Lanthanum-Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting

Kiyonori Ogisu,¹ Akio Ishikawa,¹ Kentaro Teramura,¹ Kenji Toda,² Michikazu Hara,³ and Kazunari Domen^{*1}

¹Depertment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

²Graduate School of Science and Technology, Niigata University, 8050 Ikarashi Ninocho, Niigata 950-2181

³Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatuta, Midori-ku, Yokohama 226-8503

(Received April 9, 2007; CL-070380; E-mail: domen@chemsys.t.u-tokyo.ac.jp)

La–In-based oxysulfide is demonstrated to act as a photocatalyst for the reduction of H⁺ to H₂ and the oxidation of H₂O to O₂ in the presence of sacrificial reagents under visible light ($420 \le \lambda \le 480$ nm). Loading with IrO₂ is effective for promoting O₂ evolution, while Pt is effective as a cocatalyst for H₂ evolution.

Certain sulfides, such as CdS^{1,2} and $(AgIn)_x Zn_{2(1-x)}S_2$,³ exhibit good absorption in the visible-light region^{4–6} and display activity for the photoreduction of H⁺ to H₂ in the presence of an electron donor such as S^{2–} and SO₃^{2–}. However, sulfides are generally unstable in water oxidation to form O₂ because the S^{2–} anions are sensitive to oxidation by photogenerated holes.^{7,8} Recently, Ln₂Ti₂S₂O₅ (Ln = Pr–Er) oxysulfides have been demonstrated to act as stable photocatalysts for both H⁺ reduction and the oxidation of H₂O to O₂.^{9,10} In the present study, La–In oxysulfide with d¹⁰ electric configuration is investigated as another potential photocatalytic material for water splitting under visible light.

Following the example of Kabbour et al.,¹¹ the preparation of LaInS₂O was attempted in this study by heating a mixture of La_2S_3 , La_2O_3 , and In_2S_3 at a stoichiometric molar ratio $(La_2S_3:La_2O_3:In_2S_3 = 1:2:3)$ in a sealed quartz tube under vacuum at temperatures of 873-1273 K for 6-24 h.11 In this study, we henceforth report the sample obtained at 1073 K for 12 h, which showed the highest photocatalytic activities among all prepared samples. The sintered samples were then ground and heated at 573 K for 1 h in air to remove absorbed sulfur⁹ to yield a yellow powder. The crystal structure of the resulting material was examined by powder X-ray diffraction (XRD) using a Rigaku Geigerflex RAD-B instrument with $Cu K\alpha$ radiation. Ultraviolet-visible diffuse reflectance (UV-vis DR) spectra were obtained using a Jasco V-560 spectrometer. Photoreduction of H^+ to H_2 and photooxidation of H_2O to O_2 in the presence of sacrificial reagents were carried out in a Pyrex reaction vessel connected to a gas-circulation system. H₂ evolution was examined using an aqueous solution (200 mL) containing 0.1 g of the oxysulfide loaded with Pt metals by in situ photodeposition, and 0.01 M Na₂S and 0.01 M Na₂SO₃ as sacrificial electron donors. O₂ evolution was examined using an aqueous 0.01 M AgNO3 solution containing 0.1 g of the oxysulfide loaded with IrO₂ by the impregnation method with Na₂IrCl₆ solution and then the treatment in air at 573 K for 1 h. La₂O₃ was used as a buffer material to maintain the pH of the solution at 7-8.

The reaction solution was evacuated several times to remove air and then irradiated under visible light using a 300-W Xe lamp with a cutoff filter ($\lambda > 420$ nm) to eliminate UV light and water filter to remove infrared light.

