of Organic Chemistry

Synthesis of Benzo[c]phenanthridine Alkaloids by $\mathbf{P d}(\mathbf{O A c})_{2}$-Induced Direct Aromatic Carbonylation

Eri Kumazawa, ${ }^{[\text {[a] }}$ Takashi Tokuhashi, ${ }^{[\text {a] }}$ Akiyoshi Horibata, ${ }^{[\text {a] }}$ Nobuhito Kurono, ${ }^{[b]}$ Hisanori Senboku, ${ }^{[\mathrm{cl}]}$ Masao Tokuda, ${ }^{[\text {ab] }}$ Takashi Ohkuma, ${ }^{[b]}$ and Kazuhiko Orito* ${ }^{[\text {[a] }}$

Keywords: Alkaloids / Synthetic methods / Nitrogen heterocycles / Carbonylation / Palladium

Abstract

The $\mathrm{Pd}(\mathrm{OAc})_{2}$-induced carbonylation of alkoxy-substituted 1-amino-2-phenyltetralins and 1-amino-2-phenylnaphthalenes was examined to provide the benzo[c]phenanthridine ring system. The carbonylation of substrates containing methylenedioxy groups gave oxysanguinarine and oxy-

Abstract

avicine. The tetramethoxy derivatives gave O-methyloxyfagaronine. The substrate with a benzyloxy group afforded a known synthetic precursor to the antileukemic alkaloid, fagaronine.

Introduction

Recently we reported the $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed direct aromatic carbonylation reaction of secondary ω-phenylalkylamines, which provided five- or six-membered benzolactams. ${ }^{[1]}$ The site selectivity for the carbonylation was a result of the stability of the cyclopalladation species formed in the transition states. ${ }^{[1 \mathrm{a}, 1 \mathrm{~b}]}$ The ortho selectivity increased as a result of the chelation between the meta-alkoxy group and $\mathrm{Pd}^{\mathrm{II}}$, and was greatly enhanced by the presence of a 3,4methylenedioxy group (A). However, the selectivity decreased as a result of the steric repulsion caused by a bulky substituent, such as a 3,4-dimethoxy group (B), and the ligands on the Pd catalyst. Most of the tested N-alkylphenethylamines were nucleophilic enough to give the cyclopalladation species, which led to the corresponding benzolactams by subsequent carbonylation. In contrast, N-aryl derivatives had some difficulties when subjected to the the carbonylation reaction. ${ }^{[1 b]}$ We have been interested in substrates with a 1-amino-2-aryltetralin or 1-amino-2-arylnaphthalene structure (\mathbf{C}) for the carbonylation reaction, because the products may provide the ring system (D) characteristic of the benzo[c]phenanthridine alkaloids, ${ }^{[2-4]}$ that

[^0]is, if the former amino group does not act as a leaving group, and the latter arylamine is not too much less nucleophilic. Some benzo $[c]$ phenanthridine alkaloids have interesting biological qualities such as antitumor, ${ }^{[5]}$ antileukemic, ${ }^{[5 a, 5 b, 6]}$ anticoagulant and cytotoxic, ${ }^{[7]}$ anticancer, ${ }^{[8]}$ anti-HIV, ${ }^{[9 \mathrm{a}]}$ antiviral, ${ }^{[9 \mathrm{~b}, 9 \mathrm{c}, 9 \mathrm{~d}]}$ antimicrobial, ${ }^{[5 \mathrm{~d}, 9 \mathrm{c}]}$ and antituberculosis activities, ${ }^{[9 e]}$ as well as protein kinase $\mathrm{C}^{[10]}$ and DNA topoisomerase I and $\mathrm{II}^{[11]}$ inhibitory activities. Herein, we report the results of our study of $\mathrm{Pd}(\mathrm{OAc})_{2}$-induced carbonylation reactions leading to the formation of alkoxy-substituted 6-oxobenzo[c]phenanthridines, some of which have been transformed into benzo $[c]$ phenanthridine alkaloids. ${ }^{[12]}$

Results and Discussion

First, the carbonylation of substrates containing methylenedioxy groups was examined. Tetrahydronaphthylamine 1 was prepared following the procedure developed by Ishii and Ishikawa, ${ }^{[5 e, 13,14]}$ and naphthylamine $\mathbf{2}$ was prepared by dehydrogenation of $\mathbf{1}$ with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 91%), which involved N-protection with $\mathrm{Boc}_{2} \mathrm{O}$ (di-tert-butyl dicarbonate, 74%) and deprotection with $\mathrm{CF}_{3} \mathrm{COOH}(90 \%)$.

The direct carbonylation of $\mathbf{1}$ with a stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was carried out under an atmosphere of CO gas in refluxing toluene for 3 h to produce lactams 3 and 4 in a $2: 1$ ratio (see Table 1, Entry 1). The addition of $\mathrm{Cu}(\mathrm{OAc})_{2}$ gave for 3 and 4 in a $3: 1$ ratio (Table 1, Entry 3). The carbonylation of $\mathbf{1} \cdot \mathrm{HCl}$ resulted in a complete reversal of the ratio to $1: 3$, because of an aromatic electrophilic substitution with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Table 1, Entry 2). Under the conditions for the oxidative carbonylation reaction (Table 1, Entries 4-12) with an atmosphere of CO gas containing air corresponding to 0.5 equiv. of O_{2}, a catalytic sys-

tem with $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{PPh}_{3}{ }^{[15]}$ in refluxing toluene afforded only the desired benzolactam $\mathbf{3}$ at the beginning of the slow reaction and then a $5: 1$ mixture of $\mathbf{3}$ and 4 after 2 d (Table 1, Entry 4). The use of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol}-\%) / \mathrm{Cu}(\mathrm{OAc})$ 2 ($50 \mathrm{~mol}-\%$) also afforded a $3: 1$ selectivity (Table 1, Entry 5). The carbonylation of $\mathbf{1} \cdot \mathrm{HCl}$ using a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cu}(\mathrm{OAc})_{2}$ resulted in the formation of a complex mixture (Table 1, Entry 6). It had been reported that pyridine could act as a smaller but good ligand for a $\mathrm{Pd}^{I I}$ catalyst. ${ }^{[16,17]}$ The addition of $5 \mathrm{~mol}-\%$ of pyridine to the reaction mixture formed $\mathbf{3}$ more selectively in a ratio of $11: 1$ (Table 1, Entry 7). Using 2,2'-bipyridyl did not exceed the selectivity gained by pyridine (Table 1, Entry 8). DMSO (dimethyl sulfoxide) appeared to be a good solvent for preparation of 3 (Table 1, Entries 9-11), but DMF (dimethylformamide) was not (Table 1, Entry 12). Dehydrogenation of $\mathbf{3}$ or $\mathbf{4}$ with DDQ (2 equiv. in refluxing benzene for 2 h) gave oxysanguinarine (5) ${ }^{[13]}$ or oxyavicine (6) ${ }^{[18,19]}$ in 87% or 71% yields, respectively (see Scheme 1).

The carbonylation reaction of naphthylamine 2 (see Table 2) proceeded slowly, and the site selectivity was lower, compared with the selectivity observed for the conversion of $\mathbf{1}$ into 3. By using a stoichiometric amount of Pd$(\mathrm{OAc})_{2}$, oxysanguinarine (5) and oxyavicine (6) were obtained in a $2: 3$ ratio (Table 2, Entry 1). The catalytic carbonylations (Table 2, Entries 2-5), including that with $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{PPh}_{3}$, gave the opposite site selectivities ($2: 1-$ 4:1) in lower yields. Probably, the lower nucleophilicity of the aromatic amino group affected this carbonylation reaction. In fact, acetamide $\mathbf{2 b}$, corresponding to a byproduct of $\mathbf{1 b}$ produced in carbonylation of $\mathbf{1}$, was not formed during the carbonylation of 2 . Thus, the carbonylation of naphthylamine 2 was not superior to that of 1-(N-methylamino)tetralin $1 .{ }^{[20]}$

To prepare the tetramethoxy analogue of 1 (i.e., 11), di-methoxy- α-tetralone $7^{[21]}$ underwent an arylation reaction to give 9 in 76% yield by using Pinhey's procedure ${ }^{[22]}$ with 3,4-dimethoxyphenyllead triacetate ${ }^{[23]}(\mathbf{8})$ in the presence of

Table 1. Carbonylation of tetrahydronaphthylamine 1.

Entry	Reactant	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2} / \\ & \mathrm{Cu}(\mathrm{OAc})_{2}{ }^{[\mathrm{a}]} \end{aligned}$	Additive (mol-\%)	Solvent	$\begin{gathered} T \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{aligned} & \text { Time } \\ & {[\mathrm{h}]} \end{aligned}$	$3 / 4 / 1 \mathrm{~b}^{[\mathrm{b}]}$	Product (\% yield) ${ }^{[\mathrm{cc]}}$
1	1	100:0		toluene	reflux	3	32:16:5	
2	$1 \cdot \mathrm{HCl}$	100:0		toluene	reflux	3	12:35:0	4 (30)
3	1	100:100		toluene	reflux	72	47:16:0	
4	1	20:0	PPh_{3} (40)	toluene	reflux	48	40:8:5	
5	1	5:50		toluene	reflux	12	46:16:7	
6	$1 \cdot \mathrm{HCl}$	5:50		toluene	reflux	24		complex mixture
7	1	5:50	pyridine (5)	toluene	reflux	12	78:7:0	3 (73)
8	1	5:50	2,2'-bipyridyl (5)	toluene	reflux	12	34:8:7	
9	1	5:50		toluene/DMSO (1:1)	reflux	12	67:17:0	3 (64)
10	1	5:50		DMSO	120	12	63:13:0	
11	1	5:50		DMSO	120	24	73:14:0	3 (70)
12	1	5:50		DMF	120	24	8:2:0	

[^1]

Scheme 1. Carbonylation of substrates with methylenedioxy groups.

