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The C*T-X*Z" (0, 0) band of NbQ, whose R heads lie near 4690 A, has been analyzed from
high-resolution grating spectra. Both *Z~ states have second-order spin-orbit splittings, 4\
= E(*Z3,2)-E(*Z,,2), of about 60 cm ™, so that they are in good case (a) coupling at low J,
although the appearance of the band had been interpreted by previous workers as 43(b)-*=(b).
The **Nb nuclear hyperfine structure (I = $) is very impressive in the R, Py, Ry, and P, branches,
with the 10 hyperfine components of a rotational line spread over more than 0.9 cm ™' in the F,
branches. The hyperfine linewidths vary considerably with J, in the manner expected for the
rapid spin uncoupling from case (as) to (bgy) which occurs in a high-multiplicity state. The very
great hyperfine linewidths arise because the sign of the Fermi contact parameter b (the coefficient
of IS in the magnetic hyperfine Hamiltonian) is different in the two *Z states, so that the
observed patterns are the sums of the splittings in the two electronic states. © 1988 Academic
Press, Inc.

1. INTRODUCTION

The NbO spectrum has been known for over 35 years (7), but such is the complexity
of its band systems in the visible that analysis progressed only slowly until laser studies
by Féménias et al. (2) gave an unambiguous analysis of part of the B*II-X *Z~ system
near 6500 A. The NbO molecule is now known to have a *Z~ ground state (3) in
case (a) coupling, where the second-order spin-orbit splitting between the Z = 3 and
3 components is 62 cm ™! (2, 4). Besides the *II-*Z ~ system in the red the other strong
transition in the visible region is a = -*Z~ system in the blue, whose (0, 0) band is
at 4690 A (5-7); our analysis of this transition at Doppler-limited (grating) resolution
is the subject of this paper. The upper *Z ~ state, denoted C*Z~ by analogy with VO
(8), is found to have almost exactly the same second-order spin—orbit splitting as the
X 43 state, so that the band structure, with its four close heads, appears to be *Z(b)-
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43(b), rather than “Z(a)-*Z(a), a point which had led to some confusion in earlier
work. More details of the history are given in Refs. (2, 9).

The hyperfine structure resulting from the I = 2 nuclear spin of ®>Nb is particularly
impressive in the C-X transition because the signs of the Fermi contact parameters
in the two 4=~ states are opposite. As a result the line splitting is the sum of the level
splittings in the two electronic states, and in some of the branches the hyperfine widths
are more than 0.9 cm ™', In the uncrowded regions it is easy to resolve the 10 hyperfine
components at grating resolution for these branches (7). The parallel polarization
does not allow the upper state hyperfine parameters to be determined directly, but
values can be obtained given the known ground state parameters from Refs. (2, 3),
allowing for the spin uncoupling in the two *Z ~(a) states.

2. EXPERIMENTAL DETAILS

The NbO radical was prepared in a 2450-MHz electrodeless discharge through a
flowing mixture of NbCls vapor, O;, and helium. The optimum conditions for NbO
production were monitored by eye with a small spectroscope: the color of the discharge
was bright pinkish-white, and the bands of the blue system of NbO were extremely
prominent.

The emission spectrum of the (0, 0) band of the C-X system was photographed
on Kodak II a-D plates in the 12th order of the 7-m Ebert-mounted spectrograph at
the University of British Columbia; the slit width was 30 pm, and the experimental
resolution was about 450 000, corresponding to an effective temperature of about
1000°C in the discharge. Calibration was provided by an iron-neon hollow cathode
lamp, for which the wavelengths have been tabulated by Crosswhite (10); a total
of 44 iron lines were fitted to a four-term polynomial. For measurement the plates
were digitized using the computer-controlled PDS microdensitometer at Nice Obser-
vatory, and the line positions were obtained by setting the cursor on the computer’s
graphics terminal, The estimated uncertainty in the hyperfine component positions
is 0.003 cm ",

The estimated uncertainties in the rotational line positions range up to 0.02 cm™
in crowded portions of the spectrum.

