Palladium-Catalyzed Intermolecular Domino Reaction of *gem*-Dibromoenynes with Anilines; A One-Pot Synthesis of Quinolines and Quinolinones

Tianhao Meng,^a Wen-Xiong Zhang,^b Hui-Jun Zhang,^b Yun Liang,^b Zhenfeng Xi*^b

^b Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China Fax +86(10)62759728; E-mail: zfxi@pku.edu.cn

Received: 14.05.2012; Accepted after revision: 11.06.2012

Abstract: An efficient domino process involving palladium-catalyzed amination of an alkenyl bromide, 1,5-H transfer, annulation via 6-*exo-dig* electrophilic cyclization, and palladium-catalyzed etherification, is described. This reaction provides an efficient onepot synthesis of multi-substituted quinolines and quinolinones from *gem*-dibromoenynes and anilines.

Key words: alkenes, enynes, etherification, quinoline, quinolinone

The *gem*-dihaloolefins have become important and versatile building blocks in palladium-catalyzed domino reactions leading to heterocyclic compounds.¹ Recently, several elegant methods have been discovered that can be used to convert *gem*-dihaloolefins into indoles,² benzothiophenes,^{2a,3} benzofurans,^{2a,4} isocoumarins,⁵ and other heterocycles via intramolecular cyclization.^{1.6} For example, Lautens et al. reported the intramolecular amination of amino-containing *gem*-dibromoolefins to provide the brominated indoles, in which the remaining C–Br bond could further undergo Suzuki coupling.^{2b} Xu et al. reported a palladium-catalyzed intermolecular amidation reaction of *gem*-dihaloolefins with aryl amines yielding acyclic carboxamides upon hydrolysis.⁷

Our group has been interested in the preparation and synthetic applications of polyhalo conjugated compounds.^{8a,9,10} Herein, we report an intermolecular amination between amines and gem-dibromoenynes that efficiently yields guinolines and guinolinones. Mechanistic investigations have revealed that a domino process involving palladium-catalyzed amination of the alkenyl bromide, 1,5-H transfer, annulation via 6-exo-dig electrophilic cyclization, and palladium-catalyzed etherification took place, resulting in the formation of C^{sp2} – C^{sp} , C^{sp2} –N, and C^{sp2}–O bonds. The quinoline unit is an important skeleton found in a variety of bioactive compounds.¹¹ Most of the known synthetic methods for accessing functionalized quinolines are based on the reaction of substituted anilines with carbonyl compounds.¹²⁻¹⁴ Synthesis of N-heterocycles via intermolecular amination between amines and

SYNTHESIS 2012, 44, 2754–2762 Advanced online publication: 23.07.2012 DOI: 10.1055/s-0032-1316613; Art ID: SS-2012-H0443-OP © Georg Thieme Verlag Stuttgart · New York *gem*-dihaloolefins is rare.^{6f,8} This palladium-catalyzed intermolecular domino reaction between amines and *gem*dibromoenynes thus provides an efficient alternative synthesis of quinolines and quinolinones.

First, we investigated the model reaction between aniline and compound 1a (Table 1). The reaction was initially carried out in toluene at 110 °C for two hours with NaOt-Bu as the base. Various palladium catalysts (Table 1, entries 1-4) and a series of ligands (Table 1, entries 5-15) were examined. Although the Buchwald biaryl phosphine ligands showed better activity than Ph₃P and Cy₃P, the bidentate ligand DPEPhos [bis(2-diphenylphosphinophenyl)ether] proved to be more efficient in this reaction. It was also noticed that the reactivity diminished when the solvent was changed from toluene to 1,4-dioxane or DME. Notably, the choice of base seems crucial for this transformation; NaOt-Bu was found to be the most effective base, whereas other bases such as LiOt-Bu or KOt-Bu did not afford any expected products. After extensive screening, optimal reaction conditions were established {[Pd₂(dba)₃] (2.5 mol%), DPEPhos (10 mol%), NaOt-Bu (5 equiv), toluene, 110 $^{\circ}$ C, 2 h} with which polysubstituted quinoline 3a was obtained in 68% isolated yield (Table 1, entry 12).

Because the substituents on the quinoline has such a great influence on its properties, the scope of this domino reaction was studied by testing various substituted anilines 2b-k, with the aim of synthesizing a diverse range of quinolines. As shown in Table 2, various quinolines 3d-m could be obtained in moderate to high isolated yields under the above optimized reaction conditions. Anilines substituted with either electron-withdrawing or electron-donating groups could both be applied in this reaction. Naphthylamine (2h) and the heteroaromatic amine (2i) could also be used to provide the corresponding quinoline derivatives.

It is noteworthy that, along with the formation of quinolines **3**, a small amount of the corresponding quinolinones **4** were formed, which could be separated from quinolines **3**. It became clear that quinolinone **4** was formed through hydrolysis of quinoline **3**. Quantitative transformation of quinoline **3** into quinolinone **4** was observed when pure

