Ionic Dispersion of Pt and Pd on CeO₂ by Combustion Method: Effect of Metal–Ceria Interaction on Catalytic Activities for NO Reduction and CO and Hydrocarbon Oxidation

Parthasarathi Bera,* K. C. Patil,† V. Jayaram,* G. N. Subbanna,‡ and M. S. Hegde*,1

* Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India; †Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India; and †Materials Research Centre, Indian Institute of Science, Bangalore 560012, India

Received April 13, 2000; revised August 21, 2000; accepted August 28, 2000

Ceria-supported Pt and Pd catalysts have been synthesized by the combustion method. The catalysts are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Pt and Pd metals are ionically dispersed on the CeO₂ surface of crystallite sizes in the range of 15–20 nm. In 1% Pt/CeO₂ Pt is found to be in the +2 and +4oxidation states whereas Pd is in the +2 state in 1% Pd/CeO₂. Catalytic activities for NO reduction by CO, NH₃, CH₄, and C₃H₈ and CO, CH₄, and C₃H₈ oxidation by O₂ have been investigated over all these catalysts using the temperature-programmed reaction technique. The results are compared with Pt and Pd metals dispersed on α -Al₂O₃ support prepared by the combustion technique. Both oxidation and reduction reactions occur at much lower temperatures over M/CeO_2 compared to those over M/Al_2O_3 (M = Pt, Pd). The rate and turnover frequency of NO + CO and $CO + O_2$ reactions over M/CeO₂ are higher than those over M/Al₂O₃. The observed enhanced catalytic activity of M/CeO₂ has been attributed to the ionic dispersion of Pt and Pd on CeO₂ leading to a strong metal-ceria interaction in the form of solid solution, $Ce_{1-x}M_xO_{2-(4-n)x/2}$, having linkages of the type $-O^{2-}-Ce^{4+}-O^{2-}-M^{n+}-O^{2-}-(n=2, 4)$ on the CeO₂ surface. © 2000 Academic Press

Key Words: combustion synthesis; metal-ceria interaction; Pt/CeO₂; Pd/CeO₂; NO; CO; hydrocarbon.

INTRODUCTION

In recent years, much attention has been focused on CeO_2 -supported noble metal catalysts due to their applications in automotive exhausts. Noble metal catalysts supported on Al_2O_3 (1) are well-known three-way catalysts (TWC). CeO_2 is added as a promoter to TWC for its oxygen storage capacity (OSC) and stabilization of the metal dispersion (2–7). CeO_2 along with BaO is added to Al_2O_3 -supported noble metal catalysts to improve its performance (8). Recently, Fernández-García *et al.* (9) have shown the influence of ceria on Pd activity for the $CO + O_2$ reaction.

¹ To whom correspondence should be addressed. Fax: +91-80-3601310. E-mail: mshegde@sscu.iisc.ernet.in. Therefore, CeO_2 seems to have a promoting effect on the metal in addition to acting as a support. Besides these investigations, several authors have reported different kinds of interaction between noble metals and ceria and their effects on catalytic activities (10–18). These studies have shown that the nature and extent of interaction depend on particular noble metal, catalyst pretreatment, preparation technique, size of CeO_2 crystallite, lattice oxygen, and so on. Despite these studies, the electronic structure of noble metals on the CeO_2 surface and the role played by CeO_2 in promoting the catalytic reactions are not well understood.

Recently, we have reported the preparation by the combustion technique of Cu/CeO₂ (19) and nanosize noble metal particles dispersed on α -Al₂O₃ (20, 21) which are active catalysts for NO reduction and CO and hydrocarbon oxidation. Here we report the synthesis of M/CeO₂ (M = Pt, Pd) catalysts by the combustion method for the first time. Interestingly, unlike α -Al₂O₃ both Pt and Pd have been found to be ionically dispersed over CeO₂ support. The objectives of the present studies are to investigate the interaction between noble metals and ceria in M/CeO₂ and its comparative effects on reactivity toward NO reduction and CO, CH₄, and C₃H₈ oxidation with M/Al₂O₃.

EXPERIMENTAL

Preparation of Catalysts

The combustion mixture for the preparation of 1% Pt/CeO₂ contained $(NH_4)_2Ce(NO_3)_6$, H_2PtCl_6 , and $C_2H_6N_4O_2$ (oxalyldihydrazide) in the mole ratio 0.99: 0.01:2.33. Oxalyldihydrazide (ODH) prepared from diethyl oxalate and hydrazine hydrate was used as the fuel (22). In a typical preparation, 10 g of $(NH_4)_2Ce(NO_3)_6$ (E. Merck India Ltd., 99.9%), 0.095 g of H_2PtCl_6 (Ranbaxy Laboratories Ltd., 99%), and 5.175 g of ODH were dissolved in the minimum volume of water in a borosilicate dish of 130 cm³ capacity. The dish containing the redox mixture was introduced into a muffle furnace maintained

at 350°C. Initially the solution boiled with frothing and foaming and underwent dehydration. At the point of complete dehydration, the surface ignited, burning with a flame $(\sim 1000^{\circ} \text{C})$ and yielding a voluminous solid product within 5 min. Similarly, 1% Pd/CeO₂ has been prepared. In the case of Pd the precursor used was PdCl₂ (Glaxo India Ltd. 99%). The color of 1% Pt/CeO₂ is light gray and 1% Pd/CeO₂ is dull white. Similarly, 2-5% Pt/CeO₂ and 5% and 10% Pd/CeO₂ were also prepared by this method. Details of the preparation of α -Al₂O₃-supported metal particles have been described earlier (20). These compounds were prepared in an open muffle furnace kept in a fume cupboard with exhaust. The reaction can be controlled by carrying out the combustion in an open vessel. As-prepared combustion products without further reduction by H₂ are used for all the studies including the catalytic reactions.

