ISSN 1070-4280, Russian Journal of Organic Chemistry, 2012, Vol. 48, No. 12, pp. 1576–1577. © Pleiades Publishing, Ltd., 2012. Original Russian Text © V.V. Andriyashin, Yu.V. Bakhtiyarova, R.A. Cherkasov, V.I. Galkin, I.V. Galkina, 2012, published in Zhurnal Organicheskoi Khimii, 2012, Vol. 48, No. 12, pp. 1605–1606.

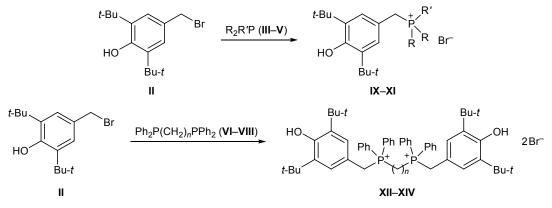
> SHORT COMMUNICATIONS

Synthesis of Quaternary Phosphonium Salts on the Basis of 2,6-Di-*tert*-butyl-4-methylphenol

V. V. Andriyashin, Yu. V. Bakhtiyarova, R. A. Cherkasov, V. I. Galkin, and I. V. Galkina

Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Tatarstan, Russia e-mail: vig54@mail.ru

Received May 21, 2012


DOI: 10.1134/S1070428012120160

Phosphorus-containing 2,6-di-tert-butyl-4-methylphenol derivatives exhibit a broad spectrum of antibacterial and antimycotic activity and are widely used as antioxidants [1, 2]. Depending on the substituents on the phosphorus atom, these compounds are active against pathogenic microorganisms in humans and animals, in particular against Staphylococcus aureus, Escherichia coli, Salmonella paratyphi B, Pseudomonas aeruginosa, and Candida albicans. We previously described a procedure for the synthesis of quaternary phosphonium derivatives of 2,6-di-tert-butyl-4methylphenol (I) by quaternization of tertiary phosphines with 3,5-di-tert-butyl-4-hydroxybenzyl bromide (II) which was prepared by bromination of phenol I with *N*-bromosuccinimide [3]. The reactions of benzyl bromide II with triphenylphosphine (III), methyldiphenylphosphine (IV), and tributylphosphine (V), as well as with 1,2-bis(diphenylphosphino)ethane (VI), 1,3-bis(diphenylphosphino)propane (VII), and 1,6-bis-(diphenylphosphino)hexane (VIII), in diethyl ether at room temperature gave the corresponding crystalline phosphonium salts IX-XIV.

The ³¹P NMR spectra of **IX–XIV** contained only one signal in the region δ_P 23.2–33.4 ppm, which corresponds to the phosphonium group. In the ¹H NMR spectra of these compounds, a singlet at δ 2.5 ppm from protons in the *tert*-butyl groups, a doublet at $\delta \sim 6$ ppm from the methylene protons, a singlet at δ 7 ppm from the OH proton, and a doublet at δ 8.0– 8.5 ppm from protons in the *meta* positions of the phenol ring were observed. The structure of phosphonium salt **XII** was confirmed by X-ray analysis; the results will be reported elsewhere. All newly synthesized phosphonium salts showed a high antimicrobial activity.

4-Bromomethyl-2,6-di*-tert***-butylphenol (II)** was synthesized as described in [3]. mp 56°C. ¹H NMR spectrum (CH₃OD), δ , ppm: 2.80 s [18H, C(CH₃)₃], 5.97 s (1H, CH₂Br), 7.00 s (1H, OH), 8.62 s (2H, C₆H₂). Found, %: C 60.54; H 8.01. C₁₅H₂₃BrO₄. Calculated, %: C 60.21; H 7.75.

Phosphonium salts IX–XIV (general procedure). Equimolar amounts (0.001 mol) of bromide **II** in 5 ml

III, **IX**, R = R' = Ph; **IV**, **X**, R = Ph, R' = Me; **V**, **XI**, R = R' = Bu; **VI**, **XII**, *n* = 2; **VII**, **XIII**, *n* = 3; **VIII**, **XIV**, *n* = 6.

of diethyl ether and the corresponding tertiary phosphine or bis-phosphine in 5 ml of diethyl ether were mixed together at room temperature, and the mixture was kept for 10–20 min. The precipitate was filtered off and washed with diethyl ether.