1

3. ANALYSIS OF THE SPECTRUM

The general appearance of the C-X (0, 0) band in the spectrum of NbO was illus-
trated in our previous paper (2). It is red-degraded and has three R heads lying within
5 cm™}, which are shown in more detail in Fig. 1. The outermost head is assigned as
R,, the middle head as R;, and the inner head as a blend of R; and R,. The closeness
of the R heads shows that the spin coupling is nearly identical in the two electronic
states.

Eight branches can be picked out in this band, which are the four R and four P
branches expected for a “Z-*Z transition. The effect of the Nb nuclear hyperfine
structure is that the high-J lines of the R;, R3, P,, and P; branches give fairly sharp
and intense lines where the hyperfine structure is quite narrow, while the other four
have very wide hyperfine structures where the same amount of intensity is spread out
over a much larger frequency range, making them far less prominent. Uhler (6),
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analyzing just the sharper branches, assigned the transition as 2A-2A, but Dunn (7),
using a lower temperature microwave discharge source, also found the weaker broad
branches and gave the electronic assignment correctly as *=-*3.

The tail of the band is quite open and is where the assignment of the branches to
their electron spin components can be made: for instance, the wider branches involving
the F; and F, spin components are easily distinguished from the narrower F, and F;
branches. Figure 2 shows the general appearance, although the specific region has been
chosen to illustrate the single upper state rotational perturbation that has so far been
detected (6), at F% (67.5). This perturbation is useful because the ground state con-
stants from our laser work (2) give the rotational and spin assignments unambiguously,
confirming Uhler’s numbering and carrying the assignments into the crowded R-
branch region. The R; and P; branches are then easily numbered. See also Fig. 1 of
our previous article (2).

The branches involving the F, and F, spin components were more difficult. These
branches have most impressive hyperfine structures at high N; the R, and P, branches,
for example, have the 10 hyperfine components of each line spread over more than
0.9 cm™'. The R, and P, branches have slightly smaller widths, because of the details
of the spin uncoupling. The very great hyperfine linewidths, beautiful though the
patterns may be, are a severe hindrance anywhere except in the tail of the band because
they cause extensive blending which makes the process of picking out the branches
most laborious. The one great advantage of the hyperfine structure is that the F(F
+ 1) dependence of the hyperfine component positions is in the opposite sense in the
R, and P, branches compared to the R, and P, branches at high J values and also the
overall width is different; as a result it is possible to associate the R branches immediately
with their corresponding P branches. In our experience, this is the usual consequence
of hyperfine effects in a molecular spectrum: the hyperfine patterns frequently carry
very useful information about the branch assignments and numbering but this is more
than offset by the severe blending that results.

Our procedure has been to reduce what information is available for each rotational
line to the “midpoint™ of the hyperfine structure as far as possible. In this way, we
can mainly decouple the rotational problem from the hyperfine problem. However,
itis not straightforward to do this, even where the 10 hyperfine components are mostly
resolved. If most of the components can be measured the line frequencies can be fitted
to the approximate expression

Ve (F, I, J) 2 vy + K[ I(T+ 1) + J(J + 1) — F(F+ 1)] (1)

which follows from the form of the magnetic hyperfine Hamiltonian and the coupling
scheme J + I = F. Equation (1) holds in both (as) and (bg,) coupling and is exact for
Q branches, where the upper and lower state J values are the same, but is an approx-
imation when J' # J”, as in the present spectrum where only R and P branches are
seen; nevertheless the approximation improves with increasing J because the hyper-
fine spacings in the upper and lower states become more nearly in the same ratio. The
equation becomes exact for all branches if the hyperfine spacings are near zero in one
of the states, but this is only.roughly so in the present case.

It is also an approximation to take the rotational frequency as the mean of the two
outermost hyperfine component frequencies, although this is the obvious way of coping
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with lines where the hyperfine structure is too narrow to be resolved, or where a weaker
line lies under a stronger one and its extent can only be estimated from the discontinuity
that its edge causes in the intensity of the overlying hyperfine pattern. Fortunately the
approximation is not unduly severe: for example, it is easy to show that, for J = 451
and a total hyperfine width (F = 41-50) of 0.9 cm ™', the mean of the two outer
components differs from the true rotational frequency by only 0.005 cm ™', A rather
more severe approximation, which was occasionally used as a last resort, was to take
the rotational frequency as the average of the two central hyperfine components; this
approximation is poorer by a factor of four. In summary, therefore, there is no simple
way of extracting the rotational frequencies from the measured hyperfine frequencies
without considerable effort, and we recognize that the overall rms error in our rotational
fit has been worsened by these approximations.