Table 2. Carbonylation of naphthylamine 2.

Entry	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cu}(\mathrm{OAc})_{2}{ }^{[\mathrm{a}]}$	Additive (mol-\%)	Solvent	$T\left[{ }^{\circ} \mathrm{C}\right]$	Time $[\mathrm{h}]$	
1	$100: 0$		toluene	reflux	24	$34: 51$
2	$20: 0$	$\mathrm{PPh}_{3}(40)$	toluene	reflux	24	
3	$5: 50$		toluene	reflux	24	$20: 10$
4	$5: 50$	pyridine (5)	toluene	reflux	24	$40: 20$
5	$5: 50$		DMSO	$120^{\circ} \mathrm{C}$	24	24

[a] Mol-\% relative to 2. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

12

40\% (Entry 5)
47\% (Entry 6)
58\% (Entry 7)
$14^{[3 f, 1,26]}$

Scheme 2. Carbonylation of substrate $\mathbf{1 1}$ with tetramethoxy groups.
pyridine. A methoxycarbonyl group of the resultant 3,4-dimethoxyphenylated α-tetralone 9 was removed by an acidcatalyzed hydrolysis in refluxing EtOH and a 2 N HCl solution for 8 h to give α-tetralone 10 in 66% yield (Scheme 2). The decarboxylation of 9 with $\mathrm{LiCl} / \mathrm{DMSO}^{[24]}$ was unsuccessful, but the use of LiI-2,6-lutidine ${ }^{[25]}$ readily resulted in the formation of $\mathbf{1 0}$ in 82% yield. On the basis of a TiCl_{3} assisted imination of a ketone followed by a NaBH_{4} reduction, the N-methylamination ${ }^{[5 \mathrm{e}]}$ of $\mathbf{1 0}$ was carried out to produce the desired substrate $\mathbf{1 1}$ in 91% yield, in preparation for the carbonylation. Using stoichiometric amounts of both $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$ in refluxing toluene, the carbonylation of $\mathbf{1 1}$ afforded $\mathbf{1 3}$ in 86% yield (see Table 3, Entry 3). Using catalytic amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol}-\%$) and $\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol}-\%)$, the carbonylation reaction gave 12 and 13 in a 1:6 ratio (Table 3, Entry 4), and the addition of $5 \mathrm{~mol} \%$ of pyridine to the reaction mixture gave $\mathbf{1 2}$ and 13 in a 1:1.8 ratio, which was the best yield for $\mathbf{1 2}$ (Table 3, Entry 5). Increased amounts of pyridine resulted in inhibiting the carbonylation reaction. Changing the solvent to DMSO or a $1: 1$ mixture of DMSO and toluene gave better results (Table 3, Entries 6 and 7). However, the carbonylation in DMSO of $\mathbf{1 1} \cdot \mathrm{HCl}$ yielded a complex mixture (Table 3, Entry 8), even under compressed CO gas at 25 atm . In addition, using the more electrophilic catalyst
$\mathrm{Pd}\left(\mathrm{OOCCF}_{3}\right)_{2}$ in place of $\mathrm{Pd}(\mathrm{OAc})_{2}$ resulted in a complex mixture, and the use of $\mathrm{Cu}\left(\mathrm{OOCCF}_{3}\right)_{2}$ in place of Cu $(\mathrm{OAc})_{2}$ inhibited the carbonylation process completely. The oxidation of $\mathbf{1 3}$ by treatment with DDQ quantitatively produced aromatic system 14 , which is named O-methyloxyfagaronine. ${ }^{[3 f, 31,26]}$

Next, the method was applied to the synthesis of another benzo[c]phenanthridine alkaloid, fagaronine (25), which was reported to exhibit strong antileukemic activity. ${ }^{[5 b]}$ As shown in Scheme 3, the corresponding synthetic intermediate, 2-aryl- α-tetralone 19, was prepared by a Pd^{0}-catalyzed arylation reaction of 6-benzyloxy-7-methoxy- α-tetralone (18) with 3,4-dimethoxyphenyl iodide, using a modified procedure by Buchwald. ${ }^{[27,28]} \alpha$-Tetralone $\mathbf{1 8}$ was obtained by sequential reactions starting from a regioselective Frie-del-Crafts acylation of 2-methoxyphenyl acetate with succinic anhydride and ending with a cyclization of 4-phenylbutanoic acid 17 with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \cdot{ }^{[29]} \mathrm{A}$ similar cyclization of the known acid $\mathbf{2 0}{ }^{[12 f]}$ also gave 19 in 92% yield. Similar to the method for the preparation of compound 11, the reductive amination of $\mathbf{1 9}$ afforded 21 in an excellent yield (99%), as shown in Scheme 3.

By using a stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$, the carbonylation of amine $\mathbf{2 1} \cdot \mathrm{HCl}$ afforded benzolactam $\mathbf{2 3}$ in $\mathbf{7 1 \%}$ yield (see Table 4, Entry 2). In DMSO, the $\mathrm{Pd}(\mathrm{OAc})_{2}$-cata-

Table 3. Carbonylation of tetrahydronaphthylamine $\mathbf{1 1 .}$

Entry	Reactant	$\mathrm{Pd}(\mathrm{OAc})_{2} /$ $\mathrm{Cu}(\mathrm{OAc})_{2}{ }^{[\mathrm{ab}]}$	Additive $(\mathrm{mol}-\%)$	Solvent	T $\left[{ }^{\circ} \mathrm{C}\right]$	Time $[\mathrm{h}]$	$\mathbf{1 1 / 1 2 / 1 3}{ }^{[\mathrm{b}]}$	Product $(\% \text { yield })^{[\mathrm{c}]}$
1	$\mathbf{1 1}$	$100: 0$		toluene	reflux	3	$35: 0: 60$	$\mathbf{1 3}(33)$
2	$\mathbf{1 1} \cdot \mathrm{HCl}$	$100: 0$		toluene	reflux	3	$0: 0: 100$	$\mathbf{1 3}(70)$
3	$\mathbf{1 1}$	$100: 100$		toluene	reflux	3	$0: 0: 100$	$\mathbf{1 3}(86)$
4	$\mathbf{1 1}$	$5: 50$		toluene	reflux	24	$20: 5: 30$	
5	$\mathbf{1 1}$	$5: 50$	pyridine (5)	toluene	reflux	24	$15: 25: 45$	$\mathbf{1 2}(12), \mathbf{1 3}(40)$
6	$\mathbf{1 1}$	$5: 50$		DMSO	120	36	$3: 21: 50$	$\mathbf{1 3}(47)$
7	$\mathbf{1 1}$	$5: 50$		toluene/DMSO $(1: 1)$	120	24	$4: 26: 64$	$\mathbf{1 3}(58)$
8	$\mathbf{1 1} \cdot \mathrm{HCl}$	$5: 50$		DMSO	120	24	complex mixture	

[a] Mol-\% relative to 11. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yield.

Scheme 3. Preparation of 1-(N-methylamino)- α-tetralin 21.

Synthesis of Benzo[c]phenanthridine Alkaloids

Table 4. Carbonylation of tetrahydronaphthylamine $\mathbf{2 1 .}$

Entry	Reactant	$\mathrm{Pd}(\mathrm{OAc})_{2}$ $/ \mathrm{Cu}(\mathrm{OAc})_{2}{ }^{[a]}$	Solvent	T $\left[{ }^{\circ} \mathrm{C}\right]$	Time $[\mathrm{h}]$	$\mathbf{2 1 / 2 2 / 2 3}{ }^{[\mathrm{b}]}$	Product $(\% \text { yield })^{[\mathrm{cc]}}$
1	$\mathbf{2 1}$	$100: 0$	toluene	reflux	3	$20: 0: 60$	$\mathbf{2 3}(27)$
2	$\mathbf{2 1} \cdot \mathrm{HCl}$	$100: 0$	toluene	reflux	3	$0: 0: 90$	$\mathbf{2 3}(71)$
3	$\mathbf{2 1}$	$100: 100$	toluene	reflux	3	$0: 0: 65$	$\mathbf{2 3}(53)$
4	$\mathbf{2 1}$	$5: 50$	toluene	reflux	24	$15: 10: 40$	
5	$\mathbf{2 1}$	$5: 50$	DMSO	120	24	$0: 15: 50$	$\mathbf{2 2}(12), \mathbf{2 3}(27)$
6	$\mathbf{2 1}$	$5: 50$	toluene/DMSO $(1: 1)$	120	24	$5: 20: 55$	$\mathbf{2 3}(45)$

[a] Mol-\% relative to 21. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yield.
lyzed carbonylation of $\mathbf{2 1}$ produced 23 in 27% and 45% yields, respectively, as shown in Entries 5 and 6 in Table 4. As expected, the selectivity for 22 was low.

Successively, benzolactam 23 was subjected to oxidation by treatment with DDQ (2 equiv.) in refluxing benzene for 2 h to give O-benzyloxyfagaronine (24) ${ }^{[12 \mathrm{e}, 4 \mathrm{a}]}$ in 77% yield (Scheme 4). In view of the previous conversions of 24 into fagaronine (25) ${ }^{[12 \mathrm{e}]}$ and oxyfagaronine (26), ${ }^{[4 \mathrm{a}]}$ this constitutes a formal synthesis of both alkaloids. ${ }^{[5 a, 30,31]}$

Scheme 4. Carbonylation of 21.

