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Abstract: A novel route for the synthesis of y-tocopherol starting from
the readily available vitamin E (o-tocopherol) has been found. The key
step is the photochemical decarboxylation of y-tocopherol-5- carboxylic
acid.

The expression "vitamin E" is commonly used as a generic term for
tocopherols and tocotrienols. o-Tocopherol is produced synthetically on
an industrial scale and used as food supplement, additive, medication, or
as antioxidant in various fields.! In contrast, Y-tocopherol as the second
main component of natural tocopherol mixtures is still obtained from
natural plant oils by extraction and separation processes.2 The high costs
of commercially available y—tocopherol3 are even more annoying as the
focus of the research on tocopherol and tocopherol derivatives has
shifted considerably within the past several years from the well-investi-
gated o-tocopherol to the less prominent components of natural toco-
pherol mixtures, such as y-tocopherol. Continuing our investigations on
novel tocopherol derivatives as new lipophilic drug carriers and antioxi-
dants,* we describe here the preparation of y-tocopherol-5-carboxylic
acid (5) and its photochemical decarboxylation to y-tocopherol (8).

Bromination of o-tocopherol (1) gives 5a-bromo-o.-tocopherol (2) in
quantitative yields.5 This compound, a most valuable starting material
for the preparation of a variety of novel tocopherol derivatives, is stable
at room temperature, but is highly susceptible to oxidation, bases, and
temperatures above 50°C.° In these cases, immediate elimination of HBr
produces an ortho-quinone methide intermediate 6 that dimerizes to
give the spiro-dimer of «-tocopherol (7). Before the benzylic function in
2 was oxidized, the phenolic hydroxyl group was protected by acid-cata-
tyzed acetylation under mild conditions; basic conditions cannot be used
for the reason just mentioned. The obtained 6-O-acetyl-5a-bromo-oi-
tocopherol (3) can now be oxidized to 6-O-acetyl-y-tocopherol-5-car-
boxylic acid (4) under phase-transfer conditions in the presence of
potassium permanganate and tetrabutylammonium chloride. The acety-
lated tocopheryl bromide 3 was not isolated from the reaction mixture,
but was directly subjected to oxidation after addition of solvents, phase-
transfer catalyst and oxidant.” The protecting group was removed under
equally convenient experimental conditions. The organic phase of the
phase-transfer oxidation was washed and then simply refluxed with
methanol and aqueous HCI to remove the acetyl group. Pure y-toco-
pherol-5- carboxylic acid (5)® was obtained by extraction from the
organic phase with aqueous NaOH and reextraction after acidification.

In contrast to our previously reported reactions of vitamin E derivatives,
this synthetic approach employs rather conventional transformations and
reaction conditions. However, the experimental procedure was deliber-
ately kept as convenient and widely applicable as possible: the product
is not only an interesting novel tocopherol derivative, but also a useful
starting material for further manipulations as shown in the following,
and should therefore be provided in larger amounts.

In addition to traditionally applied analytical techniques, the identity of
5 was also confirmed by MALDI-TOE-MS’ experiments. This tech-
nique allows easy determination of the molecular weight of the analytes,
and is preferentially used for labile molecules and biopolymers. When
y-tocopherol-5-carboxylic acid embedded in gentisic acid as the matrix
was analyzed by the MALDI technique, the expected peak at MH* =
461 was obtained.!? However, when no matrix was added to the analyte,
a second signal at 417 appeared, indicating a decarboxylation process
with the loss of 44 resulting in the formation of y-tocopherol (8). The
decarboxylation must be a photochemically induced process since it
occurs upon direct excitation of 5, but not in the presence of a matrix
when the analyte is not absorbing irradiation energy itself. |1

The fact that S5-tocopherolcarboxylic acid decarboxylates upon irradia-
tion at 337 nm was somewhat astonishing. Substituted 2,5-dihydroxy-
benzoic acids or 2,5-dialkoxybenzoic acids having structural features
similar to 5 are also strongly absorbing at this wavelength, but do not
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decarboxylate. In fact, some of the best MALDI matrices known belong
to this class of compounds. Naturally, these matrices must exhibit the
highest possible degree of inertia under the conditions of the MALDI
experiment, completely opposite to a photodecarboxylation. The photo-
chemical behavior of y-tocopherol-5- carboxylic acid might be attribut-
able to structural peculiarities of the tocopherol system, similar to the
high reactivity of C-5a as compared to the quite inert 7a- and 8b-posi-
tions. However, a conclusive explanation cannot be provided yet.

