoxyindole (38). Acetyl nitrate was prepared by adding 70% aqueous nitric acid (1 mL) to acetic anhydride (6.6 mL) at -10 °C and stirring the mixture for 1 h. A-solution of 32 (30 mg, 0.057 mmol) in acetic anhydride (1 mL) was cooled to -45 °C, treated with the acetyl nitrate solution (14 drops), and then warmed to -20 °C during 2 h. The yellow mixture was diluted with chloroform (5 mL), washed with saturated aqueous sodium bicarbonate $(1 \times 2 \text{ mL})$, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by chromatography of the residue (silica gel 60, 40% ethyl acetate-hexane) gave 14.6 mg (45%) of 38 as a yellow solid: mp 141.0-142.0 °C (ethyl acetate-hexane); IR (neat) 2951, 1510, 1357, 1178, 1104, 978, 905, 812, 666 cm⁻¹; ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.78 \text{ (s, 1H)}, 7.73 \text{ (d, } J = 8 \text{ Hz}, 2\text{H}), 7.64 \text{ (d, } J$ = 8 Hz, 2H), 7.58 (s, 1H), 7.30 (d, J = 8 Hz, 2H), 7.18 (d, J = 8 Hz, 2H), 4.21 (t, J = 6 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.17 (t, J = 6Hz, 2H), 2.40 (s, 3H), 2.37 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 148.2, 144.9, 144.5, 141.3, 136.9, 136.5, 132.7, 132.0, 129.8 (2), 129.7 (2), 127.9, 127.7 (2), 127.1 (2), 120.3, 113.3, 107.5, 69.7, 60.8, 56.8, 27.5, 21.6, 21.5; MS m/z 574 (M⁺), 246 (10), 155 (27), 91 (100); HRMS m/z obsd 574.1079 (M⁺), calcd for C₂₆H₂₆N₂O₉S₂ 574.1079. Anal. Calcd for $C_{26}H_{26}N_2O_9S_2$: C, 54.35; H, 4.56; N, 4.88. Found: C, 54.05; H, 4.58; N, 4.78.

There was also obtained 12.8 mg (39%) of 1-*N*-(*p*-tolylsulfonyl)-2nitro-3-(2-*p*-((tolylsulfonyl)oxy)ethyl)-6,7-dimethoxyindole (**39**) as a yellow solid: IR (neat) 2951, 1510, 1357, 1178, 1104, 978, 905, 812, 666 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 8.25 (d, J = 8 Hz, 2H), 7.62 (d, J = 8 Hz, 2H), 7.40 (d, J = 8 Hz, 3H), 7.26 (d, J = 8 Hz, 2H), 7.64 (d, J = 8 Hz, 1H), 4.35 (t, J = 6 Hz, 2H), 3.95 (s, 3H), 3.56 (s, 3H), 3.25 (t, J = 6 Hz, 2H), 2.50 (s, 3H), 2.40 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 154.5, 145.1, 142.5, 137.9, 136.5, 132.1, 129.9 (2), 129.4 (2), 128.4 (2), 127.6 (2), 126.0, 123.5, 118.2 (2), 112.1 (2), 68.7, 60.1, 56.5, 25.2, 21.7, 21.6.

6,7-Dimethoxy-5-N'-(p-tolyisulfonyi)pyrrolo[4,3,2-de]-1,2,3-trihydroquinoline (41). A suspension of platinum(IV) oxide hydrate (37.6 mg, 0.153 mmol) in absolute ethanol (1 mL) was stirred under an atmosphere of hydrogen for 30 min and then was diluted with absolute ethanol (14 mL). To this black suspension was added a solution of 38 (44.1 mg, 0.077 mmol) in tetrahydrofuran (1 mL), and the mixture was stirred for 30 min under a hydrogen atmosphere. The colorless suspension was filtered through a cotton plug, and the filtrate was concentrated to give crude 40 as a colorless solid. This material was taken up into dry chloroform (15 mL) and N,N-diisopropylethylamine (32.7 mg, 0.253 mmol), and the solution was heated under argon at 60 °C for 29 h and then refluxed for 24 h. The mixture was cooled to room temperature, diluted with methylene chloride (30 mL), washed with saturated aqueous sodium bicarbonate (1×10 mL), and dried over anhydrous sodium sulfate. Concentration followed by chromatography of the residual oil (silica gel 60, 80% ether-hexane) gave 24.2 mg (85%) of 41 as a colorless foam: IR (film) 3389, 2938, 1623, 1509, 1357, 1171, 1098, 739, 673 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8 Hz, 2H), 7.21 (d, J = 8Hz, 2H), 7.17 (t, J = 1 Hz, 1H), 6.10 (s, 1H), 3.85 (bs, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.37 (t, J = 6 Hz, 2H), 2.87 (td, J = 1, 6 Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 152.6, 143.9, 136.7, 136.4, 129.5 (2), 127.7 (2), 127.1, 127.0, 118.7, 115.3, 114.8, 93.2, 61.1, 56.9, 42.7, 22.5, 21.6; MS m/z 372 (M⁺), 219 (35), 218 (38), 217 (100), 203 (25); HRMS m/z obsd 372.1144 (M⁺), calcd for C₁₉H₂₀N₂O₄S 372.1144.