Characterization of Catalysts

XRD patterns of the catalysts were recorded on a Siemens D5005 diffractometer using Cu $K\alpha$ radiation with a scan rate of 2° min⁻¹. A JEOL JEM-200CX transmission electron microscope operated at 200 kV was used to carry out TEM studies. Samples for TEM studies were prepared by taking a small quantity of powder in ethanol/acetone medium and was ultrasonicated for a few minutes. The resultant slurry was then deposited on a holey carbon-coated 200 mesh copper grid. Suitable regions in the grid were selected for electron diffraction and microscopy.

XPS of these materials were recorded in an ESCA-3 Mark II spectrometer (VG Scientific Ltd., England) using Al*K* α radiation (1486.6 eV). Binding energies were calculated with respect to C(1*s*) at 285 eV. Binding energies were measured with a precision of ± 0.2 eV. For XPS analysis the powder samples were made into pellets of 8 mm diameter and placed into an ultrahigh-vacuum (UHV) chamber at 10^{-9} Torr housing the analyzer. Prior to mounting the sample into the analyzing chamber it was kept in the preparation chamber at 10^{-9} Torr for 5 h in order to desorb any volatile species present on the sample.

Adsorption Studies

Adsorption of CO on 1% Pt/CeO₂ and 1% Pt/Al₂O₃ was carried out in a constant volume glass system. Typically 0.5 g of the catalyst was degassed at 250°C in a vacuum system (10⁻⁶ Torr) for 3 h, and then cooled to 0°C. A known volume of CO was passed into the sample tube and the pressure was measured by a digital pirani gauge calibrated against N₂. The volume of CO adsorbed expressed in cubic centimeters (STP) was accurate within \pm 10%.

Temperature-Programmed Reaction (TPR)

The catalytic reactions were carried out in a temperatureprogrammed reaction system equipped with a quadrupole mass spectrometer QXK300 (VG Scientific Ltd., England) for product analysis in a packed-bed tubular reactor. The details of this home-made TPR set-up have been described elsewhere (23). Typically 0.1-0.2 g of the catalyst was loaded in a quartz tube reactor of 20 cm length and 6 mm diameter. The reactor can be heated from 30 to 750°C at a rate of 15°C min⁻¹ and the sample temperature was measured by a fine chromel-alumel thermocouple immersed in the catalyst. The quartz tube was evacuated to 10^{-6} Torr. The gaseous products were sampled through a fine control leak valve to an ultrahigh-vacuum (UHV) system housing the quadrupole mass spectrometer at 10^{-9} Torr. The gases were passed over the catalyst at a flow rate of 25 μ mol s⁻¹ and the flow rate can be varied from 10–40 μ mol s⁻¹. Accordingly, space velocity was in the range of 5.0×10^{-5} to 2.0×10^{-4} mol g⁻¹ s⁻¹. The dynamic pressure of gases was in the range of 1 to 20 Torr in the reaction system in all of the experiments. All the masses were scanned every 10 s. At the end of the reaction, the intensity of each mass as a function of temperature (thermogram) was generated. NO, NH₃, CO, CH₄, C₃H₈, and O₂ gases were obtained from Bhoruka Gases Ltd., Bangalore. Their purities were better than 99% as analyzed by the quadrupole mass spectrometer.

RESULTS

Structural Studies

XRD patterns of 1–3% Pt/CeO₂ are shown in Fig. 1. The patterns can be indexed for CeO₂ with fluorite structure. The diffraction lines are broad and the crystallite sizes calculated by using the Debye-Scherrer method are in the range of 15-25 nm. Diffraction lines due to Pt metal or any platinum oxides have not been seen. Even the XRD pattern of as-prepared 5% Pt/CeO₂ does not contain Pt metal peaks. The 1–5% Pt/CeO₂ samples when heated in air at 500°C for 40 h do not show any Pt metal or oxide peaks. However, on heating at 800°C for 40 h, 2-5% Pt/CeO₂ samples show Pt metal peaks in the XRD patterns where Pt peak intensity increases as the concentration of Pt increases. XRD patterns of 1%, 5%, and 10% Pd/CeO₂ are given in Fig. 2. Here also Pd metal or PdO peaks are not observed in the as-prepared samples. Crystallites of CeO₂ calculated from the XRD pattern are in the range of 20 nm. Pd metal or PdO could not be detected on heating of 1% and 5% Pd/CeO₂ catalysts at 800°C for 24 h. However, 10% Pd/CeO₂ sample shows weak diffraction lines due to PdO on heating at 800°C for 24 h. Thus, 1% Pt/CeO₂ and 1%, 5%, and 10% Pd/CeO₂ samples are devoid of Pt or Pd metal particles or their oxides in the as-prepared as well as heated samples. Catalytic studies are therefore carried out using 1% Pt/CeO₂ and 1% Pd/CeO₂ catalysts.

TEM of the 1% M/CeO₂ shows that the crystallite sizes are in the range of 15-20 nm which agrees well with the

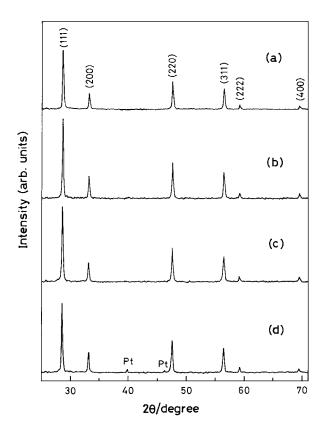


FIG. 1. XRD patterns of as-prepared (a) 1% Pt/CeO₂, (b) 2% Pt/CeO₂, and (c) 3% Pt/CeO₂ catalysts and (d) 3% Pt/CeO₂ catalyst after heating at 800° C for 40 h.

