



**Organic Preparations and Procedures International** 

ISSN: 0030-4948 (Print) 1945-5453 (Online) Journal homepage: http://www.tandfonline.com/loi/uopp20

# AN EFFICIENT SYNTHESIS OF ENANTIOPURE **3-CHLOROSTYRENE OXIDE via** OXAZABOROLIDINJGCATALYZED REDUCTION

Oh Kyoung Choi & Byung Tae Cho

To cite this article: Oh Kyoung Choi & Byung Tae Cho (2000) AN EFFICIENT SYNTHESIS OF ENANTIOPURE 3-CHLOROSTYRENE OXIDE via OXAZABOROLIDINJGCATALYZED REDUCTION, Organic Preparations and Procedures International, 32:5, 493-497, DOI: 10.1080/00304940009356766

To link to this article: http://dx.doi.org/10.1080/00304940009356766



Published online: 18 Feb 2009.

|--|

Submit your article to this journal 🖸

Article views: 25



View related articles



Citing articles: 5 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uopp20

**OPPI BRIEFS** 

# AN EFFICIENT SYNTHESIS OF ENANTIOPURE 3-CHLOROSTYRENE OXIDE via OXAZABOROLIDINE-CATALYZED REDUCTION

Submitted byOk Kyoung Choi and Byung Tae Cho\*(06/22/00)Department of Chemistry, Hallym University<br/>Chunchon, Kangwondo 200-702, Republic of KOREA

Optically pure styrene oxide derivatives are important chiral building blocks for the synthesis of a variety of chiral drugs.<sup>1</sup> In particular, (*R*)-3-chlorostyrene oxide (1) is a key intermediate for the preparation of several  $\beta_3$ -adrenergic agonists that exhibit antiobesity and antidiabetic activities.<sup>2</sup> Several different methods for the synthesis of optically active (*R*)-1 have been reported. Asymmetric dihydroxylation of 3-chlorostyrene followed by chemical transformation to (*R*)-1 afforded 98% ee in good yield.<sup>2a</sup> Enzymatic resolution of racemic 3-chlorostyrene bromohydrin followed by the treatment of base<sup>3</sup> and hydrolytic kinetic resolution of racemic 1 using salen catalyst<sup>4</sup> provide enantiomerically pure (*R*)-1.



However, these methods suffer from the fact that the theoretical yield is limited to 50%. Although asymmetric borane reduction of 1-(3-chlorophenyl)-2-chloroethanone using (*R*)-CBS oxazaborolidine reagent as catalyst afforded the chlorohydrin precursor to (*R*)-1 in 85% ee,<sup>2b</sup> this procedure is not free from disadvantages for large-scale applications, because of severe irritation to skin eyes of the  $\alpha$ -haloketone used as a starting material. In contrast, 1-(3-chlorophenyl)-2-sulfonyloxyethanone derivatives (**2**) can be used as substrates more readily because they are not only stable and non-irritant, but also sulfonyloxy groups appear to be much better leaving groups than halogens. Recently we reported practical syntheses of oxazaborolidine-catalyzed asymmetric reduction of  $\alpha$ functionalized ketones using amine-borane complexes which can be more advantageously used as the hydride source than borane-tetrahydrofuran or borane-dimethyl sulfide.<sup>5</sup> In connection with our continuing interest in asymmetric reduction of  $\alpha$ -functionalized ketones,<sup>6</sup> we describe here a simple and convenient method for preparing enantiomerically pure 1 in both enantiomeric forms by employing oxazaborolidine-catalyzed asymmetric reduction of **2**.