Conclusions

We have examined the $\mathrm{Pd}(\mathrm{OAc})_{2}$-induced carbonylation of alkoxy-substituted 1-(N-methylamino)-2-phenyltetralins and 1-(N-methylamino)-2-phenylnaphthalenes to provide the benzo $[c]$ phenanthridine ring system. The carbonylation of tetralin 1 with methylenedioxy groups by using a catalytic system of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cu}(\mathrm{OAc})_{2} /$ pyridine in refluxing toluene predominantly gave tetrahydrooxysanguinarine (3, 73% yield). In contrast, the carbonylation of $\mathbf{1} \cdot \mathrm{HCl}$ with a
stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ afforded tetrahydrooxyavicine ($4,30 \%$ yield). On the basis of these results, similar catalytic carbonylations of the tetramethoxy analogue of the latter reactant afforded O-methyloxyfagaronine in solvent systems containing DMSO. A 2-benzyloxy analogue was converted to a synthetic precursor of the antileukemic alkaloid fagaronine (25).

Experimental Section

General Remarks: The melting points were measured with a Yanagimoto micro melting point apparatus. The IR spectra were recorded with a JASCO IR-810 spectrometer. The ${ }^{1} \mathrm{H}$ NMR (270 or 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (67.8 or 100.4 MHz) spectra were recorded with a JEOL JNM-JX270 or ECX-400P FT NMR spectrometer, and the samples were prepared with CDCl_{3} (99.8 atom$\% \mathrm{D}$; containing $0.03 \% \mathrm{v} / \mathrm{v}$, tetramethylsilane; Aldrich Co.), unless otherwise noted. The chemical shifts were reported in ppm, relative to tetramethylsilane. The LRMS (EI) and HRMS (EI) spectra were performed with a JEOL JMS-HX110, JEOL JMS-FABmate, or JEOL JMS-700TZ mass spectrometer. The mass spectrometric data were obtained by electron ionization at 70 eV . TLC was carried out with Merck silica gel $60 \mathrm{PF}_{254}$. Elemental analyses were performed with a Yanako MT-6 CHN CORDER and a Dionex DX-500 at the Analytical Laboratory of Faculty of Pharmaceutical Science, Hokkaido University.
cis-1-[(N-tert-Butoxycarbonyl)- N-methylaminol-6,7-(methylene-dioxy)-2-[3,4-(methylenedioxy)phenyl]-1,2,3,4-tetrahydronaphthalene (1a): A mixture of $\mathbf{1}^{[5 \mathrm{e}, 13,14]}$ ($143 \mathrm{mg}, 0.4 \mathrm{mmol}$), 4-DMAP [4-(N, N-dimethylamino)pyridine, $49 \mathrm{mg}, 0.4 \mathrm{mmol}], \mathrm{Et}_{3} \mathrm{~N}(81 \mathrm{mg}$, $0.44 \mathrm{mmol})$, and $(\mathrm{Boc})_{2} \mathrm{O}(96 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was stirred at room temp. for 11 h , and $\mathrm{HCl}(0.5 \mathrm{~N}$ solution, 10 mL$)$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were washed with HCl (2 N solution, 15 mL) and water (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The oily residue (129 mg) was subjected to preparative silica gel TLC $\left(1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. A band with $R_{\mathrm{f}}=0.7$ gave $\mathbf{1 a}$ as colorless crystals ($126 \mathrm{mg}, 74 \%$), m.p. $154-156{ }^{\circ} \mathrm{C}\left(\mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (270 MHz , rotational isomers, 4:3): $\delta=1.24,1.26$ (4:3, each $\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.90,2.11$ (each m, each $1 \mathrm{H}, 3-\mathrm{H}), 2.94,2.56$ ($3: 4$, each s, $1 \mathrm{H}, \mathrm{NMe}), 2.70-3.00(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.00-3.20(\mathrm{~m}, 1 \mathrm{H}, 2-$ H), $5.34,5.58$ (4:3, each d, $J=4.2$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.87-$ $5.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.52-6.80(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=24.2,24.3\left(4: 3, \mathrm{CH}_{2}\right), 28.0,28.1\left(4: 3, t \mathrm{Bu}^{2} \mathrm{CH}_{3}\right)$, $30.0\left(\mathrm{CH}_{2}\right), 31.9,32.1(4: 3, \mathrm{CH}), 45.3,45.7\left(3: 4, \mathrm{CH}_{3}\right), 54.6,56.1$ (4:3, NCH), 78.9, $79.2(3: 4, \mathrm{CO}), 100.6,100.7\left(3: 4, \mathrm{OCH}_{2} \mathrm{O}\right), 100.8$, $100.9\left(3: 4, \mathrm{OCH}_{2} \mathrm{O}\right), 107.0,107.7(3: 4, \mathrm{CH}), 107.9,108.0(4: 3, \mathrm{CH})$, 108.3, 108.7 (3:4, CH), 108.8, 109.0 (4:3, CH), 120.7, 121.1 (4:3, CH), 127.9, 128.1 (3:4, C), 130.7, 131.0 (4:3, C), 136.5, 136.7 (3:4,
C), $145.8,146.0(3: 4, C), 146.3(C), 147.0,147.1(3: 4, C), 147.1$, 147.3 (3:4, C), $155.4,155.8(4: 3, \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=$ $1683 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): m / z(\%)=425(1.6)[\mathrm{M}]^{+}, 294(100), 176(14.6)$, 162 (10.2), 135 (29.1), 57 (21.1). $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}$ (425.47): calcd. C 67.75, H 6.40, N 3.29; found C 67.65, H 6.48, N 3.28.
cis-1-[(N-Acetyl)- N-methylamino]-6,7-(methylenedioxy)-2-[3,4-(methylenedioxy)phenyl]-1,2,3,4-tetrahydronaphthalene (1b): A similar treatment of $\mathbf{1} \cdot \mathrm{HCl}(32.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathrm{AcCl}(9.5 \mathrm{mg}$, $0.12 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(12.1 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ afforded 1b as colorless crystals $(22.9 \mathrm{mg}, 62 \%)$, m.p. $147-149{ }^{\circ} \mathrm{C}$ (MeOH/AcOEt/hexane). ${ }^{1} \mathrm{H}$ NMR (270 MHz , rotational isomers, 5:7): $\delta=1.68,1.80(5: 7$, each s, $3 \mathrm{H}, \mathrm{OAc}), 1.78-2.28(\mathrm{~m}, 2 \mathrm{H}, 3-$ H), 2.63, 2.67 (7:5, each s, $3 \mathrm{H}, \mathrm{NMe}), 2.72-3.05(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H})$, $3.05-3.25(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.95,6.14(5: 7$, each $\mathrm{d}, J=5.1 \mathrm{~Hz}$ and 6.4 Hz, 1 H, 1-H), 5.92, $5.93\left(5.7\right.$, each s, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.95,5.96$ (5:7, each s, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.47-6.82(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=21.3,21.9\left(5: 7, \mathrm{CH}_{3}\right), 24.40,24.43\left(7: 5, \mathrm{CH}_{2}\right), 29.7$, $29.8\left(5: 7, \mathrm{CH}_{2}\right), 32.0,33.7\left(7: 5, \mathrm{CH}_{3}\right), 44.4,46.6\left(7: 5, \mathrm{NCH}_{3}\right), 52.5$, $59.2(5: 7, \mathrm{CH}), 59.2(\mathrm{NCH}), 100.7,100.8\left(7: 5, \mathrm{OCH}_{2} \mathrm{O}\right), 101.0$, $101.1\left(7: 5, \mathrm{OCH}_{2} \mathrm{O}\right), 107.7,108.0,108.1,108.2,108.3,108.6$ (4 CH), 120.7, $121.2(7: 5, \mathrm{CH}), 126.9,127.7(5: 7, \mathrm{C}), 130.9,131.1$ (5:7, C), $135.8,136.0(5: 7, C), 145.8,146.5(7: 5, C), 146.4,146.6$ (7:5, C), 147.0, 147.1 (5:7, C), 147.5, 147.8 (5:7, C), 170.9, 171.3 (7:5, $\mathrm{C}=\mathrm{O}$) ppm. IR (Nujol): $\tilde{v}=1625 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=367$ (5.5) $[\mathrm{M}]^{+}, 294$ (100), 202 (16.9), 176 (17.5), 162 (11.8), 135 (43.7), 57 (21.1). $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}$ (367.40): calcd. C 68.65, H 5.76, N 3.81; found C 68.44, H 5.95, N 3.76 .