^a Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. of China

Table 1 Reaction Optimization^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bu 🔍				ſ	Bu
HereNaOt-Bu (5 equiv) NaOt-Bu (5 equiv) NaOt-Bu (10°C, 2 hJaIa2a3aEntry[Pd]LigandBaseSolventYield (%) ^a 1PdCl2NaOt-Butoluenetrace2Pd(OAc)2NaOt-Butoluenetrace3Pd2(dba)3NaOt-Butoluenetrace4Pd(PPh3)4NaOt-Butoluene95Pd(OAc)2XPhosNaOt-Butoluene536Pd2(dba)3XPhosNaOt-Butoluene578Pd2(dba)3SPhosNaOt-Butoluene579Pd2(dba)3DavePhosNaOt-Butoluene5710Pd2(dba)3PCy3NaOt-Butoluene72 (68)11Pd2(dba)3DPEPhosNaOt-Butoluene5115Pd2(dba)3DPPFNaOt-Butoluene5216Pd2(dba)3DPEPhosLiOt-Butoluene5216Pd2(dba)3DPEPhosNaOt-Butoluene5216Pd2(dba)3DPEPhosNaOt-Butoluenetrace17Pd2(dba)3DPEPhosNaOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Bu		Bu		cat. [Pd] (5 mol ligand (10 mol%	%)	Bu
1a2a3aEntry[Pd]LigandBaseSolventYield $(\%)^a$ 1PdCl2NaOt-Butoluenetrace2Pd(OAc)2NaOt-Butoluenetrace3Pd2(dba)3NaOt-Butoluenetrace4Pd(PPh3)4NaOt-Butoluene95Pd(OAc)2XPhosNaOt-Butoluene536Pd2(dba)3XPhosNaOt-Butoluene578Pd2(dba)3SPhosNaOt-Butoluene579Pd2(dba)3DavePhosNaOt-Butoluene5710Pd2(dba)3DavePhosNaOt-Butoluene5710Pd2(dba)3DPEPhosNaOt-Butoluene3311Pd2(dba)3DPEPhosNaOt-Butoluene3114Pd2(dba)3DPFNaOt-Butoluene5115Pd2(dba)3DPPPNaOt-Butoluene5216Pd2(dba)3DPEPhosKOt-Butoluenetrace17Pd2(dba)3DPEPhosNaOt-Butoluene5216Pd2(dba)3DPEPhosKOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosKOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Butoluenetrace19		Br Br	NH ₂	NaOt-Bu (5 equ	iiv)	Ot-Bu
Entry[Pd]LigandBaseSolventYield $(\%)^a$ 1PdCl2NaOt-Butoluenetrace2Pd(OAc)2NaOt-Butoluenetrace3Pd2(dba)3NaOt-Butoluenetrace4Pd(PPh3)4NaOt-Butoluene95Pd(OAc)2XPhosNaOt-Butoluene536Pd2(dba)3XPhosNaOt-Butoluene578Pd2(dba)3SPhosNaOt-Butoluene578Pd2(dba)3RuPhosNaOt-Butoluene5710Pd2(dba)3DavePhosNaOt-Butoluene3311Pd2(dba)3PCy3NaOt-Butoluene72 (68)13Pd2(dba)3DPEPhosNaOt-Butoluene5114Pd2(dba)3DPPFNaOt-Butoluene5216Pd2(dba)3DPEPhosLiOt-Butoluene5216Pd2(dba)3DPEPhosKOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Butoluenetrace19Pd2(dba)3DPEPhosNaOt-Butoluene5216Pd2(dba)3DPEPhosKOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Bu1,4-dioxane66 ^b 19Pd2(dba)3DPEPhosNaOt-BuDME24 ^b		1a	2a		3a	l
1 $PdCl_2$ $NaOt-Bu$ toluenetrace2 $Pd(OAc)_2$ $NaOt-Bu$ toluenetrace3 $Pd_2(dba)_3$ $NaOt-Bu$ toluenetrace4 $Pd(PPh_3)_4$ $NaOt-Bu$ toluene95 $Pd(OAc)_2$ $XPhos$ $NaOt-Bu$ toluene536 $Pd_2(dba)_3$ $XPhos$ $NaOt-Bu$ toluene536 $Pd_2(dba)_3$ $XPhos$ $NaOt-Bu$ toluene578 $Pd_2(dba)_3$ $RuPhos$ $NaOt-Bu$ toluene479 $Pd_2(dba)_3$ $DavePhos$ $NaOt-Bu$ toluene5710 $Pd_2(dba)_3$ $DavePhos$ $NaOt-Bu$ toluene3311 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene72 (68)13 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene5115 $Pd_2(dba)_3$ $DPPP$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluenetrace18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluenetrace19 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluenetrace	Entry	[Pd]	Ligand	Base	Solvent	Yield (%) ^a
2Pd(OAc)2NaOt-Butoluenetrace3Pd2(dba)3NaOt-Butoluenetrace4Pd(PPh3)4NaOt-Butoluene95Pd(OAc)2XPhosNaOt-Butoluene536Pd2(dba)3XPhosNaOt-Butoluene65 (61)7Pd2(dba)3SPhosNaOt-Butoluene578Pd2(dba)3RuPhosNaOt-Butoluene579Pd2(dba)3DavePhosNaOt-Butoluene5710Pd2(dba)3PPh3NaOt-Butoluene3311Pd2(dba)3DPEPhosNaOt-Butoluene72 (68)13Pd2(dba)3DPEPhosNaOt-Butoluene5114Pd2(dba)3DPPFNaOt-Butoluene5216Pd2(dba)3DPEPhosLiOt-Butoluene5216Pd2(dba)3DPEPhosKOt-Butoluenetrace17Pd2(dba)3DPEPhosNaOt-Butoluenefrace18Pd2(dba)3DPEPhosNaOt-Butoluene66 ^b 19Pd2(dba)3DPEPhosNaOt-Butoluene62 ^b	1	PdCl ₂		NaOt-Bu	toluene	trace
3 $Pd_2(dba)_3$ NaOt-Butoluenetrace4 $Pd(PPh_3)_4$ NaOt-Butoluene95 $Pd(OAc)_2$ XPhosNaOt-Butoluene536 $Pd_2(dba)_3$ XPhosNaOt-Butoluene65 (61)7 $Pd_2(dba)_3$ SPhosNaOt-Butoluene578 $Pd_2(dba)_3$ RuPhosNaOt-Butoluene479 $Pd_2(dba)_3$ DavePhosNaOt-Butoluene5710 $Pd_2(dba)_3$ PPh_3NaOt-Butoluene3311 $Pd_2(dba)_3$ PCy_3NaOt-Butoluene72 (68)13 $Pd_2(dba)_3$ DPEPhosNaOt-Butoluene5114 $Pd_2(dba)_3$ DPPFNaOt-Butoluene5216 $Pd_2(dba)_3$ DPEPhosLiOt-Butoluene5216 $Pd_2(dba)_3$ DPEPhosKOt-Butoluenetrace17 $Pd_2(dba)_3$ DPEPhosKOt-Butoluenetrace18 $Pd_2(dba)_3$ DPEPhosNaOt-Butoluene66 ^b 19 $Pd_2(dba)_3$ DPEPhosNaOt-BuDME24 ^b	2	Pd(OAc) ₂		NaOt-Bu	toluene	trace
4 Pd(PPh_3)_4 NaOt-Bu toluene 9 5 Pd(OAc)_2 XPhos NaOt-Bu toluene 53 6 Pd_2(dba)_3 XPhos NaOt-Bu toluene 65 (61) 7 Pd_2(dba)_3 SPhos NaOt-Bu toluene 57 8 Pd_2(dba)_3 SPhos NaOt-Bu toluene 57 9 Pd_2(dba)_3 RuPhos NaOt-Bu toluene 57 10 Pd_2(dba)_3 DavePhos NaOt-Bu toluene 57 10 Pd_2(dba)_3 PPh_3 NaOt-Bu toluene 57 10 Pd_2(dba)_3 PPh_3 NaOt-Bu toluene 57 10 Pd_2(dba)_3 PCy_3 NaOt-Bu toluene 52 11 Pd_2(dba)_3 DPEPhos NaOt-Bu toluene 51 12 Pd_2(dba)_3 DPPF NaOt-Bu toluene 52 13 Pd_2(dba)_3 DPPF NaOt-Bu toluene 52 15 Pd_2(dba)_3 DPEPhos LiOt-Bu toluene	3	Pd ₂ (dba) ₃		NaOt-Bu	toluene	trace
5 $Pd(OAc)_2$ XPhos $NaOt$ -Butoluene536 $Pd_2(dba)_3$ XPhos $NaOt$ -Butoluene65 (61)7 $Pd_2(dba)_3$ SPhos $NaOt$ -Butoluene578 $Pd_2(dba)_3$ RuPhos $NaOt$ -Butoluene479 $Pd_2(dba)_3$ DavePhos $NaOt$ -Butoluene5710 $Pd_2(dba)_3$ DavePhos $NaOt$ -Butoluene3311 $Pd_2(dba)_3$ PCy_3 $NaOt$ -Butoluene72 (68)12 $Pd_2(dba)_3$ DPEPhos $NaOt$ -Butoluene3114 $Pd_2(dba)_3$ DPF $NaOt$ -Butoluene5115 $Pd_2(dba)_3$ DPPP $NaOt$ -Butoluene5216 $Pd_2(dba)_3$ DPEPhos $LiOt$ -Butoluenetrace17 $Pd_2(dba)_3$ DPEPhos KOt -Butoluenetrace18 $Pd_2(dba)_3$ DPEPhos $NaOt$ -Bu1oluene66 ^b 19 $Pd_2(dba)_3$ DPEPhos $NaOt$ -BuDME24 ^b	4	Pd(PPh ₃) ₄		NaOt-Bu	toluene	9
6 $Pd_2(dba)_3$ XPhos $NaOt-Bu$ toluene65 (61)7 $Pd_2(dba)_3$ SPhos $NaOt-Bu$ toluene578 $Pd_2(dba)_3$ $RuPhos$ $NaOt-Bu$ toluene479 $Pd_2(dba)_3$ $DavePhos$ $NaOt-Bu$ toluene5710 $Pd_2(dba)_3$ PPh_3 $NaOt-Bu$ toluene3311 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluene72 (68)12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene3114 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene5115 $Pd_2(dba)_3$ $DPPP$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $KOt-Bu$ toluenetrace18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $Ioluene$ $6b^b$ 19 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $Ioluene$ 24 ^b	5	Pd(OAc) ₂	XPhos	NaOt-Bu	toluene	53
7 $Pd_2(dba)_3$ SPhos $NaOt-Bu$ toluene578 $Pd_2(dba)_3$ $RuPhos$ $NaOt-Bu$ toluene479 $Pd_2(dba)_3$ $DavePhos$ $NaOt-Bu$ toluene5710 $Pd_2(dba)_3$ PPh_3 $NaOt-Bu$ toluene3311 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluene72 (68)12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene3114 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene5115 $Pd_2(dba)_3$ $DPPP$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $KOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $KOt-Bu$ toluene66 ^b 18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $Iouene$ 24 ^b	6	Pd ₂ (dba) ₃	XPhos	NaOt-Bu	toluene	65 (61)
8 $Pd_2(dba)_3$ $RuPhos$ $NaOt-Bu$ toluene 47 9 $Pd_2(dba)_3$ $DavePhos$ $NaOt-Bu$ toluene 57 10 $Pd_2(dba)_3$ PPh_3 $NaOt-Bu$ toluene 33 11 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluene 72 (68) 12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene 31 14 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene 51 15 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene 52 16 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace 17 $Pd_2(dba)_3$ $DPEPhos$ $KOt-Bu$ toluenetrace 18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $1,4-dioxane$ 66^b 19 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ DME 24^b	7	Pd ₂ (dba) ₃	SPhos	NaOt-Bu	toluene	57
9 $Pd_2(dba)_3$ DavePhos $NaOt-Bu$ toluene5710 $Pd_2(dba)_3$ PPh_3 $NaOt-Bu$ toluene3311 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluenetrace12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene72 (68)13 $Pd_2(dba)_3$ $ZantPhos$ $NaOt-Bu$ toluene5114 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $KOt-Bu$ toluenetrace18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $Ioluene$ 66 ^b 19 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ DME 24 ^b	8	Pd ₂ (dba) ₃	RuPhos	NaOt-Bu	toluene	47
10 $Pd_2(dba)_3$ PPh_3 $NaOt-Bu$ toluene3311 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluenetrace12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene72 (68)13 $Pd_2(dba)_3$ $XantPhos$ $NaOt-Bu$ toluene3114 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene5115 $Pd_2(dba)_3$ $DPPP$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene66 ^b 18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ DME 24 ^b	9	Pd ₂ (dba) ₃	DavePhos	NaOt-Bu	toluene	57
11 $Pd_2(dba)_3$ PCy_3 $NaOt-Bu$ toluenetrace12 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluene72 (68)13 $Pd_2(dba)_3$ XantPhos $NaOt-Bu$ toluene3114 $Pd_2(dba)_3$ $DPPF$ $NaOt-Bu$ toluene5115 $Pd_2(dba)_3$ $DPPP$ $NaOt-Bu$ toluene5216 $Pd_2(dba)_3$ $DPEPhos$ $LiOt-Bu$ toluenetrace17 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ toluenetrace18 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ $1,4-dioxane$ 66^b 19 $Pd_2(dba)_3$ $DPEPhos$ $NaOt-Bu$ DME 24^b	10	Pd ₂ (dba) ₃	PPh ₃	NaOt-Bu	toluene	33
12 $Pd_2(dba)_3$ DPEPhos $NaOt$ -Butoluene72 (68)13 $Pd_2(dba)_3$ XantPhos $NaOt$ -Butoluene3114 $Pd_2(dba)_3$ DPPF $NaOt$ -Butoluene5115 $Pd_2(dba)_3$ DPPP $NaOt$ -Butoluene5216 $Pd_2(dba)_3$ DPEPhosLiOt-Butoluenetrace17 $Pd_2(dba)_3$ DPEPhosKOt-Butoluenetrace18 $Pd_2(dba)_3$ DPEPhosNaOt-Bu1,4-dioxane66 ^b 19 $Pd_2(dba)_3$ DPEPhosNaOt-BuDME24 ^b	11	Pd ₂ (dba) ₃	PCy ₃	NaOt-Bu	toluene	trace
13 $Pd_2(dba)_3$ XantPhosNaOt-Butoluene3114 $Pd_2(dba)_3$ DPPFNaOt-Butoluene5115 $Pd_2(dba)_3$ DPPPNaOt-Butoluene5216 $Pd_2(dba)_3$ DPEPhosLiOt-Butoluenetrace17 $Pd_2(dba)_3$ DPEPhosKOt-Butoluenetrace18 $Pd_2(dba)_3$ DPEPhosNaOt-Bu1,4-dioxane 66^b 19 $Pd_2(dba)_3$ DPEPhosNaOt-BuDME 24^b	12	Pd ₂ (dba) ₃	DPEPhos	NaOt-Bu	toluene	72 (68)
14 $Pd_2(dba)_3$ DPPF $NaOt$ -Butoluene5115 $Pd_2(dba)_3$ DPPP $NaOt$ -Butoluene5216 $Pd_2(dba)_3$ DPEPhos $LiOt$ -Butoluenetrace17 $Pd_2(dba)_3$ DPEPhos KOt -Butoluenetrace18 $Pd_2(dba)_3$ DPEPhos $NaOt$ -Bu1,4-dioxane 66^b 19 $Pd_2(dba)_3$ DPEPhos $NaOt$ -BuDME 24^b	13	Pd ₂ (dba) ₃	XantPhos	NaOt-Bu	toluene	31
15Pd2(dba)3DPPPNaOt-Butoluene5216Pd2(dba)3DPEPhosLiOt-Butoluenetrace17Pd2(dba)3DPEPhosKOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Bu1,4-dioxane66 ^b 19Pd2(dba)3DPEPhosNaOt-BuDME24 ^b	14	Pd ₂ (dba) ₃	DPPF	NaOt-Bu	toluene	51
16Pd2(dba)3DPEPhosLiOt-Butoluenetrace17Pd2(dba)3DPEPhosKOt-Butoluenetrace18Pd2(dba)3DPEPhosNaOt-Bu1,4-dioxane66 ^b 19Pd2(dba)3DPEPhosNaOt-BuDME24 ^b	15	Pd ₂ (dba) ₃	DPPP	NaOt-Bu	toluene	52
17 $Pd_2(dba)_3$ DPEPhosKOt-Butoluenetrace18 $Pd_2(dba)_3$ DPEPhos $NaOt$ -Bu1,4-dioxane 66^b 19 $Pd_2(dba)_3$ DPEPhos $NaOt$ -BuDME 24^b	16	Pd ₂ (dba) ₃	DPEPhos	LiOt-Bu	toluene	trace
18 $Pd_2(dba)_3$ DPEPhosNaOt-Bu1,4-dioxane 66^b 19 $Pd_2(dba)_3$ DPEPhosNaOt-BuDME 24^b	17	Pd ₂ (dba) ₃	DPEPhos	KOt-Bu	toluene	trace
19 Pd ₂ (dba) ₃ DPEPhos NaOt-Bu DME 24 ^b	18	Pd ₂ (dba) ₃	DPEPhos	NaOt-Bu	1,4-dioxane	66 ^b
	19	Pd ₂ (dba) ₃	DPEPhos	NaOt-Bu	DME	24 ^b