We initially compared the asymmetric reduction of 1-(3-chlorophenyl)-2-p-toluene-sulfonyloxyethanone **2b** catalyzed by proline-based oxazaborolidines (Corey's CBS reagents,  $4^7$ ) using commercially available amine-borane reagents, such as *N*-ethyl-*N*-isopropyaniline-borane **5**, *N*,*N*diethylaniline-borane **6**, *N*-phenylmorpholine-borane **7**, pyridine-borane **8**, triethylamine-borane **9** and diisopropylethylamine-borane **10** as the hydride source under the same reaction conditions. The reaction was carried out by slow addition of THF solution of **2b** over 1 h to a solution of 1.0 equiv of each

493

#### **OPPI BRIEFS**

amine-borane reagent in the presence of 10 mol% of **4** in THF at  $25^{\circ}$  (*Scheme 1*). As shown in Table 1, the reduction using *N*-phenylamine-borane reagents **5-7** was complete within 10 min to provide 1-(3-chlorophenyl)-2-*p*-toluenesulfonyloxyethanol **3b** in better than 90% yields. The reduction with **10** 



Table 1. Preparation of Optically Active 3-Chlorostyrene oxide (1)<sup>a</sup>

| Entry | Cmpd      | cat.                   | Amine-borane | Yield (%) <sup>b</sup> | % ee of $1^{\circ}$ | config.d |
|-------|-----------|------------------------|--------------|------------------------|---------------------|----------|
| 1     | 2a        | ( <i>R</i> )- <b>4</b> | 5            | 95                     | 97                  | R        |
| 2     | 2b        | ( <i>R</i> )- <b>4</b> | 5            | 95                     | >99                 | R        |
| 3     | <b>2b</b> | (S)- <b>4</b>          | 5            | 93                     | >99                 | S        |
| 4     | 2c        | ( <i>R</i> )- <b>4</b> | 5            | 94                     | 98                  | R        |
| 5     | 2d        | ( <i>R</i> )- <b>4</b> | 5            | 95                     | 96                  | R        |
| 6     | 2b        | ( <i>R</i> )- <b>4</b> | 6            | 95                     | 89                  | R        |
| 7     | 2b        | ( <i>R</i> )- <b>4</b> | 7            | 94                     | 80                  | R        |
| 8     | <b>2b</b> | ( <i>R</i> )- <b>4</b> | 8            | e                      | g                   |          |
| 9     | 2b        | ( <i>R</i> )- <b>4</b> | 9            | e                      | g                   |          |
| 10    | 2b        | ( <i>R</i> )- <b>4</b> | 10           | 60 <sup>f</sup>        | 21                  | R        |

<sup>a</sup> [2]: [cat]: [amine-borane] = 1: 0.1: 1. [2] = 0.5 M. The reaction was complete within 10 min to give  $\alpha$ -sulfonyloxyalcohols (3) in almost quantitative yield, unless otherwise indicated. <sup>b</sup> Isolated yield of 1 obtained by the direct treatment of 3 with 2N NaOH. <sup>c</sup> Determined by chiral GC analysis using a 20m G-TA column (Astec). <sup>d</sup> Based on the sign of optical rotation value of the known compound: ref. 3. <sup>e</sup> No reaction in 24 h. <sup>f</sup> In 3 h. <sup>g</sup> Not determined.

provided 60% yield in 3 h. No reactions with 8 and 9 were observed in 24 h. The sulfonyloxyalcohol 3b obtained was easily converted to 1 by the treatment of 2N NaOH at room temperature in nearly quantitative yields. The enantiomeric excess of 1 was determined by chiral GC analysis using a 20m G-TA column (Astec). Among the amine-borane complexes examined, reagent 5 provided the best enantioselectivity approaching 100% ee (Table 1, entries 2 and 3). The results showed that the present procedure is quite superior to the same reduction<sup>2b</sup> of 1-(3-chlorophenyl)-2-chloroethanone using borane-THF as the hydride source to afford 1 in 85% ee. Other amine-borane reagents 6, 7 and 10 afforded 1 with 89% ee, 80% ee and 21% ee, respectively (entries 6-7 and 10). In this reaction, the influence of different sulfonyl groups of the compound 2 on the enantioselectivity was not significant (entries 1-5).

In summary, we have established a simple and practical procedure for the synthesis of enantiopure (*R*)- and (*S*)-3-chlorostyrene oxide in high yields via CBS oxazaborolidine-catalyzed borane reduction of 3'-chloro- $\alpha$ -*p*-toluenesulfonyloxyacetophenone using *N*-ethyl-*N*-isopropylaniline-borane complex as the borane carrier. This procedure can be used as an excellent alternative to synthesis of such compounds. Further applications using this methodology are under current investigation.