After some difficulty caused by the blending at low J, the rotational frequencies
given in Table I were obtained. These were then fitted to the eigenvalues of the *Z
Hamiltonian in two steps. The first step was to determine the ground state rotational
constants from the rotational line frequencies measured in the sub-Doppler laser work
on the red system (2), plus some higher J data from the present work, using Aslund’s
modified term value approach (11, 12); this produced a set of ground state constants
and two sets of upper state energy levels, one for the B*II_, ,, upper state of the red
system and one for the C*Z ™ state. The second step was to fit the term values for the
C*Z " state to the same Hamiltonian (which is given in Tabie II). This method has
the advantage of transferring some of the accuracy of the laser measurements of the
red system to the C*Z ™ state. The same problem of deducing the rotational frequencies
from the measured hyperfine frequencies naturally occurs in the laser data for the red
system, but its effects are less severe because of the higher resolution which eliminates
much of the blending. No attempt has been made to refine the constants for the B*Il
state because a full rotational and hyperfine analysis of the more than 10 000 lines of
the B-X (0, 0) band is presently in progress.

The resuits for the X“*=~ and C*Z "~ states are given in Table III. The most interesting
values are the two second-order spin—-orbit parameters, \; these are even more similar
than the 5 cm ™' spread of the R heads would indicate. The parameter +,, which
represents the spin-orbit distortion of the spin-rotation interaction (73), is very
definitely required for the present data, as it was for the corresponding transition
of VO (14).

4. HYPERFINE LINEWIDTHS

Spin uncoupling causes much more dramatic effects in high-multiplicity states than
it does in doublets (15). One of its effects is to limit quite severely the validity of the
pure case (a) expressions for the linestrengths. Another of its effects is to cause an
unexpectedly rapid variation of the hyperfine linewidths with increasing rotation ( 16),
which we now document for the C-X transition of NbO.

The magnification of the effects of spin uncoupling in high-muitiplicity states arises
because the operator —2BJ - S has matrix elements in a case (a) basis that include

FIG. 1. The heads of the (0, 0) band of the C*Z - X *Z ~ system of NbO.
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the factor [S(S + 1) — Z(Z = 1)]'/2, which is roughly proportional to S. The effect
in the two *Z states of NbO is that they are already in good case (b) coupling at the
highest J value we observe even though their spin-orbit splittings are about 60 cm ™.
The hyperfine coupiing case changes quickly from (ag) 1o {bs;) with increasing rotation,
and the hyperfine structure can be explained quantitatively using exact rotational
wavefunctions for the intermediate coupling case.

The four electron spin sublevels of the *Z states in intermediate coupling can each
be described as

| Fi(D)) = «|Q, J, x) + 812, J, x), (2)

where o and § are coefficients given by the eigenvectors from the diagonalization of
the rotational part of the case (a) Hamiltonian matrix (Table II), @ and Q' are 3 and
i, and x is e or f. Since we do not observe quadrupole effects in the present work, the

~imn otriintiien ~an ha talan ac nuraly magnatin in arioin { 2 and tha hemnarfin
uprlllllC b UL LULIV Lall UL LARLLL as pul Viy 1uagliviiv il Uligeii \ &, / }, QLI IV uyp\.l Tihc

Hamiltonian of Frosch and Foley (17) applies:

=al T 1L HYT.Q L AT T3
o . \J

J &
“h's - ‘ ‘_J 1 (79 3
Since L) = 0 for Z states, a suitable case (a) expansion is
Hys = (b+ )L.Z + (b/2)(1.S- + I_S,) 4)

from which we obtain the general formula for the hyperfine width of a rotational level
of a #T state in the intermediate coupling case,

EUJ,F=J+1)-E(J,F=J-1)=AE(J)

_2I(J+ )

Tt O F OB D b{a3X) AU+ DI (5)

InEq.(5)X=(J— %)(J + %) and the upper and lower signs refer to the e and f levels,
respectively. It is interesting to note the forms of the eigenvector elements: for the F,
and F; levels we have

a o (31HIE, B« E()) - GlHID, (6)
while, for the F; and F, levels,
ao E(J))= (31HI3), Bo (3IHIP), ™)

where E(J) is the eigenvalue energy. The hyperfine linewidth is, of course, the difference
between the level widths of the upper and lower states given by Eq. (5), remembering
that these are signed quantities.