^a GC yields. Isolated yields given in parentheses.

^b Heated to reflux.

quinoline **3** was treated with aqueous 3 M HCl. Accordingly, as shown in Table 2, quinolinones **4d–m** were isolated in moderate to high yields as the sole products when the one-pot reaction mixture was quenched with aqueous 3 M HCl.

We also investigated other *gem*-dibromoenynes with different substituents on the unsaturated skeleton. As summarized in Table 2 (entries 2 and 3), derivatives **3** and **4** were obtained in moderate isolated yields from propyl-substituted enyne (**1b**) and hexyl-substituted enyne (**1c**), respectively, with aniline **2a**.

Two plausible catalytic pathways for the formation of quinolines **3** from *gem*-dihaloenyne **1** are presented in Scheme 1. The first pathway (**I**) might involve four subsequent steps: palladium-catalyzed amination of the alkenyl bromides, $^{15-17}$ 1,5-H transfer, 18 annulation via 6-*exo-dig*

electrophilic cyclization,¹⁹ and palladium-catalyzed etherification.^{20,21} The second pathway might involve: palladium-catalyzed etherification, amination, 1,5-H shift, and 6-*exo-dig* electrophilic cyclization.

To gain a better understanding of the present reaction mechanism, three different experiments were carried out. First, the two-component coupling between the conjugated *cis*-bromo alkenyne **5** and aniline **2a** was carried out under the above reaction conditions, providing quinoline **6** in 57% isolated yield as well as pyrrole **7** in 16% isolated yield (Scheme 2).^{22,23} The formation of **6** presumably arises from 6-*exo-dig* electrophilic cyclization of the al-kynylenamine intermediate **8**, whereas pyrrole derivative **7** should be generated via 5-*endo-dig* hydroamination of **8**. This result clearly shows the prior palladium-catalyzed amination with one bromine is reasonable and should result in the formation of quinoline **6**, which strongly supports Step 1 of the proposed pathway **I** shown in Scheme 1.

A deuterium-labeling experiment using aniline- D_2 and 1a was carried out in the presence of anhydrous NaOt-Bu (Scheme 3). The *gem*-dihaloenyne 1a was converted completely in refluxing toluene within two hours, resulting in the formation of the product 3a-D/H in 65% isolated yield. The deuterium on the C5 position of quinoline 3a-D/H originates from aniline- D_2 , which strongly supports the proposed 1,5-H shift shown in Scheme 1.

Finally, an experiment was designed to investigate at which step the etherification reaction occurs; either the first step in pathway II or in the last step in pathway I. No reaction took place when 2-bromoquinoline 9 was treated with three equivalents of NaOt-Bu without the palladium catalyst. Under the optimized reaction conditions used above, as shown in Scheme 4, the ether-containing quinoline 10 was obtained in 70% isolated yield, along with formation of the corresponding quinolinone 11 in 21% isolated yield. This result and other experimental observations show that pathway I (Scheme 1) is more likely.