## **EXPERIMENTAL SECTION**

All operations with air-sensitive materials were carried out under a nitrogen atmosphere with ovendried glassware. Liquid materials were transferred with a double-ended needle. The reactions were monitored by TLC using silica gel plates and the products were purified by flash column chromatography on silica gel (Merck; 230-400 mesh). NMR spectra were recorded at 400 MHz for <sup>1</sup>H and 100 MHz for <sup>1.3</sup>C using Me<sub>4</sub>Si as the internal standard in CDCl<sub>3</sub>. Optical rotations were measured with a high resolution digital polarimeter. Melting points are uncorrected.

**Preparation of** 2. **General Procedure**.- Compounds **2** were prepared according to the literature,<sup>8</sup> by refluxing aryl methyl ketones with phenyliodohydroxyaryl (or alkyl)sulfonates in acetonitrile, dioxane, toluene or diglyme.

**1-(3-Chlorophenyl)-2-methanesulfonyloxyethanone (2a),** mp 94-96°; yield: 81%; IR (KBr, cm<sup>-1</sup>): 1710, 1365, 1169; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.29 (s, 3 H), 5.47 (s, 2 H), 7.47 (m, 1 H), 7.62 (m, 1 H), 7.76 (m, 1 H), 7.88 (m, 1 H); <sup>13</sup>C NMR (100 MHz)  $\delta$  39.31, 69.96, 125.91, 127.99, 130.47, 134.47, 134.93, 135.61, 190.10.

Anal. Calcd for C<sub>g</sub>H<sub>g</sub>ClO<sub>4</sub>S: C, 43.47; H, 3.65; S, 12.89. Found: C, 43.51; H, 3.62; S, 12.92

**1-(3-Chlorophenyl)-2-***p***-toluenesulfonyloxyethanone (2b)**, mp 54-56°; yield: 76%; IR (KBr, cm<sup>-1</sup>): 1718, 1362, 1191, 987, 771; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.46 (s, 3 H), 5.22 (s, 2 H), 7.35 (d, 2 H, J = 8.19 Hz), 7.42 (m, 1 H), 7.57-7.59 (m, 1 H), 7.71-7.73 (m, 1 H), 7.79 (m, 1 H), 7.83-7.85 (m, 2 H); <sup>13</sup>C NMR (100 MHz)  $\delta$  21.72, 69.85, 126.15, 128.17, 129.98, 130.26, 132.48, 134.12, 135.25, 135.34, 145.49, 189.50.

*Anal.* Calcd for C<sub>15</sub>H<sub>13</sub>ClO<sub>4</sub>S: C, 55.47; H, 4.03; S, 9.87. Found: C, 55.42; H, 4.01; S, 9.83 **1-(3-Chlorophenyl)-2-***p***-chlorobenzenesulfonyloxyethanone (2c),** mp 93-95°; yield: 80%; IR (KBr, cm<sup>-1</sup>): 1711, 1362, 1185, 1001, 790; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.30 (s, 2 H), 7.44 (t, 1 H, J = 7.92 Hz), 7.53-7.56 (m, 2 H), 7.59-7.61 (m, 1 H), 7.71-7.73 (m, 1 H), 7.81 (m, 1 H), 7.90-7.93 (m 2 H); <sup>13</sup>C NMR (100 MHz)  $\delta$  70.03, 126.03, 128.08, 129.56, 129.68, 130.36, 134.19, 134.31, 135.04, 135.47, 141.07, 189.10.