1-(N-tert-Butoxycarbonyl- N-methylamino)-6,7-(methylenedioxy)-2-[(3,4-methylenedioxy)phenyl]naphthalene (2a): A mixture of carbamate 1a ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) and DDQ ($192 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dry benzene (17 mL) was heated to reflux, stirred for 3 h , and then cooled to room temp. After $\mathrm{NaOH}(2 \mathrm{~N}$ solution, 30 mL) was added, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The extracts were washed with water $(3 \times 20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The oily residue (86 mg) was subjected to preparative silica gel TLC $\left(0.8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. A band with $R_{\mathrm{f}}=$ 0.8 gave 2a as colorless crystals ($77 \mathrm{mg}, 91 \%$), m.p. $164-165^{\circ} \mathrm{C}$ (benzene/hexane). ${ }^{1} \mathrm{H}$ NMR (270 MHz , rotational isomers, 2:1): δ $=1.27,1.53(2: 1$, each $\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.83,2.94(1: 2$, each $\mathrm{s}, 3 \mathrm{H}$, NMe), $6.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.03,6.08(1: 2$, each $\mathrm{d}, J=1.3 \mathrm{~Hz}$, $\left.2 / 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.06,6.09(1: 2$, each d, each $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.82-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.08,7.10(2: 1$, each s, $1 \mathrm{H}, 5-$ H), $7.14,7.15(1: 2$, each $\mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.26,7.29(2: 1$, each d, each $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.61,7.62(2: 1$, each d, each $J=8.5 \mathrm{~Hz}, 1$ $\mathrm{H}, 3-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=28.1,28.4\left(2: 1, t \mathrm{Bu}-\mathrm{CH}_{3}\right)$, $36.4,36.8$ ($2: 1, \mathrm{NMe}$), 79.8, 80.0 (1:2, C), $99.6,99.6$ (2:1, CH), $100.9,101.0\left(2: 1, \mathrm{OCH}_{2} \mathrm{O}\right), 101.1,101.2\left(1: 2, \mathrm{OCH}_{2} \mathrm{O}\right), 104.0,104.2$ (1:2, CH), 108.0, 108.1 (1:2, CH), 109.1, 109.3 (2:1, CH), 122.2, $122.2(2: 1, \mathrm{CH}), 126.3,126.6(2: 1, \mathrm{CH}), 126.6,126.8(1: 2, \mathrm{CH})$, $127.9,128.0(2: 1, \mathrm{C}), 130.7,131.0(2: 1, \mathrm{C}), 133.8,133.8$ (2:1, C), $135.2,135.9$ ($2: 1, \mathrm{C}), 136.1,136.3$ (2:1, C), $146.7,146.7$ (1:2, C), 147.4, 147.4 (2:1, C), $147.6,147.7$ ($2: 1, \mathrm{C}), 148.7,148.9$ (2:1, C), 155.4, 155.5 (2:1, CO) ppm. IR (Nujol): $\tilde{v}=1684 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}):$ $m / z(\%)=421(53.1)[\mathrm{M}]^{+}, 365(100), 321$ (92.6), 290 (39.0). $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{6}$ (421.44): calcd. C 68.40, H 5.50 , N 3.32 ; found C 68.35, H 5.39, N 3.32 .
cis-1-(N-Methylamino)-6,7-(methylenedioxy)-2-(3,4-methylenedioxy)phenylnaphthalene (2): A mixture of carbamate 2a (169 mg, 0.4 mmol) and TFA (trifluoroacetic acid, 5 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ was stirred at room temp. for 30 min . After NaOH (2 N solution, 20 mL) was added, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. The extracts were washed with $\mathrm{NaOH}(0.5 \mathrm{~N}$ solution,
$20 \mathrm{~mL})$ and water $(2 \times 20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The oily residue $(122 \mathrm{mg})$ was subjected to preparative silica gel TLC $\left(2.4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. A fraction with $R_{\mathrm{f}}=0.7$ was treated with $\mathrm{Et}_{2} \mathrm{O}$ saturated with HCl to give the HCl salt of N methylamine 2 as colorless crystals ($128 \mathrm{mg}, 90 \%$), m.p. $153-$ $155^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$. Data for 2• $\mathrm{HCl}:{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=3.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 6.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.10(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.83\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.85\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.96$ $\left(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.24(\mathrm{~s}$, $1 \mathrm{H}, 5-\mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 10.77$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 67.8 \mathrm{MHz}, \mathrm{CDCl}_{3} /\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=37.0\left(\mathrm{CH}_{3}\right), 98.5(\mathrm{CH}), 100.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 100.8\left(\mathrm{OCH}_{2} \mathrm{O}\right), 103.6$ $(\mathrm{CH}), 107.8(\mathrm{CH}), 108.9(\mathrm{CH}), 122.0(\mathrm{CH}), 125.7(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 128.9(\mathrm{C}), 129.0(\mathrm{C}), 130.5$ (2 C), 131.9 (C), 147.1 (C), 147.1 (2 C), 147.4 (C), 148.6 (C) ppm. IR (Nujol): $\tilde{v}=1571 \mathrm{~cm}^{-1} . \mathrm{MS}$ $(\mathrm{EI}): m / z(\%)=321(100)[\mathrm{M}-\mathrm{HCl}]^{+}, 276$ (13.8), 248 (13.2), 103 (17.7). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{4}$ (357.79): calcd. C 63.78, H 4.51, Cl 9.91, N 3.91; found C 63.93, H 4.57, Cl 10.08, N 3.88. Data for free amine 2: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}): \delta=2.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 6.03,6.06$ (each s, each $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.85\left(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.89$ $\left(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.91\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.11(\mathrm{~s}$, $1 \mathrm{H}, 5-\mathrm{H}), 7.13,7.33$ (each d, $J=8.6 \mathrm{~Hz}$, each $1 \mathrm{H}, 4-$ and $3-\mathrm{H}$), $7.50(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}(67.8 \mathrm{MHz}): \delta=37.8\left(\mathrm{CH}_{3}\right)$, $100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.0\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.1(\mathrm{CH}), 104.3(\mathrm{CH}), 108.5$ $(\mathrm{CH}), 109.8(\mathrm{CH}), 121.3(\mathrm{CH}), 122.5(\mathrm{CH}), 124.6(\mathrm{C}), 126.8(\mathrm{CH})$, 129.0 (C), 131.3 (C), 134.0 (C), 143.4 (C), 146.7 (C), 147.3 (C), 147.5 (C), 147.8 (C) ppm. MS (EI): $m / z(\%)=321(100)[\mathrm{M}]^{+}, 290$ (10.1).
cis-1-[(N-Acetyl)- N-methylamino]-6,7-(methylenedioxy)-2-[3,4(methylenedioxy)phenyl|naphthalene (2b): To a solution of $\mathbf{2}$ $(32.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(12.1 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ was added $\mathrm{AcCl}(9.5 \mathrm{mg}, 0.12 \mathrm{mmol})$. The mixture was stirred at room temp. for 6.5 h and then poured into ice water containing $\mathrm{HCl}(2 \mathrm{~N}$ solution, 5 mL$)$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined extracts were washed with water $(3 \times 15 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. An oily residue (42 mg) was subjected to preparative TLC on silica gel with $3 \% \mathrm{MeOH} / 1 \% \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=$ 0.5 gave $\mathbf{2 b}$ as a colorless oil ($38 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NAc}), 6.02,6.10$ (each s, each $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.78$ (each d, $\left.J=7.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.79\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, 6.87 (each d, $\left.J=7.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.04,7.19$ (each s, each $1 \mathrm{H}, 5-$ and $6-\mathrm{H}), 7.32,7.69$ (each d, $J=8.2 \mathrm{~Hz}$, each $1 \mathrm{H}, 4-$ and $3-\mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=21.8\left(\mathrm{CH}_{3}\right), 36.8(\mathrm{NMe}), 99.2\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, $101.2\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.5(\mathrm{CH}), 104.3(\mathrm{CH}), 108.4(\mathrm{CH}), 108.9(\mathrm{CH})$, $122.0(\mathrm{CH}), 127.1(\mathrm{CH}), 127.3(\mathrm{CH}), 127.8(\mathrm{C}), 131.1(\mathrm{C}), 133.0$ (C), 135.8 (C), 136.7 (C), 147.1 (C), 147.7 (C), 148.1 (C), 149.6 (C), $171.4(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=1626,1516 \mathrm{~cm}^{-1}$. MS (EI): m / z $(\%)=399(2.2)[M]^{+}, 326(100), 311$ (17.0), 218 (13.8), 192 (8.6), 178 (7.3), 163 (8.0), 151 (26.8). HRMS (EI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5}$ 399.2045 ; found 369.2044 .

Carbonylation of 1 in a Catalytic System with $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $\mathbf{C u}(\mathrm{OAc})_{2}$: A General Procedure (Method A)

Preparation of cis-2,3,7,8-Bis(methylenedioxy)-5-methyl-4b,5,6,10b,11,12-hexahydro-benzo[c]phenanthridin-6-one (3): (Table 1, Entry 7). The HCl salt of naphthylamine $\mathbf{1}[\mathbf{1} \cdot \mathrm{HCl}$, $36.2 \mathrm{mg}, 0.1 \mathrm{mmol}$, prepared by Ishii's method as colorless crystals [m.p. $208-209{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$; ref. ${ }^{[5 \mathrm{e}]}$ m.p. $119.5-$ $121.5^{\circ} \mathrm{C}$ for free amine], in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, $2 \times 20 \mathrm{~mL}$) and water $(20 \mathrm{~mL})$ and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. A stirred suspension of the residue, $\mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}$,
$50 \mathrm{~mol}-\%$) in toluene (2 mL) containing pyridine $(0.395 \mathrm{mg}, 5 \mathrm{~mol}-$ $\%$) was heated at reflux under CO gas ($1 \mathrm{~atm}, 1.5 \mathrm{~L}$) containing air (6 mL , corresponding to 0.5 equiv. of O_{2}) delivered by a toy balloon for 12 h . The mixture was filtered through powdered MgSO_{4}, and the precipitates were washed with $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The filtrate and washings were concentrated, and the residue $(39.9 \mathrm{mg}, \mathbf{3} / \mathbf{4}$, 11:1) was purified by preparative TLC on silica gel developed $(2 \times)$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=0.4$ gave 3 as colorless crystals ($25.5 \mathrm{mg}, 73 \%$), m.p. $235.6-236.9^{\circ} \mathrm{C}$ (benzene/hexane). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.98(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H})$, 2.75-2.96 (m, $2 \mathrm{H}, 12-\mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.24$ (m, $1 \mathrm{H}, 10 \mathrm{~b}-$ $\mathrm{H}), 4.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 5.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.07$, 6.09 (AB type, $J=1.3 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), $6.55,6.65$ (each s, each $1 \mathrm{H}, 1$ - and $4-\mathrm{H}$), $6.68,6.83$ (each d, $J=7.9 \mathrm{~Hz}$, each 1 H , 10- and 9-H) ppm. ${ }^{13} \mathrm{C}$ NMR (100.4 MHz): $\delta=24.3\left(\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{CH}), 37.5\left(\mathrm{NCH}_{3}\right), 60.03(\mathrm{CH}), 100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 102.0$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 108.6(\mathrm{CH}), 108.8(\mathrm{CH}), 110.7(\mathrm{CH}), 112.51(\mathrm{C}), 118.0$ $(\mathrm{CH}), 127.14(\mathrm{C}), 130.0(\mathrm{C}), 133.8$ (C), 145.8 (C), 147.4 (C), 147.6 (C), 147.7 (C), 162.5 (C=O) ppm. IR (Nujol): $\tilde{v}=1648 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): $m / z(\%)=351(100)[\mathrm{M}]^{+}, 320(83.9), 149(16.1) . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$ (351.35): calcd. C 68.37, H 4.88, N 3.99; found C 68.10 , H 4.91, N 4.01 .