In summary, we have developed a domino palladiumcatalyzed amination, C–C bond formation, and C–O coupling process. This method provides an efficient synthesis of multi-substituted quinolines and quinolinones from *gem*-dibromoenynes and anilines.

Unless otherwise noted, all starting materials were commercially available and were used without further purification. All reactions were carried out either using standard Schlenk techniques or under a nitrogen atmosphere in a glovebox. The nitrogen in the glovebox was constantly circulated through a copper/molecular sieve catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored by an O_2/H_2 Combi-Analyzer to ensure both were always below 1 ppm. Solvents were purified by a Solvent Purification System and dried over fresh Na chips in the glovebox.

Table 2 Domino Three-Component Synthesis of Quinolines 3 and Quinolinones 4

^a Isolated yields of quinolines **3**.

^b Aa 3 M HCl was added to the crude mixture and stirred for 30 min: isolated vields of auinolinones **4** are given in parentheses. Synthesis **2012**, 44, 2754–2762 © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Proposed reaction mechanism

Scheme 2 Palladium-catalyzed amination of monohaloenyne 5 affording quinoline 6 and pyrrole 7

Scheme 3 Deuterium-labeling experiment confirming the 1,5-H-shift

Scheme 4 Control experiment used to investigate the etherification reaction

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York

500 MHz for ¹H; 125 MHz for ¹³C) at r.t. in CDCl₃ solutions and with tetramethylsilane ($\delta = 0.00$ ppm) as internal standard, unless otherwise noted. Infrared spectra (IR) were recorded with a Thermo Nicolet Avatar 330 FT-IR spectrophotometer. High-resolution mass spectra (HRMS) were recorded with a Bruker Apex IV FTMS mass spectrometer using electrospray ionization (ESI) and FT-ICR mass analyser or a Waters Micromass GCT mass spectrometer using electron-ionization (EI) and a TOF mass analyzer. The *gem*-dihaloenynes **1** were prepared from 1,1,4,4-tetrahalo-1,3-butadienes through the Fritsch–Buttenberg–Wiechell (FBW) rearrangement mediated by an organolithium compound.^{10b}

Preparation of Quinolines 3 and Quinolinones 4; General Procedure

 $[Pd_2(dba)_3]$ (4.6 mg, 0.005 mmol), DPEPhos (10.2 mg, 0.02 mmol) and toluene (2.0 mL) were placed in an oven-dried 25 mL flask, and the mixture was stirred at r.t. for 15 min, then *gem*-dihaloenyne **1** (0.2 mmol), aniline **2** (0.24 mmol), and NaOt-Bu (96 mg, 1.0 mmol) were added. The flask was then placed in a preheated oil bath (110 °C) and stirred for 2 h. After cooling to r.t., the solvent was evaporated under vacuum and the residue was purified by chromatography (EtOAc-pentane, $0 \rightarrow 10\%$) to give the quinoline product **3**. To obtain the corresponding quinolinone product **4**, excess 3 M HCl was added and the solution was stirred for 1 h. The reaction mixture was neutralized with NaHCO₃ and extracted with EtOAc (3 × 3 mL). The solvent was then evaporated in vacuo and the crude product was purified by column chromatography over silica gel (EtOAc-pentane, 50 \rightarrow 100%).

2-tert-Butoxy-3-butyl-4-pentylquinoline (3a) Yield: 68% (45 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 0.90–0.99 (m, 6 H, CH₃), 1.38– 1.53 (m, 10 H, CH₂), 1.69 (s, 9 H, CH₃), 2.69 (t, *J* = 8.3 Hz, 2 H, CH₂), 2.96 (t, *J* = 7.8 Hz, 2 H, CH₂), 7.31 (t, *J* = 7.5 Hz, 1 H, CH), 7.49 (t, *J* = 7.2 Hz, 1 H, CH), 7.73–7.83 (m, 2 H, CH).

 13 C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 26.7, 28.2, 28.7 (3CH₃), 30.3, 31.9, 32.4, 79.5, 123.1, 123.4, 124.2, 125.5, 127.5, 127.9, 145.0, 145.8, 160.4.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{22}H_{34}NO^+$: 328.2635; found: 328.2629.

2-tert-Butoxy-4-butyl-3-propylquinoline (3b)

Yield: 52% (31 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.98-1.03$ (m, 6 H, CH₃), 1.49– 1.60 (m, 6 H, CH₂), 1.69 (s, 9 H, CH₃), 2.67 (t, J = 7.7 Hz, 2 H, CH₂), 2.97 (t, J = 7.5 Hz, 2 H, CH₂), 7.32 (t, J = 7.5 Hz, 1 H, CH), 7.49 (t, J = 7.5 Hz, 1 H, CH), 7.75 (d, J = 8.4 Hz, 1 H, CH), 7.83 (d, J = 8.4 Hz, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.6, 23.1, 23.3, 27.9, 28.7 (3CH₃), 29.1, 32.7, 79.4, 123.1, 123.5, 124.2, 125.4, 127.5, 127.9, 145.1, 145.9, 160.4.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{20}H_{30}NO^+$: 300.2322; found: 300.2316.

2-tert-Butoxy-4-heptyl-3-hexylquinoline (3c)

Yield: 63% (48 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 0.88–0.92 (m, 6 H, CH₃), 1.31– 1.63 (m, 18 H, CH₂), 1.69 (s, 9 H, CH₃), 2.68 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.95 (t, *J* = 8.1 Hz, 2 H, CH₂), 7.31 (t, *J* = 7.5 Hz, 1 H, CH), 7.49 (t, *J* = 7.5 Hz, 1 H, CH), 7.75 (d, *J* = 8.2 Hz, 1 H, CH), 7.82 (d, *J* = 8.2 Hz, 1 H, CH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 14.1 (2CH₃), 22.7 (2CH₂), 27.1, 28.2, 28.7 (3CH₃), 29.1, 29.7, 29.8, 30.2, 30.6, 31.7, 31.8, 79.5, 123.1, 123.5, 124.2, 125.6, 127.5, 127.9, 145.0, 145.8, 160.4.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{26}H_{42}NO^+$: 384.3261; found: 384.3258.

2-*tert***-Butoxy-3-butyl-6-fluoro-4-***pentylquinoline* (3d) Yield: 50% (35 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 0.91–1.00 (m, 6 H, CH₃), 1.37– 1.53 (m, 10 H, CH₂), 1.68 (s, 9 H, CH₃), 2.68 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.89 (t, *J* = 8.1 Hz, 2 H, CH₂), 7.21–7.28 (m, 1 H, CH), 7.40– 7.45 (m, 1 H, CH), 7.68–7.73 (m, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.98, 14.03, 22.5, 23.1, 26.8, 28.4, 28.6 (3CH₃), 30.0, 31.8, 32.4, 79.6, 107.4 (d, J_{C-F} = 22.3 Hz), 116.8 (d, J_{C-F} = 24.7 Hz), 124.7 (d, J_{C-F} = 8.6 Hz), 126.5, 129.7 (d, J_{C-F} = 8.7 Hz), 141.8, 145.2 (d, J_{C-F} = 4.3 Hz), 159.0 (d, J_{C-F} = 239.3 Hz), 160.0.

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₃₃FNO⁺: 346.2541; found: 346.2538.

2-tert-Butoxy-3-butyl-6-methoxy-4-pentylquinoline (3e) Yield: 59% (42 mg); yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 0.92–0.99 (m, 6 H, CH₃), 1.38– 1.53 (m, 8 H, CH₂), 1.59–1.65 (m, 2 H, CH₂), 1.67 (s, 9 H, CH₃), 2.68 (t, *J* = 7.7 Hz, 2 H, CH₂), 2.92 (t, *J* = 8.2 Hz, 2 H, CH₂), 3.90 (s, 3 H, CH₃), 7.16–7.19 (m, 2 H, CH), 7.67 (d, *J* = 9.4 Hz, 1 H, CH).

¹³C NMR (100 MHz, CDCl₃): δ = 14.00, 14.05, 22.5, 23.1, 26.8, 28.3, 28.7 (3CH₃), 29.8, 31.9, 32.4, 55.5, 79.1, 103.7, 118.1, 124.7, 125.8, 129.2, 140.4, 144.8, 155.5, 159.2.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{23}H_{36}NO_2^+$: 358.2741; found: 358.2737.