Anal. Calcd for C<sub>14</sub>H<sub>10</sub>Cl<sub>2</sub>O<sub>4</sub>S: C, 48.71; H, 2.92; S, 9.29. Found: C, 48.65; H, 2.87; S, 9.25

**1-(3-Chlorophenyl)-2-***p*-nitrobenzenesulfonyloxyethanone (2d), mp 110-114°; yield: 86%; IR (KBr, cm<sup>-1</sup>): 1715, 1530, 1361, 1184, 1059, 977, 792; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.49 (s, 2 H), 7.48-7.52 (m, 2 H), 7.64 (m, 1 H), 7.82-7.84 (m, 2 H), 8.18-8.21 (m 2 H), 8.39-8.42 (m, 2 H); <sup>13</sup>C NMR (100 MHz) d 70.89, 124.36, 127.85, 129.12, 129.47, 133.29, 134.60, 143.94, 150.86, 189.72. *Anal.* Calcd for C<sub>14</sub>H<sub>10</sub>CINO<sub>6</sub>S: C, 47.27; H, 2.83; N, 3.94; S, 9.01.

Found: C, 47.32; H, 2.87; N, 3.96; S, 9.08

**Representative Procedure for Preparation of 1** *via* **Asymmetric Reduction of 2.**- The following procedure is representative. To a stirred solution of (*R*)-4 (0.2 mmol; 0.2 M, 1 mL) in dry THF was added **5** (2 mmol, 2 M, 1 mL) in an atmosphere of nitrogen. To this was added slowly 2 mL of THF solution of **2b** (2 mmol; 0.65 g) over 1 h using a syringe pump at 25°. The reaction mixture was stirred for 10 min at the same temperature and then quenched cautiously with methanol (0.5 mL). After solvent was evaporated under reduced pressure, the product (*R*)-**3b** was obtained by a flash column chromatography on silica gel using ethyl acetate/hexane (1:1) as eluent: 99% yield; oil ( $R_j$  0.65);  $[\alpha]_{D}^{22}$  -39.13 (*c* 1.42, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.45 (s, 3H), 2.86, 1H, J = 3.1), 4.02 (dd, 1H, J = 8.22, 10.42), 4.12 (dd, 1H, J = 3.43, 10.42), 4.95 (m, 1H), 7.17-7.34 (m, 6H), 7.74 (m, 2H); <sup>13</sup>C NMR (100 MHz)  $\delta$  21.68, 71.26, 73.03, 124.41, 125.88, 126.36, 127.92, 128.15, 128.58, 129.92, 129.99, 132.39, 134.60, 140.40, 145.24.

Anal. Calcd for C<sub>15</sub>H<sub>15</sub>ClO<sub>4</sub>S: C, 53.13; H, 4.63; S, 9.81. Found: C, 53.34; H, 4.59; S, 9.67

The sulfonyloxyalcohol **3b** (2 mmol) was dissolved in ether (5 mL) and treated with 2*N*-NaOH (2 mL) at 0° for 3 h. Water layer was extracted with ether (3 x 10 mL). The combined ether extract was dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The epoxide product **1** was further purified by a flash column chromatography on silica gel using ethyl acetate/hexane (1:2) as eluent to give (*R*)-3-chlorostyrene oxide (oil;  $R_j$  0.72; 294 mg, 95 % yield): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.76 (dd, 1H, J = 2.52, 5.45), 3.15 (dd, 1H, J = 4.08, 5.45), 3.84 (dd, 1H, J = 2.57, 3.96), 7.16-7.29 (m, 4H); <sup>13</sup>C NMR (100 MHz)  $\delta$  51.24, 51.70, 123.72, 125.50, 129.78, 134.59, 139.82. *Anal.* Calcd for C<sub>8</sub>H<sub>7</sub>ClO: C, 62.15; H, 4.56.

Found: C, 62.16; H, 4.59;  $[\alpha]_{D}^{22} = -11.15$  (c 1.56, CHCl<sub>3</sub>) { $[\alpha]_{D}^{20} = -11.1$  (c 1.23, CHCl<sub>3</sub>), R}.<sup>3</sup>

Enantiomeric excess was measured by capillary GC analysis using G-TA column (Astec) [oven temperature: 120° (isothermal);  $t_R(R)$ : 9.34 min;  $t_R(S)$ : 6.97 min]. GC analysis showed a composition of 99.65 (*R*) and 0.35 (*S*) (i.e., 99.3% ee).