From theoretical considerations it became clear that the reaction must be
a radical process. This has been experimentally confirmed: § was com-
pletely converted into products upon irradiation at 337 nm for 2h in the
presence of iron complexes or activated titanium dioxide.!? In the
absence of these reagents the decarboxylation rate was immeasurably
slow. Thus, 5 undergoes photodecarboxylation to y-tocophero! (8) in the
presence of substances that are able to transfer electrons, but is stable
under irradiation in the absence of those redox mediators.

The first step of the reaction consists in the formation of an unstable
excited radical'® formed by H-atom abstraction from 5. The radical sup-
posedly exists in two tautomeric forms analogous to similar vitamin E
derivatives, with the single electron located either at the carboxyl group
or at the phenolic OH group. The second step is the decarboxylation of
this radical to form the y-tocopheroxyl radical!* which produces y-toco-
pherol (8) by H abstraction from the solvent. The proposed radical
mechanism is also supported by the formation of byproducts that are
indicative of one-electron processes. Besides the main product y-toco-
pherol, two dimers, namely 5-(y-tocopheroxy)- y-tocopherol (y-toco-
pherol diphenyl ether dimer 9), and 6-O-(y-tocopher-5-yi-)-v-
tocopherol-5-carboxylic acid (101 were found. These compounds are
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formed by coupling reactions of the y-tocopheroxyl radical with either
y-tocopherol that had been already produced, or with starting material §
that still was present in the reaction mixture.
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Conditions: i = hv (337nm), C;H, / MeOH (v/iv=9:1), 1h, 1t,
5 (10 mM), iron(ill)-phenanthroline (104 mM),
65-75% 8, 25-35% dimers, 9: 10 appr. 3: 1
Scheme 2

The observation of the ready photodecarboxylation of 5-tocopherol-
carboxylic acid gave the impetus to use this reaction on a preparative
scale for the production of y-tocopherol (8). 16 The procedure was opti-
mized to increase the yield of 8 relative to the dimeric by-products. 17
Irradiation of 100 mL samples of a 10> M solution of 5 in benzene /
methanol (v/v = 9:1) produced y-tocopherol in an average yield of 72%,
thus providing sufficiently large amounts for other experiments.

In summary, we have prepared y-tocopherol-5-carboxylic acid (5), a less
lipophilic, base-soluble tocopherol derivative that appears to be easily
applicable as a vitamin E-based carrier for active substances due to its
carboxylic function as the point for binding. Moreover, 5§ shows an
unambiguous redox behavior in contrast to ¢-tocopherol itself and
almost all of its derivatives.! This change in the chemical properties is
caused by the failure to form ortho-quinone methide structures involv-
ing the Sa-position of the tocopherol system. Even more interesting is
the photochemical decarboxylation of y-tocopherol-5- carboxylic acid to
Y-tocopherol that is otherwise difficult to synthesize. The presented syn-
thetic approach towards y-tocopherol represents a convenient way to
produce this compound in the laboratory on a gram scale.
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by chromatography on aluminum oxide. y-Tocopherol (8) is eluted
first with n-hexane.

(17) Both the presence of sufficient amounts of a hydrogen donor (10%
methanol with catalytic amounts of CF3COOH) and the absence of
larger quantities of the redox mediator (1,10-phenanthroline
iron(IIl) complex) were crucial to obtain yields above 70%. The
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hydrogen donor was necessary to favor proton abstraction leading
to y-tocopherol over the competitive dimerization processes;
higher concentrations of the redox mediator resulted in complex
product mixtures. A ratio of 10000:1 between substrate and
phenanthroline complex gave the best results.
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