6-Benzyl-2-*tert*-**butoxy-3-butyl-4-pentylquinoline (3f)** Yield: 47% (39 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 0.89–0.98 (m, 6 H, CH₃), 1.34– 1.55 (m, 10 H, CH₂), 1.67 (s, 9 H, CH₃), 2.67 (t, *J* = 7.7 Hz, 2 H, CH₂), 2.89 (t, *J* = 8.0 Hz, 2 H, CH₂), 4.12 (s, 2 H, CH₂), 7.19–7.34 (m, 6 H, CH), 7.56 (s, 1 H, CH), 7.66 (d, *J* = 8.4 Hz, 1 H, CH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 14.01, 14.04, 22.5, 23.1, 26.7, 28.1, 28.7 (3CH₃), 30.2, 31.9, 32.3, 42.1, 79.3, 123.1, 124.1, 125.6, 126.0, 128.0, 128.4 (2CH), 128.9 (2CH), 129.0, 135.7, 141.4, 143.7, 145.5, 160.2.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{29}H_{40}NO^+$: 418.3104; found: 418.3107.

2-*tert***-Butoxy-3-butyl-8-isopropyl-4-pentylquinoline (3g)** Yield: 66% (49 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92-1.00$ (m, 6 H, CH₃), 1.34– 1.53 (m, 16 H, CH₂, CH₃), 1.71 (s, 9 H, CH₃), 2.70 (t, J = 6.2 Hz, 2 H, CH₂), 2.96 (t, J = 6.8 Hz, 2 H, CH₂), 4.15–4.23 (m, 1 H, CH), 7.31 (t, J = 7.8 Hz, 1 H, CH), 7.45 (d, J = 6.3 Hz, 1 H, CH), 7.70 (d, J = 8.4 Hz, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 23.6 (2CH₃), 26.8, 27.3, 28.4, 28.6 (3CH₃), 30.3, 31.9, 32.5, 78.8, 121.2, 123.0, 123.3, 124.1, 125.1, 142.7, 145.6, 146.3, 159.3.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{25}H_{40}NO^+$: 370.3104; found: 370.3103.

2-*tert***-Butoxy-3-butyl-8-methoxy-4-pentylquinoline (3h)** Yield: 72% (51 mg); yellow oil.

¹H NMR (500 MHz, CDCl₃): $\delta = 0.91-0.98$ (m, 6 H, CH₃), 1.37– 1.53 (m, 8 H, CH₂), 1.58–1.64 (m, 2 H, CH₂), 1.71 (s, 9 H, CH₃), 2.69 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.94 (t, *J* = 8.3 Hz, 2 H, CH₂), 3.99 (s, 3 H, CH₃), 6.93 (d, *J* = 7.2 Hz, 1 H, CH), 7.22 (t, *J* = 8.1 Hz, 1 H, CH), 7.42 (d, *J* = 7.7 Hz, 1 H, CH).

¹³C NMR (125 MHz, CDCl₃): δ = 14.00, 14.04, 22.5, 23.1, 26.8, 28.6, 28.7 (3CH₃), 30.3, 31.9, 32.4, 56.7, 79.5, 108.1, 115.9, 122.9, 125.5, 125.7, 136.8, 146.0, 155.1, 159.6.

2-tert-Butoxy-3-butyl-4-pentyl-8-phenylquinoline (3i)

Yield: 62% (50 mg); yellow oil.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.93-0.98$ (m, 6 H, CH₃), 1.41– 1.55 (m, 17 H, CH₂, CH₃), 1.62–1.70 (m, 2 H, CH₂), 2.69 (t, J = 7.7 Hz, 2 H, CH₂), 3.00 (t, J = 8.2 Hz, 2 H, CH₂), 7.32–7.43 (m, 4 H, CH), 7.50–7.55 (m, 3 H, CH), 7.86 (d, J = 9.7 Hz, 1 H, CH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 26.8, 28.3 (3CH₃), 28.5, 30.4, 31.9, 32.5, 79.1, 122.7, 123.1, 124.6, 125.4, 126.4, 127.3 (2CH), 128.5, 130.7 (2CH), 139.7, 141.2, 143.0, 146.0, 159.8.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{28}H_{38}NO^+$: 404.2948; found: 404.2949.

2-tert-Butoxy-3-butyl-4-pentylbenzo[h]quinoline (3j)

Yield: 60% (45 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): δ = 0.92–1.02 (m, 6 H, CH₃), 1.40– 1.59 (m, 10 H, CH₂), 1.80 (s, 9 H, CH₃), 2.75 (t, *J* = 7.7 Hz, 2 H, CH₂), 3.02 (t, *J* = 8.1 Hz, 2 H, CH₂), 7.57–7.66 (m, 3 H, CH), 7.83 (t, *J* = 8.9 Hz, 2 H, CH), 9.08 (d, *J* = 7.8 Hz, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 26.7, 28.4, 28.7 (3CH₃), 30.6, 32.0, 32.4, 79.3, 120.7, 121.9, 123.7, 124.6, 125.0, 125.9, 126.8, 127.3, 131.6, 133.1, 142.4, 146.8, 160.0.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{26}H_{36}NO^+$: 378.2791; found: 378.2794.

2-*tert***-Butoxy-3-butyl-4-pentyl-1,9-phenanthroline (3k)** Yield: 32% (24 mg); yellow oil.

¹H NMR (500 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H, CH₃), 1.00 (t, J = 7.2 Hz, 3 H, CH₃), 1.40–1.68 (m, 10 H, CH₂), 1.80 (s, 9 H, CH₃), 2.77 (t, J = 7.9 Hz, 2 H, CH₂), 3.04 (t, J = 8.3 Hz, 2 H, CH₂), 7.74 (d, J = 9.0 Hz, 1 H, CH), 7.93 (d, J = 9.1 Hz, 1 H, CH), 8.72 (d, J = 5.7 Hz, 1 H, CH), 8.77 (d, J = 5.6 Hz, 1 H, CH), 9.24 (s, 1 H, CH).

¹³C NMR (125 MHz, CDCl₃): δ = 14.01, 14.05, 22.5, 23.2, 26.8, 28.5, 28.7 (3CH₃), 30.5, 31.8, 32.4, 79.9, 117.6, 121.7, 123.0, 123.5, 127.4, 128.1, 135.6, 140.9, 144.3, 147.0, 151.0, 160.6.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{25}H_{35}N_2O^+$: 379.2744; found: 379.2744.

2-*tert***-Butoxy-3-butyl-5,8-dimethoxy-4-pentylquinoline (31)** Yield: 50% (39 mg); yellow oil.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.91-0.99$ (m, 6 H, CH₃), 1.38– 1.50 (m, 10 H, CH₂), 1.70 (s, 9 H, CH₃), 2.69 (t, J = 7.2 Hz, 2 H, CH₂), 3.18 (t, J = 6.5, 2 H, CH₂), 3.86 (s, 3 H, CH₃), 3.94 (s, 3 H, CH₃), 6.59 (d, J = 8.7 Hz, 1 H, CH), 6.86 (d, J = 8.7 Hz, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.2, 22.5, 23.1, 26.1, 28.6 (3CH₃), 31.2, 31.3, 32.0, 32.8, 55.6, 57.6, 79.4, 102.6, 108.7, 117.3, 125.8, 138.6, 147.6, 149.3, 151.3, 159.6.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{38}NO_3^+$: 388.2846; found: 388.2836.

2-tert-Butoxy-3-butyl-5,7-dimethoxy-4-pentylquinoline (3m) Yield: 45% (35 mg); yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 0.91–0.98 (m, 6 H, CH₃), 1.38– 1.55 (m, 10 H, CH₂), 1.67 (s, 9 H, CH₃), 2.64 (t, *J* = 7.6 Hz, 2 H, CH₂), 3.12 (t, *J* = 8.1 Hz, 2 H, CH₂), 3.87–3.90 (m, 6 H, CH₃), 6.35 (d, *J* = 2.5 Hz, 1 H, CH), 6.74 (d, *J* = 2.4 Hz, 1 H, CH).

¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 14.2, 22.5, 23.1, 26.0, 28.8 (3CH₃), 31.1, 31.2, 32.2, 32.8, 55.3, 55.4, 79.2, 96.2, 100.2, 111.6, 123.0, 147.5, 148.4, 158.0, 159.2, 160.9.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{38}NO_3^+$: 388.2846; found: 388.2848.