Carbonylation of 1 with a Stoichiometric Amount of $\operatorname{Pd}(\mathrm{OAc})_{2}$: A General Procedure (Method B)

Preparation of cis-2,3,8,9-Bis(methylenedioxy)-5-methyl-4b,5,6,10b,11,12-hexahydro-benzo[c]phenanthridin-6-one (4): (Table 1, Entry 2). A stirred suspension of $\mathbf{1} \cdot \mathrm{HCl}(38.3 \mathrm{mg}$, $0.107 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(24 \mathrm{mg}, 100 \mathrm{~mol}-\%)$ in toluene $(2.2 \mathrm{~mL})$ was heated at reflux under $\mathrm{CO}(1 \mathrm{~atm})$ for 3 h . The mixture was filtered through MgSO_{4}, and the precipitates were washed with $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The filtrate was concentrated, and the residue $(32.1 \mathrm{mg}, \mathbf{3} / 4,1: 3)$ was subjected to preparative TLC on silica gel developed $(2 \times)$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=0.5$ gave lactam 4 as colorless crystals ($10.9 \mathrm{mg}, 30 \%$), m.p. $258-259^{\circ} \mathrm{C}$ (benzene/hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=2.00(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H})$, $2.21(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.18$ (m. $1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}), 4.60(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 5.91,5.92$ (AB type, $J=1.3 \mathrm{~Hz}$, each $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.97,6.00(\mathrm{AB}$ type, $J=$ 1.3 Hz , each $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 6.56, 6.65, 6.68, 7.51 (each s, each 1 $\mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz$): \delta=24.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right)$, $33.7(\mathrm{CH}), 37.6\left(\mathrm{NCH}_{3}\right), 59.6(\mathrm{CH}), 100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 101.4$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 105.6(\mathrm{CH}), 108.5(\mathrm{CH}), 108.6(\mathrm{CH}), 109.0(\mathrm{CH}), 123.1$ (C), 127.1 (C), 130.1 (C), 136.4 (C), 145.8 (C), 146.7 (C), 147.5 (C), 150.5 (C), $164.3(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=1646 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}):$ $m / z(\%)=351(90.9)[\mathrm{M}]^{+}, 320(100), 294$ (33.8), 203 (50.0). $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$ (351.35): calcd. C 68.37, H 4.88, N 3.99; found C 68.10, H 4.94, N 4.14.

Oxysanguinarine (5): A mixture of $\mathbf{3}(11.5 \mathrm{mg}, 0.033 \mathrm{mmol})$ and DDQ (98% active, $23.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) in benzene (2 mL) was heated at reflux for 3.5 h . The resulting precipitate was removed by suction filtration, and the filtrate was concentrated. The residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$, and the resulting solution was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, $2 \times 10 \mathrm{~mL}$) and brine $(10 \mathrm{~mL})$ and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and crystallization from AcOEt afforded oxysanguinarine (5) as colorless crystals $(9.9 \mathrm{mg}, 87 \%)$, m.p. $>300^{\circ} \mathrm{C}$ (ref. ${ }^{[18 \mathrm{c}]} \mathrm{m} . \mathrm{p}$. $300{ }^{\circ} \mathrm{C}$; ref. ${ }^{[32]}$ m.p. $346-348^{\circ} \mathrm{C}$; ref. ${ }^{[33]}$ m.p. $347-349{ }^{\circ} \mathrm{C}$; ref. ${ }^{[34]}$ m.p. $356-358^{\circ} \mathrm{C}$; ref. ${ }^{[35]}$ m.p. $360{ }^{\circ} \mathrm{C}$; ref. ${ }^{[30,4 \mathrm{a}]}$ m.p. $360-362^{\circ} \mathrm{C}$; ref. ${ }^{[36]}$ m.p. $366-368^{\circ} \mathrm{C}$). This was also obtained by preparative silica gel TLC (developed $2 \times$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{\mathrm{f}}=0.4$) of the crude products that formed from $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed carbonylation of amine 2 (see Table 2).

Oxyavicine (6) - DDQ Oxidation of 4: Similar treatment of 4 ($10.5 \mathrm{mg}, 0.03 \mathrm{mmol}$) with DDQ (98% active, $21 \mathrm{mg}, 0.09 \mathrm{mmol}$) in refluxing benzene $(2 \mathrm{~mL})$ for 3.5 h gave $\mathbf{6}$ as colorless crystals ($7.4 \mathrm{mg}, 71 \%$), m.p. $275-276{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$; ref. ${ }^{[19 \mathrm{~b}]} \mathrm{m} . \mathrm{p} .257-258{ }^{\circ} \mathrm{C}$; ref. ${ }^{[19 \mathrm{a}]} \mathrm{m}$. p. $276-277^{\circ} \mathrm{C}$; ref. ${ }^{[19 \mathrm{c}]} \mathrm{m}$. p. $278-283^{\circ} \mathrm{C}$; ref. ${ }^{[3 \mathrm{o}, 4 \mathrm{a}]} \mathrm{m} . \mathrm{p}$. $279-282^{\circ} \mathrm{C}$; ref..$^{[18 \mathrm{c}]}$ m.p. $281.5-282{ }^{\circ} \mathrm{C}$). This was also obtained by preparative silica gel TLC (developed $2 \times$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $R_{\mathrm{f}}=0.5$) of the crude products that formed from the carbonylation of amine 2 (see Table 2).

Methyl 6,7-Dimethoxy-2-(3,4-dimethoxyphenyl)-1-tetralone-2-carboxylate (9): According to Pinhey's arylation, ${ }^{[22,23]}$ a stirred suspension of methyl 6,7-dimethoxy-1-tetralone-2-carboxylate ${ }^{[37]}$ [7, $497 \mathrm{mg}, 2 \mathrm{mmol}, \mathrm{m}$. p. $134-136^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$, ref. ${ }^{[37]} \mathrm{m} . \mathrm{p} .140-$ $\left.141^{\circ} \mathrm{C}\right)$], 3,4-dimethoxyphenyllead triacetate ${ }^{[23]}(8,1.147 \mathrm{mg}$, $2.2 \mathrm{mmol})$, and pyridine $(174 \mathrm{mg}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ was heated at reflux in an ultrasonic apparatus for $10 \mathrm{~h} . \mathrm{H}_{2} \mathrm{SO}_{4}$ (2 N solution, 10 mL) was added, and the resulting precipitate was removed by suction filtration. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The extracts were washed with water $(3 \times 30 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The oily residue $(816 \mathrm{mg})$ was purified by crystallization from MeOH to give 9 as colorless crystals $(610 \mathrm{mg}, 76 \%)$, m.p. $158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}): \delta=2.63-3.01(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{and} 4-\mathrm{H}), 3.76,3.83,3.85$, 3.91, 3.93 (each s, each $3 \mathrm{H}, \mathrm{OMe}$), $6.58(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 6.74-6.83$ $\left(\mathrm{m}, 3 \mathrm{H}, 2^{\prime}-, 5^{\prime}-\right.$, and $\left.6^{\prime}-\mathrm{H}\right), 7.60(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(67.8 \mathrm{MHz}): \delta=25.6\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 52.7(\mathrm{OMe}), 55.7(\mathrm{OMe})$, $55.8(\mathrm{OMe}), 55.9(\mathrm{OMe}), 56.0(\mathrm{OMe}), 62.4(\mathrm{OMe}) 109.1(\mathrm{CH})$, $109.9(\mathrm{CH}), 110.7(\mathrm{CH}), 111.3(\mathrm{CH}), 120.0(\mathrm{CH}), 124.9(\mathrm{C}), 128.5$ (C), 137.9 (C), 148.1 (C), 148.4 (C), 148.6 (C), 153.8 (C), 172.3 (C=O), $193.3(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=1734,1686,1599,1561$, $1508 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): m / z(\%)=400(97.8)[\mathrm{M}]^{+}, 341(40.8), 340$ (100), 313 (22.5), 178 (49.9), 150 (52.3). $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}$ (400.42): calcd. C 70.16, H 6.48; found C 69.95, H 6.51 .

6,7-Dimethoxy-2-(3,4-dimethoxyphenyl)-1-tetralone (10): A solution of methyl ester $9(400 \mathrm{mg})$ in a mixture of $\mathrm{HCl}(2 \mathrm{~N}$ solution, $10 \mathrm{~mL})$ and $\mathrm{AcOH}(28 \mathrm{~mL})$ was heated at reflux for 8 h . The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined extracts were washed with water $(3 \times 30 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The oily residue (350 mg) was crystallized from MeOH to give 10 as colorless crystals ($226 \mathrm{mg}, 66 \%$), m.p. $148-$ $150{ }^{\circ} \mathrm{C}$ (ref. ${ }^{[38]}$ m.p. $144-146{ }^{\circ} \mathrm{C}$; ref. ${ }^{[39]}$ m.p. $147-149{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=2.39(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.70(\mathrm{dd}$, $J=7.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.86,3.87,3.93,3.96$ (each s, each 3 H , OMe), $6.69(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 6.72\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.73(\mathrm{dd}$, $\left.J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.84\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.58$ $(\mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=28.3\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 53.1(\mathrm{CH}), 55.7(\mathrm{OMe}), 55.8(\mathrm{OMe}), 55.9(\mathrm{OMe}), 60.0$ $(\mathrm{OMe}), 108.8(\mathrm{CH}), 110.0(\mathrm{CH}), 111.1(\mathrm{CH}), 111.7(\mathrm{CH}), 120.2$ (CH), 125.9 (C), 132.5 (C), 138.8 (C), 147.8 (C), 147.9 (C), 148.7 (C), $153.4(\mathrm{C}), 197.1(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=1669,1599$, $1511 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=342(8.3)[\mathrm{M}]^{+}, 204(29.3), 191$ (93.6), 178 (73.7), 151 (63.0), 150 (100.0).