Acknowledgments.- We are grateful to the Korea Research Foundation (KRF-99-041-D00230) and Hallym University for financial support. We also wish to thank to Dr. J. Corella, Callery Chemical Company for providing (R) and (S)-CBS oxazaborolidine reagents.

## REFERENCES

- (a) Unsubstituted: S. J. Coots, S. G. Davies, D. Middlemiss and A. Naylor, J. Chem. Soc. Perkin Trans. 1, 2223 (1989). D. Mitchell and T. M. Koenig, Synth. Commun., 25, 1231 (1995). (b) 3-Benzyloxy: A. Z. Britten, Chem. and Ind., 771(1968). (c) 4-Benzyloxy-3-nitro: R. Hett, Q. K. Fang, Y. Gao, Y. Hong, H. T. Butler, X. Nie and S. A. Wald, Tetrahedron Lett., 38, 1125 (1997). (d) 4-Chloro: D. R. Fabio, C. Pietra, R. J. Thomas and L. Ziviani, Bioorg. Med. Chem. Lett., 5, 551 (1995). (e) 3,4-Dichloro: A, Solladie'-Cavallo and A. Diep-Vohuule, J. Org. Chem., 60, 3494 (1995). (f) 4-Fluoro: T. R. Nieduzak and A. L. Margolin, Tetrahedron: Asymmetry, 2, 113 (1991). (g) 4-Nitro: S. Pedragossa-Moreau, C. Morisseau, J. Baratti, J. Zylber, A. Archelas and R. Furstoss, Tetrahedron, 53, 9707 (1997). (h) 2-Naphtyl: see ref. 1e.
- (a) P. M. Sher, L. G. Fisher, S. Skwish, I. M. Michel, S. M. Seiler, W. N. Washburn and K. E. J. Dickinson, *Med. Chem. Res.*, 7, 109 (1997). (b) K. Hattori, M. Nagano, T. Kato, I. Nakanishi, K. Imai, T. Kinoshita and K. Sakane, *Bioorg. Med. Chem. Lett.*, 5, 2821 (1995). (c) D. Badone and U. Guzzi, *ibid.*, 4, 1921 (1994). (d) J. D. Bloom, M. D. Dutia, B. D. Johnson, A. Wissner, M. G. Burns, E. E. Largis, J. A. Dolan and T. H. Claus, *J. Med. Chem.*, 35, 3081 (1992). (e) R. Cecchi, T. Croci, R. Boigegrain, S. Boveri, M. Baroni, G. Boccardi, J. P. Guimbard and U. Guzzi, *Eur. J. Med. Chem.*, 29, 259 (1994).
- 3. K. Tanaka and M. Yasuda, Tetrahedron: Asymmetry, 9, 3275 (1998).
- 4. B. D. Brandes and E. N. Jacobsen, *ibid.*, 8, 3927 (1997).
- (a) B. T. Cho and Y. S. Chun, *ibid.*, **10**, 1843 (1999). (b) B. T. Cho and Y. S. Chun, *J. Chem. Soc. Perkin Trans. 1*, 2095 (**1999**). (c) B. T. Cho and Y. S. Chun, *Bull. Korean Chem. Soc.*, **20**, 397 (1999).
- (a) B. T. Cho and Y. S. Chun, J. Org. Chem., 63, 5280 (1998). (b) B. T. Cho and Y. S. Chun, Tetrahedron: Asymmetry, 3, 341 (1992). (c) B. T. Cho and Y. S. Chun, *ibid.*, 5, 1147 (1994).
- E. J. Corey, R. K. Bakshi, S. Shibata, C.-P. Chen and V. K. Singh, J. Am. Chem. Soc., 109, 7925 (1987).
- (a) G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Revrovic and R. H. Wettach, *J. Org. Chem.*, 47, 2487 (1982).
  (b) J. S. Lodaya and G. F. Koser, *ibid.*, 53, 210 (1988).
  (c) R. V. Hoffman, *Synthesis*, 760 (1985).
  (d) J. C. Lee, Y. S. Oh and S. H. Cho, *Bull. Korean Chem. Soc.*, 17, 989 (1996).

\*\*\*\*\*\*\*