© Georg Thieme Verlag Stuttgart · New York

3-Butyl-4-pentylquinolin-2(1*H*)-one (4a)

Yield: 74% (40 mg); colorless solid; mp 147.5–149.2 °C. IR (film): 1654 (C=O) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92-1.01$ (m, 6 H, CH₃), 1.37–

1.70 (m, 10 H, CH₂), 2.76 (t, J = 7.4 Hz, 2 H, CH₂), 2.88 (t, J = 8.0 Hz, 2 H, CH₂), 7.17–7.22 (m, 1 H, CH), 7.39–7.46 (m, 2 H, CH), 7.67 (d, J = 8.2 Hz, 1 H, CH), 12.08 (s, 1 H, NH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 26.7, 28.8, 29.7, 31.6, 32.4, 116.3, 120.1, 122.1, 124.2, 128.9, 131.2, 137.3, 147.5, 164.0.

HRMS (ESI): $m/z \, [M + H]^+$ calcd for $C_{18}H_{26}NO^+$: 272.2009; found: 272.2014.

4-Butyl-3-propylquinolin-2(1*H*)-one (4b)

Yield: 61% (30 mg); colorless solid; mp 135.2–136.9 °C.

IR (film): 1650 (C=O) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.99–1.08 (m, 6 H, CH₃), 1.51– 1.66 (m, 6 H, CH₂), 2.74 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.90 (t, *J* = 7.9 Hz, 2 H, CH₂), 7.21 (t, *J* = 7.4 Hz, 1 H, CH), 7.38–7.46 (m, 2 H, CH), 7.69 (d, *J* = 8.2 Hz, 1 H, CH), 11.94 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.6, 22.7, 23.3, 28.6, 29.0, 32.1, 116.3, 120.1, 122.2, 124.3, 129.0, 130.9, 137.2, 147.8, 164.0.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{16}H_{22}NO^+$: 244.1696; found: 244.1701.

4-Heptyl-3-hexylquinolin-2(1*H*)-one (4c)

Yield: 70% (46 mg); colorless solid; mp 145.6–147.4 °C.

IR (film): 1654 (C=O) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.89-0.93$ (m, 6 H, CH₃), 1.32– 1.62 (m, 18 H, CH₂), 2.74 (t, J = 7.7 Hz, 2 H, CH₂), 2.88 (t, J = 8.0 Hz, 2 H, CH₂), 7.20 (t, J = 7.6 Hz, 1 H, CH), 7.32 (d, J = 8.1 Hz, 1 H, CH), 7.42 (t, J = 7.6 Hz, 1 H, CH), 7.68 (d, J = 8.2 Hz, 1 H, CH), 11.42 (s, 1 H, NH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 14.1, 14.2, 22.7 (2CH₂), 27.0, 28.9, 29.1, 29.3, 29.7, 30.0, 30.2, 31.8 (2CH₂), 116.1, 120.2, 122.1, 124.4, 128.9, 131.3, 137.1, 147.5, 163.7.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{22}H_{34}NO^+$: 328.2635; found: 328.2633.

3-Butyl-6-fluoro-4-pentylquinolin-2(1*H*)-one (4d)

Yield: 64% (37 mg); colorless solid; mp 133.3–135.3 °C.

IR (film): 1654 (C=O) cm⁻¹.

 1H NMR (300 MHz, CDCl₃): δ = 0.92–1.01 (m, 6 H, CH₃), 1.37–1.58 (m, 10 H, CH₂), 2.74–2.85 (m, 4 H, CH₂), 7.16–7.42 (m, 3 H, CH), 12.67 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.1, 26.8, 29.0, 29.5, 31.5, 32.3, 109.4 (d, J_{C-F} = 22.8 Hz), 117.1 (d, J_{C-F} = 24.2 Hz), 117.8 (d, J_{C-F} = 8.1 Hz), 121.0 (d, J_{C-F} = 8.0 Hz), 132.4, 133.8, 146.8 (d, J_{C-F} = 3.7 Hz), 158.1 (d, J_{C-F} = 238.1 Hz), 163.9.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₅FNO⁺: 290.1915; found: 290.1915.

3-Butyl-6-methoxy-4-pentylquinolin-2(1H)-one (4e)

Yield: 65% (39 mg); colorless solid; mp 101.3–103.0 °C.

IR (film): 1646 (C=O) cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 0.93–1.01 (m, 6 H, CH₃), 1.39– 1.65 (m, 10 H, CH₂), 2.76 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.85 (t, *J* = 7.8 Hz, 2 H, CH₂), 3.86 (s, 3 H, CH₃), 7.07–7.11 (m, 2 H, CH), 7.32 (d, *J* = 8.8 Hz, 1 H, CH), 12.14 (s, 1 H, NH).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.2, 26.9, 29.0, 29.4, 31.7, 32.4, 55.8, 107.1, 117.4 (2CH), 120.9, 131.8, 132.0, 146.8, 154.9, 163.6.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{28}NO_2^+$: 302.2115; found: 302.2115.

6-Benzyl-3-butyl-4-pentylquinolin-2(1H)-one (4f)

Yield: 63% (46 mg); colorless solid; mp 124.4-126.2 °C.

IR (film): 1654 (C=O) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 0.89-0.99 (m, 6 H, CH₃), 1.31– 1.56 (m, 10 H, CH₂), 2.71–2.83 (m, 4 H, CH₂), 4.06 (s, 2 H, CH₂), 7.18–7.33 (m, 7 H, CH), 7.41 (s, 1 H, CH), 12.12 (s, 1 H, NH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.4, 23.1, 26.7, 28.7, 29.6, 31.6, 32.2, 41.6, 116.4, 120.0, 124.1, 126.1, 128.5 (2CH), 128.9 (2CH), 130.0, 131.2, 134.7, 135.7, 141.0, 147.3, 163.9.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{25}H_{32}NO^+$: 362.2478; found: 362.2482.

3-Butyl-8-isopropyl-4-pentylquinolin-2(1*H***)-one (4g)**

Yield: 73% (46 mg); colorless solid; mp 114.3–115.8 °C.

IR (film): 1630 (C=O) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.92-0.99$ (m, 6 H, CH₃), 1.34– 1.62 (m, 16 H, CH₂, CH₃), 2.72 (t, J = 6.2 Hz, 2 H, CH₂), 2.87 (t, J = 6.6 Hz, 2 H, CH₂), 3.43–3.51 (m, 1 H, CH), 7.16–7.20 (m, 1 H, CH), 7.38 (t, J = 5.4 Hz, 1 H, CH), 7.56 (t, J = 6.3 Hz, 1 H, CH), 10.08 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 22.9 (2CH₃), 23.3, 26.6, 27.0, 29.1, 29.7, 31.5, 32.4, 120.1, 121.8, 122.3, 125.3, 130.9, 133.4, 134.3, 147.7, 163.1.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{32}NO^+$: 314.2478; found: 314.2479.

3-Butyl-8-methoxy-4-pentylquinolin-2(1*H*)-one (4h)

Yield: 81% (49 mg); colorless solid; mp 113.2–115.1 °C.

IR (film): 1633 (C=O) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.91-0.98$ (m, 6 H, CH₃), 1.36– 1.64 (m, 10 H, CH₂), 2.70 (t, J = 7.8 Hz, 2 H, CH₂), 2.84 (t, J = 8.1 Hz, 2 H, CH₂), 3.95 (s, 3 H, CH₃), 6.91 (d, J = 7.8, 1 H, CH), 7.12 (t, J = 8.3, 1 H, CH), 7.27 (d, J = 8.4, 1 H, CH), 9.15 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.00, 14.02, 22.4, 23.1, 26.9, 29.1, 29.6, 31.5, 32.3, 55.9, 108.5, 116.4, 120.4, 121.4, 127.2, 132.2, 145.5, 147.1, 161.8.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{28}NO_2^+$: 302.2115; found: 302.2114.

3-Butyl-4-pentyl-8-phenylquinolin-2(1H)-one (4i)

Yield: 70% (49 mg); yellow oil.

IR (film): 1640 (C=O) cm^{-1} .

¹H NMR (500 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.2 Hz, 6 H, CH₃), 1.41–1.55 (m, 8 H, CH₂), 1.63–1.70 (m, 2 H, CH₂), 2.70 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.91 (t, *J* = 8.3 Hz, 2 H, CH₂), 7.25 (t, *J* = 7.8 Hz, 1 H, CH), 7.34 (d, *J* = 7.3 Hz, 1 H, CH), 7.40–7.41 (m, 2 H, CH), 7.45 (t, *J* = 7.4 Hz, 1 H, CH), 7.51 (t, *J* = 7.3 Hz, 2 H, CH), 7.70 (d, *J* = 8.2 Hz, 1 H, CH), 8.67 (s, 1 H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 14.0 (2CH₃), 22.5, 23.1, 26.9, 29.1, 29.7, 31.5, 32.4, 120.4, 121.8, 124.1, 128.5, 128.6, 129.4 (2CH), 129.5 (2CH), 129.9, 131.7, 134.1, 136.5, 147.3, 162.2.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{30}NO^+$: 348.2322; found: 348.2322.