XRD measurements. Typical TEM images of 1% M/CeO₂ are given in Fig. 3. The polycrystalline diffraction pattern observed could be indexed only to CeO2 with fluorite structure. The morphology of CeO₂ crystallites is cubic. Pt or Pd metal diffraction rings are completely absent in the pattern. Even high-resolution images of as-prepared 4% Pt/CeO₂ give lattice fringes corresponding to (111) and (100) planes of CeO₂. However, 2-5% Pt/CeO₂ samples heated at 800°C for 40 h reveal the presence of Pt particles of 2-4 nm in the image and a ring is observed due to Pt metal in the electron diffraction. In contrast to Pt and Pd on CeO₂, nanosize metal particles dispersed on α -Al₂O₃ can be seen. TEM images of 1% Pt/Al₂O₃ and 1% Pd/Al₂O₃ are given in Figs. 3c and 3d for comparison and the average sizes of Pt and Pd particles are 7 and 10 nm, respectively. TEM results confirm that the metal particles are not present in the as-prepared 1% M/CeO₂ catalysts.

XPS Studies

Photoelectron spectra of the Pt(4*f*) core level region of Pt metal and 1%, 3%, and 4% Pt/CeO₂ are given in Fig. 4. In the Pt metal, $4f_{7/2,5/2}$ peaks are observed at 71.0 and 74.3 eV respectively. The Pt(4*f*) region shows peaks due to multiple oxidation states in the Pt/CeO₂ catalysts. The Pt(4 $f_{7/2,5/2}$) peaks in Pt/CeO₂ catalysts were resolved into

sets of spin orbital doublets. Accordingly, Pt(4f) peaks at 71.7 and 74.9 eV and 74.0 and 77.2 eV in 1%, 3%, and 4% Pt/CeO₂ can be assigned to Pt²⁺ and Pt⁴⁺ oxidation states (12, 24). Peaks due to Pt(4f) metal at 71.0 and 74.2 eV are not observed in as-prepared 1-5% Pt/CeO₂ catalysts. Thus, Pt metal in 1–5% Pt/CeO₂ is in the +2 and +4 oxidation states. However, 2-5% samples when heated to 800°C for 40 h do show Pt(4f) peaks due to Pt^0 , Pt^{2+} , and Pt^{4+} . The Pt(4*f*) region could be resolved into three sets of spin orbit peaks and indeed Pt^0 (4 $f_{7/2.5/2}$) peaks at 71.0 and 74.2 eV were seen. The intensity of the Pt⁰ peak is about 25% of the total Pt(4f) envelope in the 2% Pt/CeO₂ heated sample. Pd(3d) spectra are given in Fig. 5 for 1% Pd/CeO_2 , 5% Pd/CeO₂, 10% Pd/CeO₂, and 1% Pd/Al₂O₃. Pd(3d_{5/2.3/2}) peaks observed at 338.0 and 342.8 eV in Pd/CeO2 catalysts are shifted by 2 eV with respect to Pd metal in 1% Pd/Al_2O_3 . Binding energies of Pd(3d) peaks in Pd/CeO_2 catalysts agree well with those of Pd²⁺ in PdCl₂ indicating that Pd is in the +2 state (25). Thus, the shifted Pd^{2+} peaks show that Pd on CeO_2 is in the highly ionic state. Even in 10% Pd/CeO₂, Pd metal peaks are not seen. This observation agrees well with the XRD and TEM results. In Fig. 6 Ce(3d) peaks obtained from 1% Pt/CeO₂ and 1% Pd/CeO₂ are shown. The spectra with satellite features (marked in the figure) correspond to CeO_2 with Ce in the +4 oxidation state (12, 26).

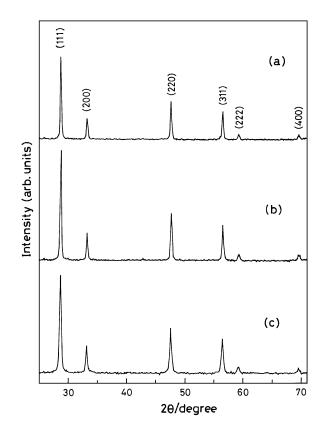


FIG. 2. XRD patterns of as-prepared (a) 1% Pd/CeO₂, (b) 5% Pd/CeO₂, and (c) 10% Pd/CeO₂ catalysts.

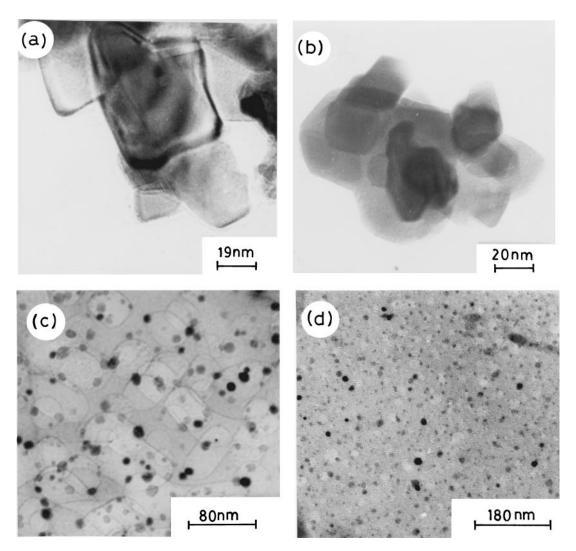


FIG. 3. TEM of (a) 1% Pt/CeO₂, (b) 1% Pd/CeO₂, (c) 1% Pt/Al₂O₃, and (d) 1% Pd/Al₂O₃.