6,7-Dimethoxy-2-(3,4-dimethoxyphenyl)-1-(N-methylamino)-1,2,3,4tetrahydronaphthalene Hydrochloride $(\mathbf{1 1 \cdot H C l})$: According to Ishii's method, ${ }^{[5]]}$ tetralone $\mathbf{1 0}(514 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(39 \mathrm{~mL})$ was treated with MeNH_{2} in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$, prepared from 40% $\mathrm{MeNH}_{2} /$ water solution $(4.8 \mathrm{~mL}, 90 \mathrm{mmol})$ and $\mathrm{NaOH}(5.45 \mathrm{~g}$, $90 \mathrm{mmol})$. The mixture was then added dropwise to TiCl_{4} ($0.173 \mathrm{~mL}, 1.05 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5.6 \mathrm{~mL})$, and the resulting mixture was stirred at -5 to $0^{\circ} \mathrm{C}$ for 30 min , at room temp. for 30 min , and at reflux for 30 min . Then, the precipitate was removed by suction filtration. The filtrate was concentrated, and the residue
was dissolved in $\mathrm{MeOH}(75 \mathrm{~mL})$. The solution was treated with NaBH_{4} ($153 \mathrm{mg}, 2.7$ equiv.) in three portions at room temp. for 1 h . After the evaporation of the $\mathrm{MeOH}, \mathrm{HCl}(6 \mathrm{~N}$ solution, 10 mL$)$ was added to the residue. The mixture was stirred for 30 min and then basified with $\mathrm{NaOH}(6 \mathrm{~N}$ solution, 20 mL). The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined extracts were washed with water $(3 \times 40 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue (516 mg) was treated with $\mathrm{Et}_{2} \mathrm{O}$ containing HCl , and the resulting solid was recrystallized from MeOH to give $11 \cdot \mathrm{HCl}$ as colorless crystals ($513 \mathrm{mg}, 91 \%$), m.p. $179-183^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=1.91$ (br. s, 3 H , NMe), 2.18 (m, $1 \mathrm{H}, 3-$ H), 2.70-2.90 (m, $2 \mathrm{H}, 4-\mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.32(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{H}$), 3.84, 3.89, 3.94, 3.95 (each s, each $3 \mathrm{H}, \mathrm{OMe}$), $4.25(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 6.57$ (s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.95,6.88$ (AB type, $J=$ 7.8 Hz , each $1 \mathrm{H}, 5^{\prime}-$ and $6^{\prime}-\mathrm{H}$), 6.98, 7.03 (each s, each $1 \mathrm{H}, 5-$ and $6-\mathrm{H}$), $8.76,8.98$ (each br. s, each $1 \mathrm{H}, \mathrm{NH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=22.5\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{CH}), 42.1(\mathrm{NMe})$, $55.7(\mathrm{OMe}), 55.8(\mathrm{OMe}), 56.1(\mathrm{OMe}), 56.2(\mathrm{OMe}), 63.3(\mathrm{NCH})$, $111.1(\mathrm{CH}), 111.1(\mathrm{CH}), 111.6(\mathrm{CH}), 113.5(\mathrm{CH}), 120.0(\mathrm{C}), 129.7$ (C), 132.0 (C), 147.2 (C), 148.5 (C), 149.4 (C), 149.7 (C) ppm. IR (Nujol): $\tilde{v}=3498,3434,1608,1586,1522 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)$ $=357$ (1.7) $[\mathrm{M}-\mathrm{HCl}]^{+}, 311$ (42.6), 193 (30.5), 178 (20.9), 151 (23.8), 327 (22.0), 126 (100). $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ (393.90): calcd. C 64.03, H 7.16, Cl 9.00, N 3.56; found C 64.90, H 7.26, Cl 8.74, N 3.49. Data for free amine 11: ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.98$ (m, $1 \mathrm{H}, 3-$ $\mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.32-2.54(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.73-3.2(\mathrm{~m}, 2 \mathrm{H}$, $4-\mathrm{H}), 3.14-3.2(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.63(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.87$, 3.88 (each s, each $3 \mathrm{H}, \mathrm{OMe}$), 3.89 (s, $6 \mathrm{H}, \mathrm{OMe}$), 6.66, 6.79 (each s , each $1 \mathrm{H}, 5$ - and $8-\mathrm{H}), 6.82-6.87\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-, 5^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right) \mathrm{ppm}$.

Carbonylation of 11 (Method B)

Preparation of cis-2,3,8,9-Tetramethoxy-5-methyl-4b,5,6,10b,11,12-hexahydrobenzo[c]phenanthridin-6-one (13): (Table 3, Entry 3). A solution of $11 \cdot \mathrm{HCl}(19.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, 20 mL) and water $(20 \mathrm{~mL})$ and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. A stirred suspension of the residue, $\mathrm{Pd}(\mathrm{OAc})_{2}(11.3 \mathrm{mg}, 100 \mathrm{~mol}-\%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 100 \mathrm{~mol}-\%)$ in toluene $(1 \mathrm{~mL})$ was heated at reflux under CO (1 atm) for 6.5 h . The mixture was filtered through MgSO_{4}, and the precipitate was washed with CHCl_{3}. The filtrate and washings were combined and concentrated, and the residue $(21.4 \mathrm{mg})$ was purified by preparative TLC on silica gel developed $(2 \times)$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=0.5$ gave 13 as colorless crystals ($16.4 \mathrm{mg}, 86 \%$), m.p. $186-188{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.93-2.04$ (m, $1 \mathrm{H}, 11-\mathrm{H}$), 2.20-2.34 (m, 1 $\mathrm{H}, 11-\mathrm{H}), 2.78-2.96(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}), 3.04$ (s, $3 \mathrm{H}, \mathrm{NMe}$), 3.10-3.20 (m, $1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.94(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 4.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H})$, 6.68 (s, $1 \mathrm{H}, 4-\mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=24.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{CH}), 37.7$ $\left(\mathrm{NCH}_{3}\right), 55.7(\mathrm{OMe}), 56.0(3 \mathrm{OMe}), 59.2(\mathrm{NCH}), 108.0(\mathrm{CH}), 110.7$ $(\mathrm{CH}), 111.3(\mathrm{CH}), 112.7(\mathrm{CH}), 121.4(\mathrm{C}), 125.7(\mathrm{C}), 129.0(\mathrm{C})$, 134.8 (C), 147.0 (C), 148.9 (C), 151.9 (C), 164.7 (C=O) ppm. IR (Nujol): $\tilde{v}=1635,1603 \mathrm{~cm}^{-1}$. MS (EI): $\mathrm{m} / \mathrm{z}(\%)=383(57.6)[\mathrm{M}]^{+}$, 353 (23.7), 352 (100), 351 (25.0), 337 (16.7). $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}$ (383.44): calcd. C 68.91, H 6.57, N 3.65; found C 68.98, H 6.59, N 3.66.

Carbonylation of 11 (Method A)

Preparation of cis-2,3,7,8-Tetramethoxy-5-methyl-4b,5,6,10b,11,12-hexahydrobenzo[c]-phenanthridin-6-one (12): (Table 3, Entry 5). A solution of $\mathbf{1 1} \cdot \mathrm{HCl}(19.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, 20 mL) and water $(20 \mathrm{~mL})$ and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. A stirred
suspension of the residue, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.6 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(4.6 \mathrm{mg}, 50 \mathrm{~mol}-\%)$ in toluene (1 mL) containing pyridine ($0.198 \mathrm{mg}, 5 \mathrm{~mol}-\%$) was heated at reflux under CO gas ($1 \mathrm{~atm}, 1.5 \mathrm{~L}$) containing air (3 mL) for 24 h . The mixture was filtered through MgSO_{4}, and the precipitate was washed with CHCl_{3}. The filtrate was washed with water $(4 \times 20 \mathrm{~mL})$ and concentrated to give an oil ($19.2 \mathrm{mg}, \mathbf{1 1 / 1 2} / \mathbf{1 3}, 3: 5: 9$) that was subjected to preparative TLC on silica gel developed ($2 \times$) with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=0.4$ gave benzolactam $\mathbf{1 2}$ as colorless crystals $(2.3 \mathrm{mg}, 12 \%)$, m.p. ${ }^{185-190}{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (270 MHz): δ $=2.01(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{H}), 2.76-2.87(\mathrm{~m}, 2 \mathrm{H}, 12-$ H), $3.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.21(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}), 3.84(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{OMe}), 3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.63$ (d, $J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.97(\mathrm{~s}$, $2 \mathrm{H}, 9-\mathrm{and} 10-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.4 MHz): $\delta=24.1\left(\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2}\right), 33.6(\mathrm{CH}), 37.9\left(\mathrm{NCH}_{3}\right), 55.8(\mathrm{OMe}), 55.0(\mathrm{OMe}), 56.0$ (OMe), $56.1(\mathrm{OMe}), 59.2(\mathrm{NCH}), 61.5(\mathrm{OMe}), 111.4(\mathrm{CH}), 111.8$ $(\mathrm{CH}), 115.0(\mathrm{CH}), 120.9(\mathrm{CH}), 123.4(\mathrm{C}), 126.2(\mathrm{C}), 128.6(\mathrm{C})$, 134.3 (C), 147.1 (s), 148.8 (C), 150.0 (C), 152.6 (C), 163.0 (C=O) ppm. IR (Nujol): $\tilde{v}=1646 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=383$ (100) $[\mathrm{M}]^{+}, 352$ (88). $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}$ (383.44): calcd. C 68.91, H 6.57, N 3.65 ; found C $68.76, \mathrm{H} 6.51, \mathrm{~N} 3.57$. A band with $R_{\mathrm{f}}=0.5$ gave benzolactam 13 ($7.7 \mathrm{mg}, 40 \%$).