3-Butyl-4-pentylbenzo[*h*]quinolin-2(1*H*)-one (4j)

Yield: 71% (46 mg); colorless solid; mp 165.3–167.0 °C. IR (film): 1636 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 0.95–1.06 (m, 6 H, CH₃), 1.44– 1.69 (m, 10 H, CH₂), 2.89–3.01 (m, 4 H, CH₂), 7.60–7.88 (m, 5 H, CH), 9.08 (t, *J* = 6.6 Hz, 1 H, CH), 12.76 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.05, 14.13, 22.5, 23.5, 27.2, 29.3, 29.9, 31.5, 32.4, 116.1, 121.8, 122.3, 122.5, 122.6, 126.4, 127.3, 128.1, 131.0, 133.2, 134.1, 148.5, 164.1.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{22}H_{28}NO^+$: 322.2165; found: 322.2163.

3-Butyl-4-pentyl-1,9-phenanthrolin-2(1*H***)-one (4k)**

Yield: 43% (28 mg); colorless solid; mp 118.2–120.2 °C.

IR (film): 1643 (C=O) cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.3 Hz, 3 H), 1.04 (t, J = 7.2 Hz, 3 H), 1.42–1.70 (m, 10 H), 2.89 (t, J = 7.9 Hz, 2 H), 3.02 (t, J = 8.2 Hz, 2 H), 7.74 (d, J = 8.9 Hz, 1 H), 7.88 (d, J = 8.9 Hz, 1 H), 8.73 (d, J = 5.9 Hz, 1 H), 8.88 (d, J = 5.9 Hz, 1 H), 9.28 (s, 1 H), 13.00 (br, 1 H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 14.0, 14.1, 22.5, 23.4, 27.3, 29.3, 29.9, 31.5, 32.3, 115.1, 119.0, 121.4, 123.4, 126.2, 127.8, 132.7, 133.6, 144.3, 148.6, 152.1, 164.1.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{27}N_2O^+$: 323.2118; found: 323.2120.

3-Butyl-5,8-dimethoxy-4-pentylquinolin-2(1*H***)-one (4l) Yield: 63% (42 mg); colorless solid; mp 130.3–132.1 °C.**

IR (film): 1630 (C=O) cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 0.92-0.98$ (m, 6 H, CH₃), 1.37– 1.56 (m, 10 H, CH₂), 2.70 (t, J = 7.8 Hz, 2 H, CH₂), 3.07 (t, J = 7.8 Hz, 2 H, CH₂), 3.85 (s, 3 H, CH₃), 3.90 (s, 3 H, CH₃), 6.52 (d, J = 8.8 Hz, 1 H, CH), 6.81 (d, J = 8.8 Hz, 1 H, CH), 9.18 (s, 1 H, NH).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 14.04, 14.15, 22.5, 23.2, 26.5, 30.5, 31.7, 31.9, 32.7, 55.8, 56.3, 102.4, 108.8, 111.6, 128.9, 132.1, 139.8, 148.8, 151.4, 161.5.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{20}H_{30}NO_3^+$: 332.2220; found: 332.2222.

3-Butyl-5,7-dimethoxy-4-pentylquinolin-2(1*H***)-one (4m) Yield: 63% (42 mg); colorless solid; mp 166.8–168.3 °C.**

IR (film): 1600 (C=O) cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 0.92–0.98 (m, 6 H, CH₃), 1.38– 1.56 (m, 10 H, CH₂), 2.71 (t, *J* = 7.8 Hz, 2 H, CH₂), 3.05 (t, *J* = 7.7 Hz, 2 H, CH₂), 3.86–3.87 (m, 6 H, CH₃), 6.24 (d, *J* = 2.3 Hz, 1 H, CH), 6.51 (t, *J* = 2.5 Hz, 1 H, CH), 12.34 (s, 1 H, NH).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 14.0, 14.2, 22.6, 23.2, 26.1, 30.6, 31.9 (2CH₂), 32.7, 55.3, 55.5, 91.2, 94.7, 106.1, 127.7, 140.7, 149.6, 158.6, 160.7, 164.1.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{20}H_{30}NO_3^+$: 332.2220; found: 332.2222.

(Z)-(1-Bromopent-1-en-3-yne-1,2-diyl)dibenzene (5)²⁴ Yield: 70% (884 mg); yellow solid; mp 83.2–84.9 °C.

¹H NMR (500 MHz, CDCl₃): δ = 2.11 (s, 3 H, CH₃), 7.12–7.19 (m, 10 H, CH).

¹³C NMR (125 MHz, CDCl₃): δ = 4.9, 81.8, 93.7, 126.7, 127.4, 127.9 (2CH), 128.0 (2CH), 128.2, 128.3, 129.4 (2CH), 130.1 (2CH), 138.2, 139.5.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{17}H_{14}Br^+$: 297.0273; found: 297.0277.

Pd-Catalyzed Amination of Monohaloenyne 5 Affording Quinoline 6 and Pyrrole 7

 $[Pd_2(dba)_3]$ (4.6 mg, 0.005 mmol), DPEPhos (10.8 mg, 0.02 mmol), and toluene (2.0 mL) were placed in an oven-dried 25 mL Schlenk

tube, and the mixture was stirred at r.t. for 15 min, then monohaloenyne **5** (59 mg, 0.2 mmol), aniline **2a** (22 mg, 0.24 mmol), and NaOt-Bu (58 mg, 0.6 mmol) were added. The tube was placed in a preheated oil bath (110 °C) and stirred for 2 h. After cooling to r.t., the solvent was evaporated in vacuo and the crude product was purified by column chromatography over silica gel (EtOAc-pentane, $1\rightarrow 10\%$).

4-Ethyl-2,3-diphenylquinoline (6)

Yield: 57% (35 mg); yellow solid; mp 68.8-70.2 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.22 (t, J = 7.4 Hz, 3 H), 2.97 (q, J = 7.2 Hz, 2 H), 7.11–7.31 (m, 10 H), 7.56–7.74 (m, 2 H), 8.09–8.23 (m, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 15.2, 22.6, 124.1, 125.9, 126.4, 126.9, 127.3, 127.5 (2CH), 127.9 (2CH), 129.0, 129.6 (2CH), 130.5 (3CH), 133.4, 138.8, 141.3, 147.3, 148.1, 159.0.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{23}H_{20}N^+$: 310.1590; found: 310.1590.

5-Methyl-1,2,3-triphenyl-1*H*-pyrrole (7)

Yield: 16% (10 mg); yellow solid; mp 88.7–90.2 °C.

¹H NMR (500 MHz, CDCl₃): δ = 2.16 (s, 3 H, CH₃), 6.29 (s, 1 H, CH), 7.00–7.27 (m, 15 H, CH).

¹³C NMR (125 MHz, CDCl₃): δ = 13.1, 108.0, 122.5, 125.2, 126.5, 127.3, 127.8 (2CH), 128.1 (2CH), 128.2 (2CH), 128.6 (2CH), 128.7 (2CH), 130.4, 131.1 (2CH), 133.0, 133.6, 136.6, 139.0.

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{23}H_{20}N^+$: 310.1590; found: 310.1592.

Control Experiment Confirming the Etherification

 $[Pd_2(dba)_3]$ (4.6 mg, 0.005 mmol), DPEPhos (10.8 mg, 0.02 mmol), and toluene (2.0 mL) were placed in an oven-dried 25 mL Schlenk tube, and the mixture was stirred at r.t. for 15 min, then 2-bromoquinoline **9** (42 mg, 0.2 mmol) and NaOt-Bu (58 mg, 0.6 mmol) were added. The tube was placed in a preheated oil bath (110 °C) and stirred for 2 h. After cooling to r.t., the solvent was evaporated under vacuum and the residue was purified by chromatography (EtOAc-pentane, 10 \rightarrow 100%) to give quinoline **10** and quinolinone **11**.

2-tert-Butoxyquinoline (10)²⁵

Yield: 70% (28 mg); colorless oil.

¹H NMR (300 MHz, CDCl₃): δ = 1.70 (s, 9 H, CH₃), 6.79 (d, J = 8.7 Hz, 1 H, CH), 7.32 (s, 1 H, CH), 7.57 (s, 1 H, CH), 7.65 (d, J = 8.4 Hz, 1 H, CH), 7.79 (d, J = 8.4 Hz, 1 H, CH), 7.89 (d, J = 8.7 Hz, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 28.6 (3CH₃), 80.1, 115.0, 123.6, 124.5, 127.2, 127.5, 129.0, 138.0, 146.4, 161.8.