Surface concentrations of metal ions in M/CeO_2 have been estimated by the relation

$$\frac{X_{\rm M}}{X_{\rm Ce}} = \frac{I_{\rm M}}{I_{\rm Ce}} \frac{\sigma_{\rm Ce} \lambda_{\rm Ce} D_{\rm E}({\rm Ce})}{\sigma_{\rm M} \lambda_{\rm M} D_{\rm E}({\rm M})},$$
[1]

where *X*, *I*, σ , λ , and $D_{\rm E}$ are the surface concentration, intensity, photoionization cross section, mean escape depth, and geometric factors, respectively. Integrated intensities of Pt(4*f*), Pd(3*d*), and Ce(3*d*) peaks have been taken into account to estimate the concentration. Photoionization cross section and mean escape depths have been obtained from Scofield (27) and Penn (28), respectively. The surface concentration of Pt is 15% in 1% Pt/CeO₂ whereas it is 5% in 1% Pd/CeO₂.

Adsorption Studies

The adsorption isotherm of CO over 1% Pt/CeO₂ at 0° C is given in Fig. 7. In the same figure, the CO adsorption

isotherm on 1% Pt/Al₂O₃ is also shown for comparison. This experiment was carried out to examine the dispersion of Pt on CeO_2 and Al_2O_3 . The isotherms follow Langmuir type of adsorption. Saturation CO adsorption is $0.15 \text{ cm}^3 \text{g}^{-1}$ for 1% Pt/CeO_2 and it is 3 times more than that on 1% Pt/Al_2O_3 . Translating these data into the number of CO molecules adsorbed per Pt atom gives 0.11 and 0.012 CO molecules in 1% Pt/CeO₂ and 1% Pt/Al₂O₃, respectively. Nearly an order of magnitude increase in CO adsorption over Pt/CeO2 with respect to Pt/Al₂O₃ can be rationalized from fine Pt metal particles (7 nm) dispersed on Al_2O_3 compared to Pt ions on CeO₂. The total number of surface Pt atoms was calculated by taking (111) and (100) faces of Pt in 7-nm Pt clusters. The ratio of the number of CO molecules to the number of Pt surface atoms is 0.13. Therefore, the sticking coefficient of CO on Pt/Al₂O₃ observed here is 0.13 which agrees well with the value reported by Gruber (29).

Assuming Pt taken in 1% Pt/CeO₂ is dispersed as ions on 15-nm surfaces of CeO₂ crystallites and Ce⁴⁺ ions are

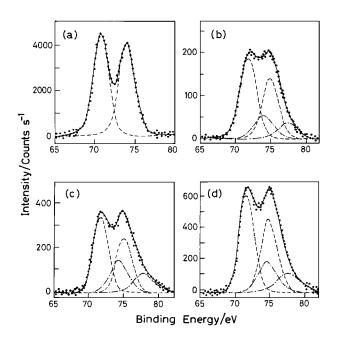


FIG. 4. XPS of Pt(4f) core level region of (a) Pt metal foil, (b) 1% Pt/CeO_2 , (c) 3% Pt/CeO_2 , and (d) 4% Pt/CeO_2 .

replaced by Pt^{2+} or Pt^{4+} ions, 20% of Ce^{4+} ions can be replaced by Pt^{2+} or Pt^{4+} ions. Further, the ratio of the number of CO molecules to the number of Pt ions on 1% Pt/CeO₂ is 0.12. Thus, the sticking coefficients of CO on 1% Pt/CeO₂ and 1% Pt/Al₂O₃ are in the same range. Nearly 10 times increase in CO adsorption on 1% Pt/CeO₂ compared to 1% Pt/Al₂O₃ is therefore primarily due to a higher dispersion of Pt ions on CeO₂. On the other hand, pure CeO₂ and Al₂O₃ do not show CO adsorption at 0°C.

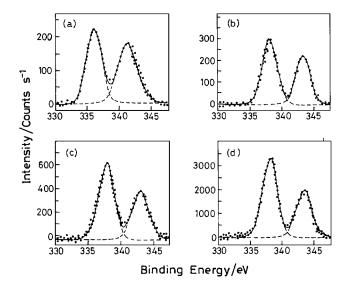
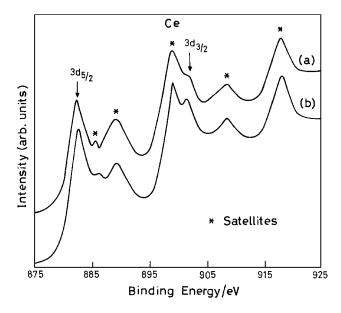



FIG. 5. XPS of Pd(3*d*) core level region of (a) 1% Pd/Al₂O₃, (b) 1% Pd/CeO₂, (c) 5% Pd/CeO₂, and (d) 10% Pd/CeO₂.

FIG. 6. XPS of Ce(3*d*) core level region of (a) 1% Pt/CeO₂ and (b) 1% Pd/CeO₂.

Temperature-Programmed Reaction (TPR)

NO reduction by CO, NH₃, CH₄, and C₃H₈ and CO, CH₄, and C₃H₈ oxidation by O₂ have been carried out over 1% Pt/CeO₂ and 1% Pd/CeO₂ catalysts.