Most of the crystalline peaks produced by the present sam-

Figure 1. UV–vis diffuse reflectance spectra for (a) LaInO₃, (b) La–In oxysulfide, and (c) $\text{Sm}_2\text{Ti}_2\text{S}_2\text{O}_5$.⁹

ples matched those for LaInS₂O reported by Kabbour et al.¹¹ Yet, the structural detail of the LaInS₂O phase is unknown. Given the presence of In₂O₃ in the XRD pattern, the oxysulfide obtained by the present preparation procedure is considered to be a mixture of In-poor La₅In₃S₉O₃ and minor impurity phases, most likely La_{1.33}In_{1.33}S₄¹² and LaIn₂S₄.¹³ As a single-phase La₅In₃S₉O₃ powder sample could not be obtained from starting materials with a nominal composition of La:In = 5:3, La₅In₃S₉O₃ may exist in the present samples as a metastable phase in an overall In-rich (La:In = 1:1) system. Therefore, the prepared samples containing those phases henceforth are denoted as La–In oxysulfide.

Figure 1 shows the UV–vis DR spectra for the present La–In oxysulfide and LaInO₃. For comparison, UV–vis DR spectrum of Sm₂Ti₂S₂O₅ is also shown. Plane–wave–based density function theory (DFT) calculations have suggested that the valence band (E_{VB}) of Sm₂Ti₂S₂O₅ is made up of the O2p and S3p hybridized orbitals and the conduction band (E_{CB}) consists of Ti3d; as a result, Sm₂Ti₂S₂O₅ has a smaller band-gap energy ($\approx 2.1 \text{ eV}$) compared with that of Sm₂Ti₂O₇ ($\approx 3.5 \text{ eV}$).⁹ Similarly, the E_{VB} of the La–In oxysulfide appears to consist of the O2p and S3p orbitals. On the other hand, the E_{CB} of La–In oxysulfide and LaInO₃ in both cases would be composed of hybridized In5s5p orbitals.¹⁴ Accordingly, the La–In oxysulfide has a smaller band-gap energy ($\approx 2.6 \text{ eV}$) than LaInO₃ ($\approx 4.1 \text{ eV}$).

Figure 2 shows the time course of repeated H₂ evolution over La–In oxysulfide loaded with 1.0 wt % Pt under visiblelight irradiation ($\lambda > 420$ nm) in the presence of Na₂S–Na₂SO₃. The reaction system was evacuated every 5 h. In the early stage of the reaction (2 h), H₂PtCl₆ was reduced to Pt as an H₂ evolution promoter on the catalyst surface. The rate of H₂ evolution, however, remained essentially stable after this induction period. The XRD pattern of the catalyst after the H₂ evolution reaction was the same as before the reaction. The Pt-loaded La–In oxysulfide therefore functions as a stable photocatalyst for the reduction of H⁺ to H₂ under visible-light irradiation.

Figure 2. Time course of repeated H_2 evolution over La–In oxysulfide (Pt-loaded catalyst, 0.1 g; 0.01 M Na₂S–0.01 M Na₂SO₃ solution, 200 mL).

Figure 3. Time course of O₂ evolution over (a) CdS, (b) La–In oxysulfide, and (c) 2 wt % IrO₂/La–In oxysulfide under visiblelight irradiation ($\lambda > 420$ nm) (catal., 0.1 g; 0.01 M AgNO₃ solution, 200 mL; La₂O₃, 0.2 g).

Figure 3 shows the time courses of O_2 evolution over bare and IrO₂-loaded La–In oxysulfide, and over CdS for comparison. O_2 evolution was not observed over CdS owing to the photodecomposition of CdS by photogenerated holes. In contrast, over the bare La–In oxysulfide, O_2 evolution was observed immediately with the onset of irradiation. Loading with 2 wt % IrO₂ increased the evolution rate by approximately three-fold, indicating that IrO₂ is an effective O_2 evolution promoter for the La–In oxysulfide. After an initial period (1 h), the rate of O_2 evolution decreased over time owing to the deposition of metallic silver on the surface of the catalyst.

Figure 4 shows the relationship between the H₂ and O₂ evolution rates and the cutoff wavelength of incident light. The steady rate of H₂ evolution and the initial rate of O₂ evolution decreased with increasing cutoff wavelength, confirming the position of the absorption edge of the La–In oxysulfide and the procession of these photocatalytic reactions via band-gap transitions. No O₂ evolution was observed under visible-light irradiation with longer wavelength than 500 nm because of our detection limit to be $\approx 0.1 \,\mu$ mol h⁻¹.