2,3,8,9-Tetramethoxy-5-methyl-5,6-dihydrobenzo [c|phenanthridin-6-one (14): A solution of DDQ (95% active, $59.3 \mathrm{mg}, 0.248 \mathrm{mmol}$) in dry benzene (1.4 mL) was added to a solution of lactam $\mathbf{1 3}$ $(30.7 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry benzene $(0.25 \mathrm{~mL})$. The mixture was heated at reflux for 2 h . The resulting precipitate was filtered, and the filtrate was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$, and the resulting solution was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, $2 \times 10 \mathrm{~mL}$) and brine $(10 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude crystalline product ($29.8 \mathrm{mg}, 98 \%$) was recrystallized from MeOH to give $\mathbf{1 4}$ as colorless crystals ($24.2 \mathrm{mg}, 80 \%$), m.p. $253-254^{\circ} \mathrm{C}$ (ref. ${ }^{[3 \mathrm{f}]}$ m.p. $220-$ $250^{\circ} \mathrm{C}$; ref. ${ }^{[26]}$ m.p. $245-247^{\circ} \mathrm{C}$).

4-(3-Acetoxy-4-methoxyphenyl)-4-oxobutyric Acid (15): To a stirred suspension of powdered succinic anhydride $(9.009 \mathrm{~g}, 90 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added powdered $\mathrm{AlCl}_{3}(24.001 \mathrm{~g}$, 180 mmol) over a period of 10 min . The mixture was stirred at room temp. for 12 h , and then 2-methoxyphenyl acetate $(9.966 \mathrm{~g}$, 60 mmol) was added. The mixture was vigorously stirred at $0-5^{\circ} \mathrm{C}$ for 5 h , and then ice $(50 \mathrm{~g})$ and $\mathrm{HCl}(2 \mathrm{~N}$ solution, 50 mL$)$ were added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60,30$, and 30 mL). The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue (19.307 g) was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give keto acid $\mathbf{1 5}$ as colorless crystals $(10.824 \mathrm{~g}$, 68%), m.p. $132-134^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=2.33$ (s, 3 H , $\mathrm{OAc}), 2.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 3.27(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-$ H), $3.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 7.01\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.69(\mathrm{~s}, J$ $\left.=2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.90\left(\mathrm{~d}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=1771,1699,1670,1610 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=20.5\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{OMe}), 111.6(\mathrm{CH})$, $122.8(\mathrm{CH}), 129.5(\mathrm{CH}), 139.5(\mathrm{C}), 155.3(\mathrm{C}), 168.8(\mathrm{C}), 178.5$ (C=O), $195.6(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. MS (EI): $m / z(\%)=266(3.2)[\mathrm{M}]^{+}, 249$ (0.8), 224 (32.2), 151 (100). $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$ (266.25): calcd. C $58.65, \mathrm{H}$ 5.30; found C 58.44, H 5.29.

4-(4-Methoxy-3-hydroxyphenyl)butyric Acid (16): A mixture of keto acid 15 ($1.019 \mathrm{~g}, 4.50 \mathrm{mmol}$) and $5 \% \mathrm{Pd}-\mathrm{C}(135.1 \mathrm{mg})$ in AcOH $(6 \mathrm{~mL})$ in an autoclave in an oil bath at $120^{\circ} \mathrm{C}$ was stirred under hydrogen $\left(9 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ for 12 h . The precipitate was removed by suction filtration through a pad of Celite. The filtrate was concentrated to give the acetate of $\mathbf{1 6}$ [4-(3-acetoxy-4-methoxyphenyl)butyric
acid] as a colorless oil (962 mg). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.93$ (quint. $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), $2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.36,2.59$ (each $\mathrm{t}, J=7.6 \mathrm{~Hz}$, each $2 \mathrm{H}, 4-\mathrm{and} 2-\mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.65(\mathrm{~d}$, $\left.J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.76\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.77$ (dd, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) \mathrm{ppm}$. The acetate of 16 was dissolved in $\mathrm{NaOH}(6 \mathrm{~N}$ solution, 10 mL), and the resulting solution was heated at reflux for 3 h . The mixture was then acidified with HCl (6 N solution, 11 mL), and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were combined, washed with water $(20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Crystallization of the residue (770 mg) from benzene gave acid $\mathbf{1 6}$ as colorless crystals $(654 \mathrm{mg}, 82 \%)$, m.p. $114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.93(\mathrm{~m}, 2$ $\mathrm{H}, 3-\mathrm{H}), 2.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $2-\mathrm{H}), 3.87$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 6.65 (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}$), $6.76\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.77\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=26.1\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right)$, $55.9(\mathrm{OMe}), 110.6(\mathrm{CH}), 114.6(\mathrm{CH}), 119.8(\mathrm{CH}), 134.4(\mathrm{C}), 144.8$ (C), 145.4 (C), 179.9 (C=O) ppm. IR (Nujol): $\tilde{v}=3434,1697,1588$, $1516 \mathrm{~cm}^{-1}$. MS (EI): $\mathrm{m} / z(\%)=210(48.0)[\mathrm{M}]^{+}, 150(7.4), 137(100)$. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ (210.23): calcd. C 62.85, H 6.71; found C 62.68 , H 6.75.

4-(3-Benzyloxy-4-methoxyphenyl)butyric Acid (17): A mixture of acid $\mathbf{1 6}(105 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 1 drop of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.) in MeOH $(3 \mathrm{~mL})$ was heated at reflux for 3 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The extracts were combined, washed with water $(3 \times 20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the methyl ester of $\mathbf{1 6}$ as a colorless oil (125 mg). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.91$ (quint. $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 2.31, 2.56 (each $\mathrm{t}, J=$ 7.6 Hz , each $2 \mathrm{H}, 4-\mathrm{H}$ and $2-\mathrm{H}$), $3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.86(\mathrm{~s}$, each 3 H), 5.56 (s, 1 H), 6.64 (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (br. $\mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The methyl ester of 16 was dissolved in DMF (5 mL) containing $\mathrm{K}_{2} \mathrm{CO}_{3}(154 \mathrm{mg}, 0.837 \mathrm{mmol})$ and benzyl bromide ($96 \mathrm{mg}, 0.837 \mathrm{mmol}$), and the mixture was heated at $60^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was cooled and diluted with water $(20 \mathrm{~mL})$, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with water (20 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude benzyl ether (149 mg) was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and a band with $R_{\mathrm{f}}=0.4$ gave the methyl ester of $\mathbf{1 7}$ as a colorless oil ($113 \mathrm{mg}, 76 \%$ in 2 steps). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.87$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 2.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 2.54(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}$), 3.66 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.86 (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.13 (s, 2 H , benzyl H), $6.72\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 6.72$ (br. s, 1 H , $\left.2^{\prime}-\mathrm{H}\right), 6.82\left(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.29-7.46(\mathrm{~m}, 5 \mathrm{H}$, phenyl H) ppm. IR (neat): $\tilde{v}=1735 \mathrm{~cm}^{-1}$. The methyl ester of $\mathbf{1 7}$ was heated at reflux in a mixture of THF $(1 \mathrm{~mL})$ and $\mathrm{NaOH}(6 \mathrm{~N}$ solution, 3 mL) under nitrogen for 1.5 h . The mixture was acidified with $\mathrm{HCl}(2 \mathrm{~N}$ solution, 6 mL$)$, and the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with water $(20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane to give acid $\mathbf{1 7}$ as colorless crystals ($82 \mathrm{mg}, 58 \%$ yield in 3 steps), m.p. $80-$ $82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.89$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\mathrm{H}), 2.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H})$, 3.87 (s, $3 \mathrm{H}, \mathrm{OMe}$), $5.14\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzyl H), $6.73\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, $6.75\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}\right.$, hiding $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.6^{\prime}-\mathrm{H}\right), 7.28-7.46\left(\mathrm{~m}, 5 \mathrm{H}\right.$, phenyl H) ppm. ${ }^{13} \mathrm{C}$ NMR $(67.8 \mathrm{MHz})$: $\delta=26.2\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{OMe}), 71.0\left(\mathrm{CH}_{2}\right)$, $111.9(\mathrm{CH}), 114.7(\mathrm{CH}), 121.0(\mathrm{CH}), 127.3(2 \mathrm{CH}), 127.7(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.4(2 \mathrm{CH}), 133.6$ (C), 137.1 (C), 147.9 (C), 148.0 (C), $179.7(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$. IR (Nujol): $\tilde{v}=1698,1602,1588$, $1519 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=300(5.6)[\mathrm{M}]^{+}, 210(18.6), 150$ (25.4), 138 (6.6), 91 (100). $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$ (300.14): calcd. C 71.98, H 6.71; found C 72.21 , H 6.81 .