(3,5-Di-*tert*-butyl-4-hydroxybenzyl)triphenylphosphonium bromide (IX). Yield 0.533 g (95%), mp 225°C (decomp.). ¹H NMR spectrum (CH₃OD), δ , ppm: 2.58 s [18H, C(CH₃)₃], 5.92 d (2H, CH₂, *J*_{PH} = 13.87 Hz), 7.00 s (1H, OH), 8.09 d (2H, C₆H₂, *J*_{PH} = 2.69 Hz), 8.87–9.28 m (15H, C₆H₅). ³¹P NMR spectrum (CH₃OD): δ_P 23.4 ppm. Found, %: C 70.70; H 7.00; P 5.62. C₃₃H₃₈BrOP. Calculated, %: C 70.58; H 6.82; P 5.52.

(3,5-Di-*tert*-butyl-4-hydroxybenzyl)methyl(diphenyl)phosphonium bromide (X). Yield 0.489 g (98%), mp 242°C (decomp.). ¹H NMR spectrum (CH₃OD), δ, ppm: 2.65 s [18H, C(CH₃)₃], 3.70 d (3H, CH₃, $J_{PH} = 13.68$ Hz), 5.63 d (2H, CH₂, $J_{PH} =$ 14.41 Hz), 7.02 s (1H, OH), 8.17 d (2H, C₆H₂, $J_{PH} =$ 2.78 Hz), 9.04–9.25 m (10H, C₆H₅). ³¹P NMR spectrum (CH₃OD): δ_P 23.2 ppm. Found, %: C 67.40; H 7.29; P 6.17 C₂₈H₃₆BrOP. Calculated, %: C 67.33; H 7.26; P 6.20.

Tributyl(3,5-di-*tert*-**butyl-4-hydroxybenzyl)phosphonium bromide (XI).** Yield 0.476 g (95%), colorless crystals, mp 188°C (decomp.). ¹H NMR spectrum (CH₃OD), δ, ppm: 2.27–3.47 m (27H, C₄H₉), 2.80 s [18H, C(CH₃)₃], 4.90 d (2H, CH₂, $J_{PH} =$ 14.09 Hz), 7.11 s (1H, OH), 8.45 d (2H, C₆H₂, $J_{PH} =$ 2.52 Hz). ³¹P NMR spectrum (CH₃OD): δ_P 33.4 ppm. Found, %: C 64.82; H 10.19; P 6.17. C₂₇H₅₀BrOP. Calculated, %: C 64.66; H 10.05; P 6.18. Ethane-1,2-diylbis[(3,5-di-*tert*-butyl-4-hydroxybenzyl)diphenylphosphonium] dibromide (XII). Yield 0.463 g (93%), mp 195°C (decomp.). ³¹P NMR spectrum (CH₃OD): δ_P 29.2 ppm. Found, %: C 67.53; H 7.14; P 6.20. C₅₆H₇₀Br₂O₂P₂. Calculated, %: C 67.47; H 7.08; P 6.21.

Propane-1,3-diylbis[(3,5-di-*tert*-butyl-4-hydroxybenzyl)diphenylphosphonium] dibromide (XIII). Yield 0.454 g (90%), mp 215°C (decomp.). ³¹P NMR spectrum (CH₃OD): δ_P 24.9 ppm. Found, %: C 67.74; H 7.25; P 6.20. C₅₇H₇₂Br₂O₂P₂. Calculated, %: C 67.72; H 7.18; P 6.13.

Hexane-1,6-diylbis[(3,5-di-*tert*-butyl-4-hydroxybenzyl)diphenylphosphonium] dibromide (XIV). Yield 0.481 (92%), mp 162°C (decomp.). ³¹P NMR spectrum (C₂D₅OD): δ_P 25.4 ppm. Found, %: C 68.65; H 7.51; P 5.94. C₆₀H₇₈Br₂O₂P₂. Calculated, %: C 68.44; H 7.47; P 5.88.

The ¹H and ³¹P NMR spectra were recorded on a Bruker Avance-400 spectrometer; the chemical shifts were determined relative to the residual proton signal of the solvent (¹H) or 85% H₃PO₄ (³¹P, external reference).

REFERENCES

- Zenkov, N.K., Kandalintseva, N.V., Lankin, V.Z., Menytsikova, E.B., and Prosenko, A.E., *Fenol'nye bioantioksidanty* (Phenolic Bioantioxidants). Novosibirsk: Sib. Otd. Ross. Akad. Med. Nauk, 2003.
- Ovchinnikova, L.P., Rotskaya, U.N., Vasyunina, E.A., Sinitsina, O.I., Kandalintseva, N.V., Prosenko, A.E., and Nevinskii, G.A., *Bioorg. Khim.*, 2009, vol. 35, p. 417.
- Kim, D.H. and Kummerow, F.A., J. Am. Chem. Soc., 1961, vol. 39, p. 150.