Quinolin-2(1*H*)-one (11)²⁶

Yield: 21% (6 mg); colorless solid.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.74$ (d, J = 9.4 Hz, 1 H, CH), 7.20–7.24 (m, 1 H, CH), 7.47–7.57 (m, 3 H, CH), 7.83 (d, J = 9.4 Hz, 1 H, CH), 12.81 (s, 1 H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 116.3, 120.0, 121.4, 122.7, 127.7, 130.7, 138.6, 141.0, 164.8.

4-(1-Deuterium)-2-*tert*-**butoxy-3-butylquinoline (3a-D/H)** Yield: 65% (43 mg); yellow oil.

¹H NMR (500 MHz, CDCl₃): δ = 0.92–0.99 (m, 6 H, CH₃), 1.38– 1.54 (m, 8 H, CH₂), 1.59–1.64 (m, 2 H, CH₂), 1.69 (s, 9 H, CH₃), 2.69 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.92–2.97 (m, 1.14 H, CH₂), 7.30 (t, *J* = 7.6 Hz, 1 H, CH), 7.48 (t, *J* = 7.6 Hz, 1 H, CH), 7.74 (d, *J* = 8.3 Hz, 1 H, CH), 7.81 (d, *J* = 8.3 Hz, 1 H, CH).

¹³C NMR (125 MHz, CDCl₃): δ = 14.00, 14.04, 22.5, 23.2, 26.8, 27.9 (t, J_{C-D} = 19.3 Hz), 28.2, 28.7 (3CH₃), 30.2, 30.3, 32.0, 32.4,

32.5, 79.5, 123.1, 123.5, 124.3, 125.6, 127.5, 128.0, 145.2, 145.8, 145.9, 160.5.

HRMS (ESI): $m/z [M + H]^+$ calcd for C₂₂H₃₄NO⁺: 328.2635; found: 328.2638.

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₃₃DNO⁺: 329.2698; found: 329.2701.

Acknowledgment

This work was supported by the Natural Science Foundation of China and the Major State Basic Research Development Program (2011CB808601).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) For a recent comprehensive review on the synthesis and metal-catalyzed reactions of *gem*-dihalovinyl systems, see: Chelucci, G. *Chem. Rev.* **2012**, *112*, 1344.
- (2) (a) Chen, W.; Zhang, Y.; Zhang, L.; Wang, M.; Wang, L. *Chem. Commun.* 2011, 47, 10476. (b) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416.
 (c) Arthuls, M.; Pontikis, R.; Florent, J.-C. Org. Lett. 2009, 11, 4608. (d) Bryan, C. S.; Lautens, M. Org. Lett. 2008, 10, 4633. (e) Viera, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008, 10, 4899. (f) Fang, Y.-Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.
- (3) (a) Bryan, C. S.; Braunger, J. A.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 7064. (b) Newman, S. G.; Aureggi, V.; Bryanand, C. S.; Lautens, M. Chem. Commun. 2009, 5236.
- (4) Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J. *Tetrahedron Lett.* **2004**, *45*, 907.
- (5) Wang, L.; Shen, W. Tetrahedron Lett. 1998, 39, 7625.
- (6) (a) Ye, S.; Liu, J.; Wu, J. Chem. Commun. 2012, 48, 5028.
 (b) He, H.-F.; Dong, S.; Chen, Y.; Yang, Y.; Le, Y.; Bao, W. Tetrahedron 2012, 68, 3112. (c) He, H.-F.; Dong, S.; Chen, Y.; Yang, Y.; Le, Y.; Bao, W. Tetrahedron 2012, 68, 3112.
 (d) Wang, Z.-J.; Yang, F.; Lv, X.; Bao, W. J. Org. Chem. 2011, 76, 967. (e) Qin, X.-R.; Cong, X.-F.; Zhao, D.-B.; You, J.-S.; Lan, J.-B. Chem. Commun. 2011, 47, 5611.
 (f) Wang, Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034. (g) Xu, H.; Zhang, Y.; Huang, J.; Chen, W. Org. Lett. 2010, 12, 3704. (h) Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054. (i) Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361.
- (7) Ye, W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. 2009, 3246.
- (8) (a) Liang, Y.; Meng, T.; Zhang, H.-J.; Xi, Z. Synlett 2011, 911. (b) Coste, A.; Couty, F.; Evano, G. Org. Lett. 2009, 11, 4454. (c) Fukudome, Y.; Naito, H.; Hata, T.; Urabe, U. J. Am. Chem. Soc. 2008, 130, 1820.
- (9) Zhang, H.-J.; Wei, J.; Zhao, F.; Liang, Y.; Wang, Z.; Xi, Z. *Chem. Commun.* **2010**, *46*, 7439.
- (10) (a) Zhang, H.-J.; Song, Z.; Wang, C.; Bruneau, C.; Xi, Z. *Tetrahedron Lett.* 2008, 49, 624. (b) Meng, T.; Zhang, H.-J.; Xi, Z. *Tetrahedron Lett.* 2012, in press; 10.1016/j.tetlet.2012.06.060.
- (11) (a) Theeraladanon, C.; Arisawa, M.; Nakagawa, M.; Nishida, A. *Tetrahedron: Asymmetry* **2005**, *16*, 827.
 (b) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. *J. Med. Chem.* **2001**, *44*, 2374.
- (12) Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668.

- (13) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. C.; Soriano, E. *Chem. Rev.* 2009, *109*, 2652.
- (14) Kouznetsov, V. V.; Vargas Méndez, L. Y.; Meléndez Gómez, C. M. Curr. Org. Chem. 2005, 9, 141.
- (15) For Pd-catalyzed alkenyl amination in cascade reactions, see: (a) Barluenga, J.; Jiménez-Aquino, A.; Aznar, F.; Valdés, C. *J. Am. Chem. Soc.* 2009, *131*, 4031.
 (b) Barluenga, J.; Jiménez-Aquino, A.; Valdés, C.; Aznar, F. *Angew. Chem. Int. Ed.* 2007, *46*, 1529.
- (16) For reviews on catalytic amination, see: (a) Surry, D. S.; Buchwald, S. L. *Chem. Sci.* 2011, *2*, 27. (b) Hartwig, J. F. *Acc. Chem. Res.* 2008, *41*, 1534.
- (17) Geary, L. M.; Hultin, P. G. J. Org. Chem. 2010, 75, 6354.
- (18) Zhao, S.-C.; Shu, X.-Z.; Ji, K.-G.; Zhou, A.-X.; He, T.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2011, 76, 1941.
- (19) (a) Godoi, B.; Schumacher, R. F.; Zeni, G. *Chem. Rev.* 2011, *111*, 2937. (b) Saito, T.; Ogawa, S.; Takei, N.; Kutsumura, N.; Otani, T. *Org. Lett.* 2011, *13*, 1098. (c) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. *Chem. Commun.* 2009, 5406. (d) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. *Angew. Chem. Int. Ed.* 2007, *46*, 3291.

- (20) For recent catalytic etherification reactions, see: (a) Wu, X.;
 Fors, B. P.; Buchwald, S. L. *Angew. Chem. Int. Ed.* 2011, *50*, 9943. (b) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. *J. Org. Chem.* 2008, *73*, 284.
- (21) (a) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553. (b) Parrish, C. A.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2498.
- (22) For Pd-catalyzed N-vinylation of monohaloenynes leading to quinolines, see: (a) Wang, Y.; Liao, Q.; Zhao, P.; Xi, C. *Adv. Synth. Catal.* 2011, *353*, 2659. (b) Salman, G. A.; Hussain, M.; Iaroshenko, V. O.; Villinger, A.; Langer, P. *Adv. Synth. Catal.* 2011, *353*, 331.
- (23) (a) Ackermann, L.; Sandmann, R.; Kaspar, L. T. Org. Lett.
 2009, 11, 2031. (b) Martín, R.; Rodríguez, R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 7079.
- (24) Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi, T. *Tetrahedron Lett.* **1997**, *38*, 4099.
- (25) Kurbatov, Yu. V.; Kasymova, S. N.; Turaeva, R. A. Z. Org. *Khim.* **1992**, *28*, 430.
- (26) Deng, X.; Roessler, A.; Brdar, I.; Faessler, R.; Wu, J.; Sales, Z. S.; Mani, N. S. J. Org. Chem. 2011, 76, 8262.