Effect of CH₂Br₂-Addition upon Direct Oxidative Dehydrogenation of Butane into 1,3-Butadiene over Fe-Sb-O Composite Catalyst

Hitoshi Salтoh, Satoshi Satoh, Toshiaki Sodesawa, and Fumio Nozaki* Department of Industrial Chemistry, Faculty of Engineering, Chiba University, Yavoi-cho, Chiba 260 (Received February 27, 1986)

Synopsis. Effect of CH₂Br₂-addition upon direct oxidative dehydrogenation of butane into 1,3-butadiene has been investigated in a conventional flow apparatus. The activity and selectivity of Fe-Sb-O catalyst were much improved by the addition of CH₂Br₂ to butane in the mole ratio, CH₂Br₂/n- C_4H_{10} , of 0.03 to 0.10 at temperatures near 450 °C.

The dehydrogenation of paraffinic hydrocarbons such as butane (hereafter referred to as n-C₄H₁₀) is endothermic, so that high temperature is required to facilitate the reaction. The oxidative dehydrogenation has no such difficulty; however, catalytic selectivity is often poor.

The oxidative dehydrogenation of olefin such as 1butene (1-C₄H₈) is selectively achieved by the use of composite catalysts such as Fe-Sb-O1) and Bi-Mo-O.2) On the other hand, the oxidative dehydrogenation of n-C₄H₁₀ using oxygen or air as the oxidant gives preferentially a large amount of CO2 and the selectivity to form butenes (C₄H₈) or 1,3-butadiene (C₄H₆) is generally lowered. It is well known that the addition of small amounts of halogen (I2, Br2, etc.) or halogen compound (HBr, HCl, KBr, etc.) is effective for the dehydrogenation or oxidative dehydrogenation of paraffinic hydrocarbons or ethylbenzene.3-5) In addition, attempts to use COS6 or N2O7 as the oxidant for the dehydrogenation of C₄H₁₀ or ethane have recently been made. In these studies, however, a large portion of the dehydrogenated products was C₄H₈ or olefinic hydrocarbons such as propylene and ethylene, and the extent of C₄H₆ formation was usually very small.

We have previously reported on the oxidative dehydrogenation of 1-C₄H₈ to C₄H₆ over Fe-Sb-O catalyst.1) In this paper, we describe a promoting action of CH₂Br₂ for the direct oxidative dehydrogenation of n-C₄H₁₀ to C₄H₆ over Fe-Sb-O catalyst. It should also be noted that CH2Br2 is chosen as a promoter because of its appropriate magnitude of vapor pressure and its low cost.

Experimental

The catalytic tests were conducted in a conventional tubular-flow reactor operating at atmospheric pressure. The reaction products were analyzed by the gas chromatography on a 4 m column of VZ-7 (Gasukuro-kogyo Co.) operated at room temperature. The conversion of n-C₄H₁₀ (expressed by x), the selectivity to C_4H_6 (Scr), C_4H_8 (Scr), etc. were calculated by the usual procedure on the mole basis of n-C₄H₁₀ fed.

The method of preparation of the Fe-Sb-O catalyst was similar to that previously reported¹⁾: Fe(NO₃)₃ and Sb₂O₃ were used as the starting materials for the preparation of FeSb₂O₄ composite catalyst. In order to compare the activity of the Fe-Sb-O catalyst with other catalysts, Cr₂O₃(7.5 wt%)/Al₂O₃ and Fe₂O₃(30 wt%)/SiO₂ were also used in the catalytic tests. These two materials were commercially supplied from Nissan-Girdler Co., Ltd.

Results and Discussion

The results of catalytic tests obtained by three kinds of catalysts, Fe-Sb-O, Cr₂O₃/Al₂O₃, and Fe₂O₃/SiO₂, are summarized in Table 1. Table 1 indicates that an addition of small amounts of CH2Br2 to the reactant mixture is effective for the oxidative dehydrogenation of $n-C_4H_{10}$ to give C_4H_6 . Especially in the case of the Fe-Sb-O catalyst, the high conversion and selectivity $(x=67\%, Sc_7=59\%)$ were obtained with the addition of

The detailed behavior of the promoting action of

Table 1. Conversion and Selectivities Obtained by Use of Various Catalysts in Oxidative Dehydrogenation of n-C₄H₁₀ with and without Addition of CH₂Br₂ Reaction temperature: 450 °C, Catalyst weight: 3.0 g, Total gas feeding rate: 130 ml min⁻¹ Reactant concentration(mole) n-C₄H₁₀/Air = 1/12

Catalyst	Without the Addition of CH ₂ Br ₂ %						With the Addition of CH ₂ Br ₂ ^{a)} %					
	Fe-Sb-O	11	8	b)	92	b)	b)	67	59	5	36	b)
Cr_2O_3/Al_2O_3	32	5	18	77	b)	b)	40	19	16	58	2	5
Fe_2O_3/SiO_2	38	3	2	89	6	b)	48	11	20	65	b)	4
None	17	7	9	49	21	14	6	13	67	17	3	b)

a) The catalytic reaction was carried out with the mole ratio $n-C_4H_{10}/Air/CH_2Br_2=1/12/0.12$. b) The mark indicates that the numerical value is less than about 1%.