For the C-X system of NbO it was fairly straightforward to combine the ground
state ievel widihs, which are given by our laser work on the red system (2}, and the
observed linewidths to obtain the upper state level widths. In the resolved F, and F,
branches, for example, we know the electron spin assignment from the rotational

combination differences and we can see from the Landé patterns of the lines whether

FIG. 2. A typical region of the (0, 0) band of the C*Z"-X*Z " system of NbO.
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TABLE II

Matrix of the Rotational Hamiltonian for a *Z~ Electronic State in a Case (a) Parity Basis

[3/2> (1/2 >
<3/2f 2 + BX - 37/2 -\/EX{ﬁ -q/2)-2D[X+2% (J+4)|
+20p - DX(X +3) - 310X  —§w[X+7F 2/ +1)] - vs}

-2+ B(X + 4) Tv/2 - 22p(X + 4)
< 1/2| symmetric —D{(X+ 4)? +7X + 4~ 1p(7X +16)
F2((B —7/2) - 2Ap - 2D(X + 4)
~$w(X +11) + §s5)(J + §)

= (J - §){(J +3). Upper and lower signs give the ¢ (F; and F3) and f (F; and Fy)
levels respectively. zl'he basis functions |JI > have been written |E >.

the high- F hyperfine components lie on the high-frequency side or the low-frequency
side; it turns out that the energy order of the hyperfine components in the upper state
is opposite to that in the ground state, or in other words, that the very great observed
hyperfine linewidth is the difference of two oppositely signed contributions from the
two states. The F, and F; electron spin components posed some problems because
their hyperfine structures are never resolved. In order to obtain consistent linewidth
data, we measured their widths at half-maximum and then subtracted a Doppler profile
correction of 0.13 cm ™!, obtained from the well-resolved F; and F, lines (being the
difference between their widths at half-maximum and the separations of their outermost
hyperfine components—see Fig. 3). At certain J values the widths of the F, and F;
lines pass through a minimum: since the widths at half-maximum are found to be
~0.13 cm™! at these places it is evident that the hyperfine linewidth passes through
zero and that the frequency order of the hyperfine F components reverses. This con-

TABLE III
The Rotational Parameters of the Ground X *=~ and the Excited C*Z ~ States of NbO

X 't

T, 31.1650 (4 21346.002 ()
B 0.434981 (%) 0.402854 (4
10'D 3.35 o) 3.5 (D
A 15.5825 14915 @
y 0.03411 (D -0.01570  (6)
105 5.5 @ -8 M
10%ys 0.099 3 3.47 @
b 0.0549° 0.0136 (9
c -0.0020* -

The 1.m.s.errors are 0.003 cm™ for the ground state (from the laser
data) and 0.03 cm™ for the upper state (from the grating data).
Numbers in parentheses are ONE standard deviation, in units of the
last significant digit quoted.

*Fixed at the e.s.1. value (ref.3).

Bond lengths~ X*L™ ry=1.6853 A, C'C7 r5=1.7512 4.
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WHM

Ll
P, (41.5)

R4(65.5)

FIG. 3. Determination of the Doppler profile correction for the hyperfine linewidths. The difference between
the width at half-maximum (WHM) and the separation of the outermost hyperfine components (OHC) in
the well-resolved P,(414) line (partially blended by the R,(654) line) gives the Doppler profile correction
for the F, and F; linewidths.

clusion is supported by our calculations of the linewidths, which cannot be made to
agree with experiment unless these reversals are assumed to occur.