7-Methoxy-5-N'-(p-tolylsulfonyl)pyrrolo[4,3,2-de]-2,3,6-trlhydroquinolin-6-one (42) and Tosylate (43). A mixture of 41 (21 mg, 0.056 mmol) in acetonitrile (0.8 mL) was cooled to 0 °C and treated dropwise with a solution of ceric ammonium nitrate (61 mg, 0.111 mmol) in water (0.48 mL). After stirring at 0 °C for 1 h, the mixture was diluted with methylene chloride (5 mL). The organic layer was washed with dilute aqueous sodium bicarbonate solution and dried over anhydrous p-toluenesulfonic acid (19.0 mg, 0.111 mmol), was added to the filtrate, and the mixture was allowed to stand for 2 h at room temperature. The solvent was removed under reduced pressure to give 42.2 mg of 43 as a dark yellow

solid: IR (neat) 3436, 2921, 2851, 1696, 1654, 1559, 1449, 1384, 1319, 1220, 1178, 1120, 1094, 1035, 1009 cm⁻¹; UV-vis (MeOH) 222 (λ_{max}), 314 (sh) nm; ¹H-NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 8 Hz, 2H), 7.71 (d, J = 8 Hz, 2H), 7.62 (s, 1H), 7.35 (d, J = 8 Hz, 2H), 7.11 (d, J = 8 Hz, 2H), 6.98 (s, 1H), 4.11 (t, J = 7 Hz, 2H), 3.92 (s, 3H), 3.04 $(t, J = 7 Hz, 2H), 2.42 (s, 3H), 2.30 (s, 3H); {}^{13}C-NMR (75 MHz, 75 MHz)$ CDCl₃) § 165.9, 162.5, 160.0, 147.4, 141.8, 140.3, 132.5, 130.1 (2), 129.2 (2), 128.8 (2), 127.0, 125.8 (2), 124.5, 123.9, 116.7, 97.9, 44.1, 29.6, 21.8, 21.2, 17.5; FAB-HRMS m/z obsd 357.0907 (M⁺), calcd for C18H17N2O4S 357.0909. A sample of 43 was chromatographed (silica gel 60, 10% methanol-methylene chloride) to give pure 42 as an unstable yellow glass: IR (neat) 2924, 1668, 1619, 1576, 1463, 1377, 1184, 1118, 1005, 812 cm⁻¹; UV-vis (MeOH) 222 (λ_{max}), 305 (sh) nm; ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.10 \text{ (d, } J = 8 \text{ Hz}, 2\text{H}), 7.52 \text{ (s, 1H)}, 7.31 \text{ (d, } J$ = 8 Hz, 2H), 6.11 (s, 1H), 4.18 (t, J = 7 Hz, 2H), 3.79 (s, 3H), 2.78 (t, J = 7 Hz, 2H), 2.41 (s, 3H).