Fig. 1. Influence of CH₂Br₂-addition upon the reaction.
1: Conversion of n-C₄H₁₀, 2: Selectivity to C₄H₆ (Sc₄), 3: Selectivity to C₄H₈(Sc₄)
Catalyst: Fe-Sb-O, W: 3.0 g, t: 450 °C, F: 130 ml

Catalyst: Fe–Sb–O, W: 3.0 g, t: 450 °C, F: 130 ml min⁻¹, Mole ratio n-C₄H₁₀/Air/CH₂Br₂: 1/12/0.12.

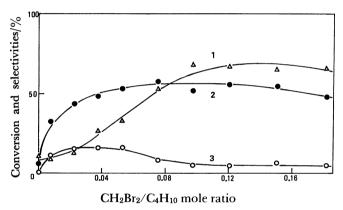


Fig. 2. Influence of CH₂Br₂/n-C₄H₁₀ ratio upon the reaction. The reaction conditions and the symblos are the same as for Fig. 1.

CH₂Br₂ for the Fe-Sb-O catalyst is further illustrated in Fig. 1. Figure 1 depicts clearly that the oxidative dehydrogenation to form C₄H₆ continues to occur so long as CH₂Br₂ is fed into the reaction. When the introduction of CH₂Br₂ is stopped, the enhanced activity gradually decreases and tends to resume the original activity.

The influence of CH_2Br_2 concentration upon the catalytic reaction is shown in Fig. 2. The conversion of n- C_4H_{10} (curve 1) is increased with an increase of the CH_2Br_2 concentration and then levels off when the mole ratio of CH_2Br_2 to n- C_4H_{10} becomes approximately 1:10. The selectivity to C_4H_6 or C_4H_8 (curve 2 or 3) is much improved even at a low CH_2Br_2 concentration (CH_2Br_2/n - C_4H_{10} =0.03—0.05).

The activity and selectivity of the Fe-Sb-O catalyst enhanced by the addition of CH₂Br₂ stayed at the same level for as long as CH₂Br₂ was being supplied. The changes in the conversion and selectivity with reaction temperature and contact time were also investigated. The results indicated that the reaction temperature near 450 °C was the best for the formation of C₄H₆,

and its yield decreased with a decreasing contact time.

No reaction occurred between n-C₄ H_{10} and CH_2Br_2 without air over the Fe-Sb-O catalyst. This fact suggests that oxygen is essential for the dissociation of CH_2Br_2 to Br_2 and for the formation of C_4H_6 and C_4H_8 . As was shown in Table 1, the dehydrogenation of n-C₄ H_{10} into C_4H_8 took place to a certain extent even in the absence of the Fe-Sb-O catalyst.

In accordance with the above findings and with other information, we have tentatively speculated the reaction pathways as follows:

$$\begin{array}{ccc}
CH_2Br_2 + 3/2O_2 & \longrightarrow & CO_2 + H_2O + Br_2 \\
Br_2 & \longleftarrow & 2Br_1
\end{array}$$
(1)

$$\begin{array}{cccc}
C_4H_{10} + Br \cdot & \longrightarrow & C_4H_9 \cdot + HBr \\
C_4H_9 \cdot & + Br \cdot & \longrightarrow & C_4H_8 + HBr
\end{array}$$
(2)

$$C_4H_8 + 1/2O_2 \longrightarrow C_4H_6 + H_2O$$
 (3)

Fe-Sb-O cat.

(here, $FeSb_2O_{4-y}$ shows the partially reduced state of the Fe-Sb-O catalyst).

The bromine radical Br \cdot generated by Eq. 18) probably plays an important role in the formation of C₄H₈. The resulting C₄H₈ is oxidatively dehydrogenated to C₄H₆ by the subsequent reaction step, Eq. 3, over the Fe-Sb-O catalyst.¹⁾

In addition, it can be speculated that the resulting HBr is converted into Br_2 by the redox mechanism of the Fe-Sb-O catalyst, as is shown by Eq. 4. This is probably responsible for the experimental fact that such a high conversion and selectivity as x=60-70%, $Sc \approx 60\%$ have been attained even at the low CH_2Br_2/n - C_4H_{10} ratio.

However, the more definitive reaction scheme must remain to be the subject for a further study.

References

- 1) M. Shimamura and F. Nozaki, Nippon Kagaku Kaishi 1982. 1879.
- 2) For example: Ph. A. Batist and G. C. A. Schuit et al., *J. Catal.*, **12**, 45 (1968).
- 3) P. S. Nangia and S. W. Benson, *J. Am. Chem. Son.*, **86**, 2773 (1964); Shell International, B. P. 1004, 393 (1965).
- 4) D. B. Fox and E. H. Lee, CHEMTECH March 1973, 186.
- 5) K. Fujimoto and T. Kunugi, *Ind. End. Chem., Prod. Res. Dev.*, **20**, 319 (1981).
- 6) M. Akimoto, T, Sakatani, and E, Echigoya., Bull. Chem. Soc. Jpn., 56, 3503 (1983).
- 7) M. Iwamoto, T. Taga, and S. Kagawa, *Chem. Lett.*, **1982**, 1469.
- 8) Log₁₀ K_p for the reaction Br₂ \rightarrow 2Br has been estimated to be about -7.9 at $450\,^{\circ}$ C by the use of data listed in "JANAF Thermochemical Tables," 2nd ed., p. 290 and p. 318 (National Bureau of Standards). The low value of $\log K_p$ appears to be unfavorable to the proposed mechanism; however, a small amount of Br can be formed and it can initiate the subsequent reaction steps represented by Eqs.