The observed linewidths, defined as the separations of the outermost hyperfine
components for the F; and F, lines, or the corrected widths at half-maximum for the
F, and F; lines, are shown plotted against J + { in Fig. 4. In this figure, the full lines
are widths obtained from a crude fitting procedure based on Eq. (5). For this, we first
calculated the ground state hyperfine widths from the « and 8 coefficients given by
the rotational constants of Table III, together with the ” and ¢” parameters given by
the esr spectrum (3), and subtracted them from the linewidths; we then fitted the
resulting upper state widths to Eq. (5). It was found that the upper state b parameter
was quite well determined,

b(C*T7) = —0.0136 + 0.0009 cm ! 8)

but that c(C*Z ™) was not determinable. The fact that ¢ could not be determined is
not surprising; its contribution to the linewidth goes as 1 /J in case (as), and as 1/N
or 1/N?in case (bsy) coupling (depending on the electron spin component, so that it
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0.5

J-I) (em™?)

J+I)—u(F

v(F =

20 40 100
J+3

FIG. 4. Hyperfine widths in the rotational lines of the (0, 0) band of the C*Z ~X*Z"~ system of NbO
plotted against J + 4. The solid lines represent calculated values. The widths of the R and P lines with the
same lower state are not distinguishable at our resolution; a positive sign indicates that the F = J + I
component lies at the high-frequency side.

will be negligibly small at the high J values of our spectra. The value given in Eq. (8)
was determined using data only from the well-resolved F; and F, lines: if data from
the F, and F; lines are included the value is essentially the same but its uncertainty
is greater, and the rms error of the fit rises from 0.02 to 0.03 cm™.

5. DISCUSSION

The C*Z~-X*Z" system of NbO at 4675 A is clearly the equivalent of the C*Z -
X4Z~ system of VO at 5740 A because the bond length change is virtually identical
and the ratio of the Fermi contact parameters, b(C*Z ~)/b(X *Z ") is also very similar.
By analogy with the electron configurations of the known states of VO, which have
been discussed by Merer et al. (18), we can write those of the 43~ states of NbO as

X4z~ 82 C*z~  8%*,
where the ¢ and § orbitals are mainly 5sa(Nb) and 4d6(Nb) and the ¢* orbital is an
antibonding combination of 4do(Nb) and 2 pa(O). The principal difference between
VO and NbO is the much larger size of the second-order spin—orbit parameter A(C*Z ™)

in NbO, which by chance is nearly equal to A(X “=~). Unfortunately not enough is
known about the other states of NbO to rationalize this in detail. So far the only other
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definitely characterized state of NbO is B*II at 6500 A, which seems to be the equiva-
lent of 8%x B*Il in VO, though the upper state of an absorption system of NbO near
7100 A appears to correspond to od7 A°IL in VO (9, 19). The simplest rationalization
for the X values in NbO is that they result from the spin—orbit interaction elements
(*Z*| Hso| *Z ) in the two configurations ¢4 and 6%c*; then, if the Coulomb splitting
between the two Z states is roughly the same in the two configurations the A values
should also be roughly equal. This simple model does, in fact, account for the A value
of the ground state of NbO. For instance, if we take the spin—orbit parameter a; for
the § electrons as the value found for VO (18) scaled by the ratio of the spin-orbit
splittings of the nd*(n + 1)s D states of Nb and V we find

a;(NbO) = a;(VO) X (1050.3/312.6) = 143.5 X 3.36 = 482.2 cm ™", 9)
Then since
<0’52 22+l§i: ail,--s,-laéz 421_/2>=%a,5, (10)
we obtain the second-order spin-orbit splitting as
2
AN(NDO, X*Z7) = Sa; a1

3AE(’ZH, 427y
Taking the experimental value A = 62.3 cm ™! from Table IIl, Eq. (11) leads to AE(’Z ™,
4¥~) ~ 10 000 cm . The corresponding ¢4 2Z* state of VO lies near 12 430 cm ™',
which is consistent with this result. However, a similar calculation for VO, given the
known position of 662 2=, leads to A(VO, X*Z7) = 1.10 cm ™!, compared to the
experimental value 2.03 cm ™! (14).

In view of the fact that the only upper state hyperfine parameter determined in this
work is b(C*Z7), it does not seem worthwhile to discuss the hyperfine structure in
more detail at present. There are no internal hyperfine perturbations between the F,
and the F; levels of the *Z states, of the type first found by Richards and Barrow (20,
21) in VO, expected in the range up to J = 100.
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