NO reduction by CO. An equimolar mixture of NO and CO passed over these catalysts shows N₂ and CO₂ formation. A sharp decrease in NO concentration occurs at 140°C and below 175°C complete conversion of NO has been observed. An increase in CO₂ (m/z=44) concentration with a simultaneous decrease in NO (m/z=30) concentration is taken as the measure of NO conversion. Since N₂ and CO

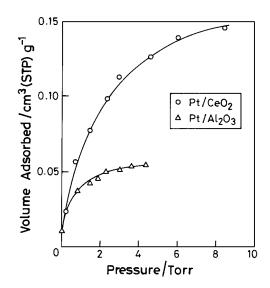


FIG. 7. Adsorption isotherms of CO on 1% Pt/CeO_2 and 1% Pt/Al_2O_3 at $0^\circ\text{C}.$

have the same mass, above 175° C m/z = 28 is due to N₂. Similarly, total conversion of NO is observed below 270° C on 1% Pt/CeO₂. The reaction can be written as

$$2NO + 2CO \rightarrow N_2 + 2CO_2.$$
 [2]

*NO reduction by NH*₃. NO reduction by NH₃ over these catalysts was carried out with NO + NH₃ in 6 : 4 molar ratios. A sharp decrease in NO concentration occurs at 210°C in Pt/CeO₂ and 100% NO conversion occurs below 225°C. Here N₂ and H₂O are the only products. N₂O is not observed. The reaction on M/CeO₂ can be given by

$$6NO + 4NH_3 \rightarrow 5N_2 + 6H_2O.$$
 [3]

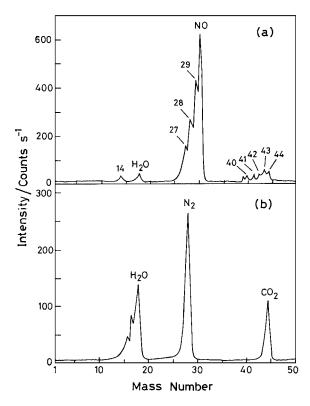
On the other hand, M/Al_2O_3 catalysts give N_2O as a product along with N_2 and H_2O . At higher temperatures N_2O decomposes. The reaction on M/Al_2O_3 catalysts can be written as

$$4NO + 2NH_3 \rightarrow 2N_2 + N_2O + 3H_2O.$$
 [4]

*NO reduction by CH*₄. A remarkable low-temperature (350°C) NO reduction by CH₄ occurs over 1% Pt/CeO₂ catalyst giving N₂, CO₂, and H₂O as the products. The corresponding 1% Pd/CeO₂ catalyst shows complete NO conversion at 450°C. The reaction can be written as

$$4NO + CH_4 \rightarrow 2N_2 + CO_2 + 2H_2O.$$
 [5]

NO reduction by C_3H_8 . NO reduction by C_3H_8 over 1% Pt/CeO₂ occurs above 325°C. Mass spectra of NO and C_3H_8 at 25°C and products N₂, H₂O, and CO₂ at 325°C are shown in Figs. 8a and 8b. At 325°C NO is fully utilized by C_3H_8 . The reaction can be written as


$$10NO + C_3H_8 \rightarrow 5N_2 + 3CO_2 + 4H_2O.$$
 [6]

Formation of N₂O (m/z=44) in small quantity cannot be ruled out in the NO reduction by CO, CH₄, and C₃H₈. However, dissociation of N₂O over Pt in the NO + NH₃ reaction has been reported by Takoudls and Schmidt (30). Here also even if N₂O is formed it may be dissociated at higher temperature.

CO oxidation by O_2 . CO oxidation was carried out over 1% Pt/CeO₂ and 1% Pd/CeO₂ catalysts in the presence of O₂. A sharp decrease in CO concentration is observed at 140°C in the case of 1% Pd/CeO₂ and 100% conversion of CO occurs below 200°C. Similarly, 100% CO conversion occurs at 180°C over 1% Pt/CeO₂. The reaction is written as follows:

$$2\mathrm{CO} + \mathrm{O}_2 \to 2\mathrm{CO}_2.$$
 [7]

Hydrocarbon oxidation. Complete CH_4 oxidation occurs over 1% Pt/CeO₂ and 1% Pd/CeO₂ at 390°C and 330°C, respectively, whereas complete oxidation of C_3H_8

FIG. 8. Mass spectra of $NO + C_3H_8$ reaction over 1% Pt/CeO₂ at (a) 25°C and (b) 325°C.

over Pt/CeO₂ and Pd/CeO₂ occurs at 110° C and 230° C, respectively. The products are H₂O and CO₂. The reactions can be written as

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 [8]

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_1$$
 [9]

Temperatures of nearly 100% conversion of NO, CO, CH₄, and C₃H₈ for all the reactions over 1% Pt/CeO₂ and 1% Pd/CeO₂ catalysts are summarized in Table 1. Results on the same reaction over 1% Pt/Al₂O₃ and 1% Pd/Al₂O₃ catalysts are also given in Table 1 for comparison. It may be

TABLE 1

Nearly 100% Conversion Temperatures (°C) of NO, CO, CH₄, and C₃H₈ for the Following Reactions on CeO₂- and Al₂O₃-Supported Pt and Pd Catalysts

Reactions	1% Pt/CeO ₂	1% Pt/Al ₂ O ₃	1% Pd/CeO ₂	$1\% \text{ Pd/Al}_2\text{O}_3$
NO+CO	270	400	175	350
$NO + NH_3$	225	280	275	330
$NO + CH_4$	350	425	450	475
$NO + C_3H_8$	325	475	330	525
$\mathrm{CO} + \mathrm{O}_2$	180	230	175	230
$CH_4 + O_2$	400	425	330	350
$C_{3}H_{8} + O_{2}$	110	175	230	300

noted from the table that nearly 100% conversion occurs at a much lower temperature with M/CeO_2 catalysts compared to that with M/Al_2O_3 catalysts for all the reactions. All the reactions over pure CeO_2 occur at much higher temperatures (19).

Temperature-programmed desorption of 1% Pt/CeO₂ and 1% Pd/CeO₂ catalysts was carried out. Oxygen desorption has not been observed up to 550° C. Further, reaction with H₂ over the desorbed catalysts did not show H₂O formation even up to 600° C. This result suggests that O₂ associated with Pt or Pd is strongly bound to the CeO₂ lattice and in NO reduction as well as CO and hydrocarbon oxidation studies it is the feed O₂ which is utilized during the reaction.