The apparent quantum efficiencies $(QE)^{15}$ of H₂ and O₂ for La–In oxysulfide (Fig. 2 and Fig. 3b) were estimated to be ≈ 0.2 and $\approx 0.1\%$, respectively, indicating that La–In oxysulfide exhibited superior QE for H₂ evolution and lower QE for O₂ evolution compared to those of Sm₂Ti₂S₂O₅ [QE: 0.1% (H₂), 0.2% (O₂)].⁹ Although many factors should affect photocatalytic activity, it seems that E_{CB} of In5s5p orbitals with large dispersion¹⁴ mainly led to the higher QE of H₂ evolution and the purity

Figure 4. Dependence of rate of H_2 and O_2 evolution on cutoff wavelength of incident light, and UV–vis DR spectrum of La–In oxysulfide. Circles denote H_2 evolution (1 wt % Pt-loaded catal., 0.1 g; 0.01 M Na₂S–0.01 M Na₂SO₃ solution), and triangles denote O_2 evolution (2 wt % IrO₂-loaded catal., 0.1 g; 0.01 M AgNO₃ solution, La₂O₃, 0.2 g).

of La–In oxysulfide containing sulfide phases influenced the QE for O_2 evolution.

La–In oxysulfide was demonstrated to catalyze the reduction of H^+ to H_2 and the oxidation of H_2O to O_2 under visible-light irradiation in the presence of a sacrificial electron donor (Na₂S– Na₂SO₃) or acceptor (Ag⁺), respectively. This oxysulfide, with a band gap of 2.6 eV, was thus confirmed to be a photocatalyst with reduction and oxidation abilities, having conduction and valence bands at suitable potentials for the reduction of H^+ and oxidation of H_2O . O_2 evolution was effectively enhanced by loading with IrO₂, while Pt proved to be suitable as a cocatalyst for H_2 evolution.

References

- 1 N. Bühler, K. Meier, J.-F. Reber, J. Phys. Chem. 1984, 88, 3261.
- 2 M. Matsumura, S. Furukawa, Y. Saho, H. Tsubomura, J. Phys. Chem. **1985**, 89, 1327.
- 3 I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 2004, 126, 13406.
- 4 K. Domen, J. N. Kondo, M. Hara, T. Takata, Bull. Chem. Soc. Jpn. 2000, 73, 1307.
- 5 A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 2004, 33, 1534.
- 6 J. Sato, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B 2003, 107, 7965.
- 7 R. Williams, J. Chem. Phys. 1960, 32, 1505.
- 8 H. Gerischer, J. Electroanal. Chem. Interfacial Electrochem. 1975, 58, 263.
- 9 A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2002, 124, 13547.
- 10 A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, *J. Phys. Chem. B* **2004**, *108*, 2637.
- 11 H. Kabbour, L. Cario, Y. Moëlo, A. Meerschaut, J. Solid State Chem. 2004, 177, 1053.
- 12 A. Likforman, M. Cuittard, Acta Crystallogr., Sect. C 1993, 49, 1270.
- 13 S. A. Amirov, N. A. Shnulin, G. G. Guseinov, S. Kh, Mamedov, *Kristallografiya* 1984, 29, 787.
- 14 J. Sato, H. Kobayashi, Y. Inoue, J. Phys. Chem. B 2003, 107, 7970.
- 15 Quantum efficiency values were calculated with using the coefficients (H₂: 2, O₂: 4), steady H₂ or initial O₂ evolution rate, the rate of absorption of incident photons [Sm₂Ti₂S₂O₅: 8.6×10^{21} photons h⁻¹ at 440 $\leq \lambda \leq 650$ nm, La–In oxysulfide: 7.4×10^{21} photons h⁻¹ at 420 $\leq \lambda \leq 600$ nm].