7-Methoxypyrrolo[4,3,2-de]quinolin-6-one (44). To a solution of 42 (6.1 mg, 0.03 mmol) in dimethylformamide (2 mL) was added sodium azide (70.2 mg, 1.08 mmol) at room temperature. The solution was stirred for 4 h and concentrated under reduced pressure. The residue was purified by chromatography (10% methanol-methylene chloride) to give 3.3 mg (55%) of 44 as an unstable yellow solid: IR (neat) 3500-3300, 2919, 2815, 1656, 1582, 1543, 1470, 1331, 1284, 1251, 1191, 1091, 1025 cm⁻¹; UV-vis (MeOH) 212 (λ_{max}), 427 (sh) nm; ¹H-NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 6 Hz, 1H), 7.92 (s, 1H), 7.70 (d, J = 6 Hz, 1H), 6.99 (s, 1H), 4.02 (s, 3H); HRMS m/z obsd 200.0586 (M⁺), calcd for C₁₁H₈N₂O₂ 200.0586.

7-Amino-5-N' (p-tolylsulfonyl)pyrrolo[4,3,2-de]-2,3,6-trihydroquinolin-6-one (46). To a solution of 43 (20.0 mg, 0.027 mmol) in absolute ethanol (6 mL) was added ammonium hydroxide solution (0.25 mL). The mixture was refluxed for 3 h. After concentration, the residue was purified by chromatography (silica gel 60, 10% methanol-methylene chloride) to give 17.4 mg (91%) of 46 as a red solid: IR (neat) 2958, 2925, 2856, 1732, 1683, 1651, 1600, 1559, 1552, 1532, 1446, 1378, 1332, 1279, 1178, 1098, 1037, 731, 667 cm⁻¹; UV-vis (MeOH) 236 (λ_{max}), 335 (sh) nm; ¹H-NMR (300 MHz, CDCl₃) δ 8.02 (d, J = 8 Hz, 2H), 7.62 (s, 1H), 7.38 (d, J = 8 Hz, 2H), 6.51 (s, 1H), 3.91 (t, J = 7 Hz, 2H), 2.93 (t, J = 7 Hz, 2H), 2.45 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ 165.4, 156.8, 154.3, 147.6, 145.5, 132.1, 130.2 (2), 129.0 (2), 128.2, 123.3, 118.3, 89.6, 42.2, 22.0, 18.2; FAB-HRMS m/z obsd 342.0911 (M⁺ + H), calcd for C₁₇H₁₆N₃O₄S 342.0912.

Makaluvamine D Trifluoroacetate (48). To a solution of 43 (20.0 mg, 0.027 mmol) in absolute ethanol (6 mL) was added tyramine (11.0 mg, 0.080 mmol). The mixture was refluxed for 8 h and then stirred for 19 h at room temperature. After concentration, the residue was purified by chromatography (silica gel 60, chloroform-methanol-trifluoroacetic acid (100:10:0.1)) to give 10.4 mg (91%) of 48 as a red solid: IR (KBr) 3440, 2927, 1683, 1637, 1559, 1442, 1210, 1138, 843, 804, 725 cm⁻¹; UV-vis (MeOH) 244 (λ_{max}), 348 (sh) nm; ¹H-NMR (300 MHz, DMSO-d₆) δ 13.13 (s, 1H), 10.74 (br d, 1H), 8.96 (br t, 1H), 7.31 (s, 1H), 7.04 (d, J = 8 Hz, 2H), 6.69 (d, J = 8 Hz, 2H), 5.54 (d, J = 2.5 Hz, 1H), 3.80 (t, J = 7 Hz, 2H), 3.45 (m, 2H), 2.87 (t, J = 7 Hz, 2H), 2.78 (t, J = 7 Hz,7 Hz, 2H); ¹³C-NMR (75 MHz, DMSO-d₆) δ 167.4, 157.0, 155.9, 152.9, 129.5 (2), 128.1, 126.8, 123.7, 122.5, 118.6, 115.2 (2), 84.1, 45.0, 42.3, 32.3, 18.1; FAB-HRMS m/z obsd 308.1399 (M⁺), calcd for C18H18N3O2 308.1399. These data were identical to those measured on a sample of natural makaluvamine D trifluoroacetate.

Acknowledgment. We are grateful to Professor Chris Ireland, University of Utah, for a sample of natural makaluvamine D trifluoroacetate. Financial support was provided by the National Science Foundation through Grant CHE-9015466.

Supplementary Material Available: Tables listing torsion angles, positional parameters, intramolecular distances, crystal data, and ORTEP for 15 (9 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.