Kinetics

The rate of the reactions is calculated by using the equation (31)

$$rate = \frac{FX}{vW},$$
 [10]

where *F* is the inlet molar flow rate of the particular gas, *X* is the fractional conversion of the gas at a particular temperature, *v* is the stoichiometric coefficient of the gas, and *W* is the weight of the catalyst. Rate is expressed in micromoles per gram per second. The rates of NO + CO and CO + O₂ are given in Figs. 9 and 10. The turnover frequencies (TOF) of NO and CO conversion at different temperatures have been calculated after dividing the rate (μ mol g⁻¹ s⁻¹) by the active site concentration (μ mol g⁻¹). TOF is expressed in inverse seconds. The active metal site concentration has been obtained from the amount of the metal present in 1 g of the

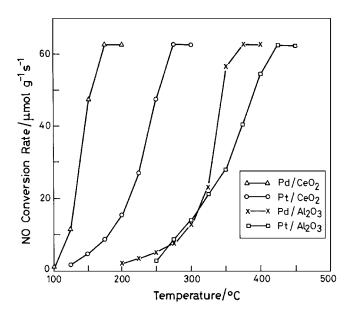


FIG. 9. Rate of NO conversion over $CeO_{2^{-}}$ and $Al_{2}O_{3}\text{-}based$ catalysts for NO + CO reaction.

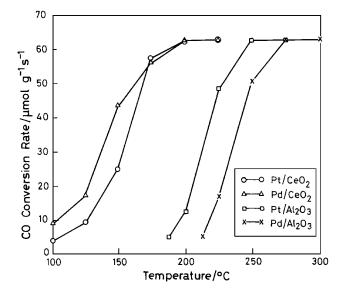


FIG. 10. Rate of CO conversion over CeO₂- and Al₂O₃-based catalysts for CO + O₂ reaction.

catalyst. For example, 5.74×10^{-5} mol of Pt is present in 1 g of 1% Pt/CeO₂ catalyst. The rate and TOF data of NO + CO and CO + O₂ reactions over Pt/CeO₂ and Pd/CeO₂ catalysts are summarized in Table 2. TOF values are higher for M/CeO₂ catalysts compared to those for M/Al₂O₃ catalysts. TOF of CO oxidation on combustion-synthesized Pd/Al₂O₃ is higher than that of the same reaction on same catalyst prepared by the incipient wetness method (32, 33).

The activation energy (E_a) has been calculated from Arrhenius plots of ln(rate) vs 1/T for NO + CO and CO + O₂ reactions over these catalysts. Here, CO₂ formation rates were taken into account to calculate the activation energy. There is a remarkable difference in activation energy between CeO₂- and Al₂O₃-supported Pt and Pd catalysts. For CO + O₂ reaction over Pt/CeO₂ E_a is 31.2 kJ mol⁻¹ whereas that for Pt/Al₂O₃ is 53.9 kJ mol⁻¹. Similarly, for NO + CO reaction over Pd/CeO₂ and Pd/Al₂O₃ E_a are

TABLE 2

Rate $(\mu mol g^{-1} s^{-1})$ and TOF (s^{-1}) Data of NO + CO and CO + O₂ Reactions over CeO₂- and Al₂O₃-Supported Pt and Pd Catalysts

	NO+CO		$\mathrm{CO} + \mathrm{O}_2$	
Catalysts	Rate	TOF	Rate	TOF
1% Pt/CeO ₂	. ,	. ,	25.00 (150°C) 57.08 (175°C)	• •
1% Pd/CeO ₂	· · · ·	· · · ·	43.75 (150°C) 56.67 (175°C)	```
1% Pt/Al ₂ O ₃	· · ·	· · ·	12.92 (200°C) 48.33 (225°C)	· · ·
1% Pd/Al ₂ O ₃	23.31 (325°C) 56.25 (350°C)	· · · ·	17.10 (225°C) 50.83 (250°C)	```

52.6 and 60.6 kJ mol⁻¹, respectively. Activation energies of CO oxidation on Pd/Al₂O₃, Pt/Al₂O₃ and Pt/CeO₂ are lower than the values reported in the literature (33–36).

DISCUSSIONS

The combustion method involves rapid heating of an aqueous solution containing stoichiometric amounts of corresponding metal nitrates and hydrazine-based fuels. During the combustion the temperature reached for a short period (1-2 min) is about 1000°C. Evolution of a large amount of gases during the process is responsible for fine crystallite formation. So in combustion-derived M/CeO₂, Pt or Pd ions should either be separated into Pt or Pd metal clusters (as in Pt/Al_2O_3) or Pt, Pd oxide clusters separated from oxide support or ions should be incorporated. In the case of Pt/CeO₂ and Pd/CeO₂, Pt and Pd ions seem to be incorporated due to low metal loading (1% by mole). Solid solution of the type $Ce_{1-x}M_xO_{2-x}$ is one of the routes of incorporation of ions in CeO₂. In contrast to this, in the impregnation method for example, Pt²⁺, Pd²⁺ ions in solution are dispersed on already prepared CeO₂ substrate and dried at relatively low temperature ($<500^{\circ}$ C). Thus, some of the important merits of the combustion method are fine crystallites formation, easy incorporation of dopant ions in the support/host lattice, no need of a hydrogen reduction step, and purity of the catalysts.

In the present study all the catalytic reactions were carried out over as-prepared 1% Pt/CeO₂ and 1% Pd/CeO₂ samples and therefore, investigation of chemical states of Pt or Pd in these samples is important. It is clear from the XRD as well as TEM studies that neither the metal particles nor any of the oxide phases of Pt or Pd on CeO₂ are observed in 1% Pt/CeO₂ and 1% Pd/CeO₂. XPS studies show that Pt is in the +2 and +4 and Pd is in the +2 oxidation states in 1% Pt/CeO₂ and 1% Pd/CeO₂, respectively. Even in 10% Pd/CeO₂, Pd(3*d*) peaks observed from XPS correspond to the Pd²⁺ state. These observations suggest that Pt and Pd ions are incorporated in CeO₂ in the form of a solid solution, $Ce_{1-x}M_xO_{2-(4-n)x/2}$. The ionic radii (37) of Pt^{2+} (80 pm) and Pd^{2+} (86 pm) are closer to that of Ce^{4+} (97 pm). Therefore, if these metal ions are formed in the preparation condition, Pt²⁺, Pd²⁺ ions can form solid solution of the type $Ce_{1-x}M_xO_{2-x}$ (M = Pt²⁺, Pd²⁺).

By the combustion method Pt and Pd ions are homogeneously dispersed on nanosize CeO₂ crystallites in a single step. Considering a 15-nm mean size of CeO₂ crystallites, the Ce⁴⁺ ion concentration on the crystallite surfaces can be calculated from its lattice parameter *a*. Assuming that Pt ions are ionically dispersed on the CeO₂ surface we find that 20% Ce⁴⁺ ions can be replaced by Pt ions in 1% Pt/CeO₂. Observations of Pt in the +2 and +4 states and 15% surface concentration of Pt from XPS studies (against 1% taken in the preparation) suggest that almost all the Pt ions are ionically dispersed on the CeO₂ crystallite surface. Unlike the case of Pt/CeO₂, the surface concentration of Pd is only 5% for 1% Pd/CeO₂. Pd²⁺ in Pd/CeO₂ is highly ionic in nature. Further, Pd²⁺ is a more stable ion. Therefore, it is possible that Pd²⁺ ion can form solid solution Ce_{1-x}Pd_xO_{2-x} indicating that all the Pd metal taken in the preparation may not be dispersed on the CeO₂ crystallite surface. This is further supported by the fact that even up to 10% Pd/CeO₂ could be prepared without any PdO or Pd metal formation by the combustion method. From these studies we propose the presence of $-O^{2-}-Ce^{4+}-O^{2-}-M^{n+}-O^{2-}$ type of linkages on the CeO₂ surface. Oxygen ion vacancies are created due to lower valent ionic substitution for Ce⁴⁺ ions. Oxygen ion vacancy should have beneficial effects on catalytic activities due to the increase in oxygen ion mobility.

All the reactions over CeO₂-supported Pt and Pd catalysts occur at much lower temperature compared to those over Al₂O₃-supported Pt and Pd catalysts (Table 1). But CeO_2 -promoted Pd/Al₂O₃ is shown to suppress the alkane oxidation (38–40). In these studies, addition of CeO_2 to Pd/Al_2O_3 enhances PdO formation in the presence of O_2 along with CeAlO₃ phase formation. In Pd/CeO₂ catalysts prepared here, formation of a PdO phase has not been observed. The higher activity of the Pd/CeO₂ catalyst noticed here may be due to the availability of dissociated oxygen via oxide ion defects formed in $Ce_{1-x}Pd_xO_{2-x}$. In general, the reasons for the drastic decrease in reaction temperature over M/CeO_2 compared to M/Al_2O_3 can be attributed to a strong metal-ceria interaction. Ionic dispersion of Pt and Pd metals in the form of a solid solution brings about metal ion incorporation in the CeO₂ matrix. Since only 1% of Ce^{4+} ions are substituted by Pt^{2+} or Pd^{2+} ions, O^{2-} ions associated with the metal ions are bonded to Ce⁴⁺ ions. This seems to be the reason for the stability of Pt²⁺ and Pd^{2+} ions toward reduction. As pure CeO_2 does not show CO adsorption or any of the catalytic reactions at such low temperatures, therefore, the active adsorption sites for NO, CO, NH₃, and other gases have to be Pt^{2+} and Pd^{2+} ions on CeO₂ surface. A nearly 10 times increase in CO adsorption per mole of Pt in 1% Pt/CeO₂ compared to 1% Pt/Al₂O₃ is due to the higher dispersion of Pt on the CeO₂ surface. Accordingly, CO oxidation and NO reduction rates and TOFs are higher on Pt/CeO₂ compared to those on Pt/Al₂O₃.

Electronic interaction involving $Ce^{4+}(4f)$, $O^{2-}(2p)$, and $Pd^{2+}(4d)$ or $Pt^{2+}(5d)$ orbitals may facilitate the redox reactions. For example, in the NO + NH₃ redox reaction, electrons released from NH₃ may be transferred to NO via $-M^{2+}-O^{2-}-Ce^{4+}-M^{2+}$ – linkages leading to redox exchange:

$$\begin{array}{l} -Ce^{4+}-O^{2-}-M^{2+}-+e \ \Leftrightarrow \ -Ce^{4+}-O^{2-}-M^{+}-\\ \Leftrightarrow \ -Ce^{3+}-O^{2-}-M^{2+}- \ \Leftrightarrow \ -Ce^{4+}-O^{2-}-M^{2+}-+e. \end{array}$$

In any case, such a possibility does not exist in M/Al₂O₃ catalysts. Therefore, the metal–ceria interaction appears to play

an important role in lowering the reaction temperature. Detailed mechanism of these reactions involving Pt and Pd ions over CeO_2 needs further investigations.

CONCLUSIONS

In conclusion, we have shown a new process of dispersing Pt and Pd in the ionic form on a CeO_2 surface by the combustion method. Characterization techniques employed here are XRD, TEM, and XPS. Catalytic activities for NO reduction and CO and hydrocarbon oxidation over these catalysts have been examined by TPR. The salient features of our studies are the following.

(1) Pt and Pd ions dispersed over CeO_2 crystallites of 15–20 nm have been synthesized by the combustion technique.

(2) Pt is in the +2 and +4 states in 1% Pt/CeO₂ and Pd is found to be in the +2 state in 1% Pd/CeO₂.

(3) There is a metal–ceria interaction which leads to the formation of a solid solution, $Ce_{1-x}M_xO_{2-(4-n)x/2}$.

(4) Active adsorption sites for the catalytic reactions are noble metal ions in M/CeO_2 catalysts.

(5) NO reduction and CO and hydrocarbon oxidation temperatures are much lower over M/CeO₂ catalysts compared to those over M/Al₂O₃ catalysts.

(6) M/CeO₂ catalysts show higher rates and TOFs for NO + CO and CO + O_2 reactions.

ACKNOWLEDGMENTS

P.B. and K.C.P. thank the Council of Scientific and Industrial Research (CSIR), Govt. of India, for financial support. The Department of Atomic Energy (DAE), Govt. of India, is gratefully acknowledged for funding this research.

REFERENCES

- 1. Howitt, C., Pitchon, V., and Maire, G., J. Catal. 154, 47 (1995).
- 2. Taylor, K. C., Catal. Rev.-Sci. Eng. 35, 457 (1993).
- 3. Yao, H. C., and Yao, Y.-F. Y., J. Catal. 86, 254 (1984).
- 4. Kummer, J. T., J. Phys. Chem. 90, 4747 (1986).
- 5. Oh, S. H., J. Catal. 124, 477 (1990).
- 6. Oh, S. H., and Eickel, C. C., *J. Catal.* **112**, 543 (1988).
- 7. Lööf, B., Kasemo, B., and Keck, K.-E., J. Catal. 118, 339 (1989).
- Thomas, J. M., and Thomas, W. J., "Principles and Practice of Heterogeneous Catalysis," p. 577. VCH, Weinheim, 1997.

- Fernández-García, M., Martínez-Arias, A., Salamanca, L. N., Coronado, J. M., Anderson, J. A., Conesa, J. C., and Soria, J., *J. Catal.* 187, 474 (1999).
- 10. Summers, J. C., and Ausen, S. A., J. Catal. 58, 131 (1979).
- 11. Jin, T., Okuhara, T., Mains, G. J., and White, J. M., *J. Phys. Chem.* **91**, 3310 (1987).
- 12. Jin, T., Zhou, Y., Mains, G. J., and White, J. M., *J. Phys. Chem.* **91**, 5931 (1987).
- Harrison, B., Diwell, A. F., and Hallett, C., *Platinum Metals Rev.* 32, 73 (1988).
- Lööf, P., Kasemo, B., Andersson, S., and Frestad, A., J. Catal. 130, 181 (1991).
- Nunan, J. G., Robota, H. J., Cohn, M. J., and Bradley, S. A., *J. Catal.* 133, 309 (1992).
- 16. Serre, C., Garin, F., Belot, G., and Maire, G., J. Catal. 141, 1 (1993).
- 17. Serre, C., Garin, F., Belot, G., and Maire, G., J. Catal. 141, 9 (1993).
- Martínez-Arias, A., Coronado, J. M., Cataluña, R., Conesa, J. C., and Soria, J., *J. Phys. Chem. B* **102**, 4357 (1998).
- Bera, P., Aruna, S. T., Patil, K. C., and Hegde, M. S., J. Catal. 186, 36 (1999).
- Bera, P., Patil, K. C., Jayaram, V., Hegde, M. S., and Subbanna, G. N., J. Mater. Chem. 9, 1801 (1999).
- Bera, P., Patil, K. C., and Hegde, M. S., *Phys. Chem. Chem. Phys.* 2, 373 (2000).
- 22. Graw, G., Anal. Chim. Acta 14, 150 (1956).
- 23. Hegde, M. S., Ramesh, S., and Ramesh, G., Proc. Indian Acad. Sci. Chem. Sci. 104, 591 (1992).
- 24. Shyu, J. Z., and Otto, K., J. Catal. 115, 16 (1989).
- Briggs, D., and Seah, M. P., "Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy," Appendix 4. Wiley, New York, 1984.
- Sarma, D. D., Hegde, M. S., and Rao, C. N. R., J. Chem. Soc., Faraday Trans. 2 77, 1509 (1981).
- 27. Scofield, J. H., J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).
- 28. Penn, D. R., J. Electron Spectrosc. Relat. Phenom. 29, 9 (1976).
- 29. Gruber, H. L., J. Phys. Chem. 66, 48 (1962).
- 30. Takoudls, C. G., and Schmidt, L. D., J. Phys. Chem. 87, 958 (1983).
- 31. Burwell, R. L., Jr., Pure Appl. Chem. 46, 71 (1976).
- 32. Choi, K. I., and Vannice, M. A., J. Catal. 131, 1 (1991).
- Rainer, D. R., Koranne, M., Vesecky, S. M., and Goodman, D. W., J. Phys. Chem. B 101, 10769 (1997).
- 34. Yao, Y.-F. Y., J. Catal. 87, 152 (1984).
- 35. Cant, N. W., Hicks, P. C., and Lennon, B. S., J. Catal. 54, 372 (1978).
- Hardacre, C., Ormerod, R. M., and Lambert, R. M., J. Phys. Chem. 98, 10901 (1994).
- 37. Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).
- 38. Yao, Y.-F. Y., Ind. Eng. Chem. Prod. Res. Dev. 19, 293 (1980).
- Shyu, J. Z., Otto, K., Watkins, W. L. H., Graham, G. W., Belitz, R. K., and Gandhi, H. S., *J. Catal.* 114, 23 (1988).
- 40. Oh, S. H., Mitchell, P. J., and Siewert, R. M., J. Catal. 132, 287 (1991).