6-Benzyloxy-7-methoxy-1-tetralone (18): A mixture of butanoic acid $\mathbf{1 7}(3.11 \mathrm{~g}, 10.3 \mathrm{mmol})$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(4.35 \mathrm{~g}, 20.7 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(20 \mathrm{~mL})$ was stirred at room temp. for 6 h and then poured into ice water $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined extracts were washed with water $(3 \times 30 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crystalline residue (3.477 g) was recrystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give α-tetralone $\mathbf{1 8}$ as colorless crystals $(2.04 \mathrm{~g}, 70 \%)$, m.p. $134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=2.09$ (quint, $J=6.3 \mathrm{~Hz}, 2$ $\mathrm{H}, 3-\mathrm{H}), 2.59(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 2.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, 2-H), 3.92 (s, $3 \mathrm{H}, \mathrm{OMe}$), $5.20(\mathrm{~s}, 2 \mathrm{H}$, benzylic H), $6.70(\mathrm{~s}, 1 \mathrm{H}, 5-$ $\mathrm{H}), 7.28-7.45\left(\mathrm{~m}, 5 \mathrm{H}\right.$, benzyl H), $7.54(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=23.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 56.0$ (OMe), $70.6\left(\mathrm{CH}_{2}\right), 108.8(\mathrm{CH}), 112.0(\mathrm{CH}), 126.0(\mathrm{C}), 127.1(2$ CH), $128.0(\mathrm{CH}), 128.6(2 \mathrm{CH}), 128.2(\mathrm{CH}), 128.4(2 \mathrm{CH}), 133.6$ (C), 139.0 (C), 148.3 (C), 152.6 (C), 197.2 (C=O) ppm. IR (Nujol): $\tilde{v}=1666,1560,1541 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): m / z(\%)=282(15.3)[\mathrm{M}]^{+}, 91$ (100). $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ (282.33): calcd. C 76.57, H 6.43; found C 76.42, H 6.54.
2-(3,4-Dimethoxyphenyl)-6-benzyloxy-7-methoxy-1-tetralone (19): To a stirred suspension of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(30.2 \mathrm{mg}, 0.126 \mathrm{mmol})$, BINAP [2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, 78.5 mg , $0.126 \mathrm{mmol}]$, and $\mathrm{NaO} t \mathrm{Bu}(442 \mathrm{mg}, 4.6 \mathrm{mmol})$ in dry THF (14 mL) under argon were added 3,4-dimethoxyiodobenzene ${ }^{[40]}$ (1.85 mg , $7 \mathrm{mmol})$ and $\mathbf{1 8}(988 \mathrm{mg}, 3.5 \mathrm{mmol})$ in dry THF $(7 \mathrm{~mL})$. The mixture was heated at reflux for 20 h . The insoluble materials were removed by suction filtration, and the THF was evaporated. The residue was dissolved in water $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was washed with water (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue (2.45 g) was subjected to preparative TLC $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. A band with $R_{\mathrm{f}}=0.5$ afforded $\mathbf{1 9}$ as colorless crystals ($369 \mathrm{mg}, 25 \%$), m.p. $149-151^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$; ref. ${ }^{[12 \mathrm{f}]}$ m.p. $140^{\circ} \mathrm{C}$).

Friedel-Crafts-Type Cyclization of 20: A mixture of 20 (655 g , $1.5 \mathrm{mmol}, \mathrm{m}$. p. $118-119^{\circ} \mathrm{C}$, prepared by Bisagni's method ${ }^{[12 \mathrm{ff}]}$) and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(420 \mathrm{mg}, 3.0 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(11 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 20 min and then at room temp. for 1 h . The reaction mixture was poured into ice water $(10 \mathrm{~mL})$, and the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The extracts were washed with water $(3 \times 30 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crystalline residue (685 mg) was recrystallized from MeOH to give 19 as colorless crystals ($576 \mathrm{mg}, 92 \%$), m.p. $144-145^{\circ} \mathrm{C}$.
cis-6-Benzyloxy-2-(3,4-dimethoxyphenyl)-7-methoxy-1-(methyl-amino)-1,2,3,4-tetrahydronaphthalene (21): A dry CHCl_{3} solution (5 mL) containing MeNH_{2} (see below) was added to a solution of α-tetralone $19(92.1 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. [The MeNH_{2} was prepared from a solution of $40 \% \mathrm{MeNH}_{2} /$ water $(1.4 \mathrm{~mL}, 1.26 \mathrm{~g}, 39.6 \mathrm{mmol})$ and $\mathrm{NaOH}(1.6 \mathrm{~g}, 39.6 \mathrm{mmol})$ and was dried by passing it through a NaOH drying tube.] The resulting solution was added to a stirred solution of $\mathrm{TiCl}_{4}(0.027 \mathrm{~mL}$, $46.7 \mathrm{mg}, 0.242 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ at -5 to $0{ }^{\circ} \mathrm{C}$ for 20 min . After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , at room temp. for 30 min , and at reflux for 30 min , the precipitate was removed by suction filtration. The filtrate was concentrated, and the residue was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$. The solution was treated with NaBH_{4} ($22.6 \mathrm{mg}, 0.594 \mathrm{mmol}, 2.7$ equiv.) in three portions at room temp. for 1 h . After evaporation of the MeOH , the residue was treated with $\mathrm{HCl}(6 \mathrm{~N}$ solution, 10 mL$)$, and the mixture was stirred for 30 min and then basified with $\mathrm{NaOH}(6 \mathrm{~N}$ solution). The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were washed with water $(3 \times 15 \mathrm{~mL})$, dried with
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue (127.5 mg) was treated with $\mathrm{Et}_{2} \mathrm{O}$ containing HCl , and the resulting solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether to give the N-methylamine hydrochloride of $\mathbf{2 1}(\mathbf{2 1} \cdot \mathrm{HCl})$ as colorless crystals ($103.1 \mathrm{mg}, 99 \%$), m.p. $111-112{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=$ 1.97 (s, $3 \mathrm{H}, \mathrm{NMe}$), $2.15(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.71-2.80(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{and}$ $4-\mathrm{H}), 2.97$ (m, 1 H, 3-H), 3.31 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 3.87, 3.93 , 3.96 (each s, each $3 \mathrm{H}, \mathrm{OMe}), 4.27(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}$, benzylic H), $6.62\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.88,6.95$ (AB type, $J=8.1 \mathrm{~Hz}$, each $1 \mathrm{H}, 5^{\prime}-$ and $\left.6^{\prime}-\mathrm{H}\right), 6.96(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.29-$ $7.42(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=22.4\left(\mathrm{CH}_{2}\right), 28.3$ $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 42.0(\mathrm{NMe}), 55.8(\mathrm{OMe}), 56.0(\mathrm{OMe}), 56.2$ $(\mathrm{OMe}), 63.3(\mathrm{NCH}), 70.6\left(\mathrm{OCH}_{2}\right), 111.1(\mathrm{CH}), 111.5(\mathrm{CH}), 113.4$ $(\mathrm{CH}), 114.0(\mathrm{CH}), 120.0(\mathrm{CH}), 122.1(\mathrm{C}), 127.1(2 \mathrm{CH}),(\mathrm{CH})$, $127.8(\mathrm{CH}), 128.4(2 \mathrm{CH}), 129.6$ (C), 131.9 (C), 136.6 (C), 147.7 (C), 148.4 (C), 148.9 (C), 149.3 (C) ppm. IR (Nujol): $\tilde{v}=1589$, $1517 \mathrm{~cm}^{-1}$. MS (EI): $\mathrm{m} / \mathrm{z}(\%)=433(3.4)[\mathrm{M}-\mathrm{HCl}]^{+} 402(29.3), 311$ (100), 178 (14.4), 151 (22.3), 145 (21.5), 91 (27.8). $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4} \cdot \mathrm{HCl}$ (470.00): calcd. C 69.00 , H 6.86 , Cl 7.54 , N 2.98 ; found C 68.80 , H 6.73, Cl 7.31, N 2.92. Data for free amine 21: Colorless crystals, m.p. $136-139^{\circ} \mathrm{C}(\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta=1.91-2.00(\mathrm{~m}$, $1 \mathrm{H}, 4-\mathrm{H}), 2.23$ (s, $3 \mathrm{H}, \mathrm{NMe}$), 2.34-2.47 (m, $1 \mathrm{H}, 4-\mathrm{H}), 2.77-2.95$ (m, 2 H, 3-H), $3.15(\mathrm{dt}, J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.61(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.85, 3.88 and 3.89 (each s, each $3 \mathrm{H}, \mathrm{OMe}$), 5.14 (s, 2 H , benzylic H), $6.70(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 6.77-6.84(\mathrm{~m}, 4 \mathrm{H}, 8-$, $2^{\prime}-$, $5^{\prime}-$, and $\left.6^{\prime}-\mathrm{H}\right), 7.27-7.47$ (m, 5 H , benzyl H) ppm. IR (Nujol): $\tilde{v}=1605,1587,1515 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)=433(3.3)[\mathrm{M}]^{+}, 403$ (11.3), 311 (100), 91 (61.5). $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4}$ (433.54): calcd. C 74.80, H 7.21, N 3.23; found C 74.61, H 7.25, N 3.24.

Carbonylation of 21 (Method B)

Preparation of cis-2-Benzyloxy-3,8,9-trimethoxy-5-methyl-4a,5,6,10b,11,12-hexahydrobenzo [c]phenanthridin-6-one (23)

Entry 3 in Table 4: $\mathbf{2 1} \cdot \mathrm{HCl}(13.2 \mathrm{mg}, 0.028 \mathrm{mmol})$ in CHCl_{3} $(20 \mathrm{~mL})$ was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, $2 \times 20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. A stirred suspension of the residue, $\mathrm{Pd}(\mathrm{OAc})_{2}(6.4 \mathrm{mg}$, $100 \mathrm{~mol}-\%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(5.2 \mathrm{mg}, 100 \mathrm{~mol}-\%$.) in toluene (1 mL) was heated at reflux under $\mathrm{CO}(1 \mathrm{~atm})$ for 3 h . The mixture was filtered through MgSO_{4}, and the precipitate was washed with $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The filtrate and washings were combined and concentrated to give a residue (9.1 mg). An analytical sample was purified by preparative TLC on silica gel developed with $3 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Upon crystallization from MeOH , a band with $R_{\mathrm{f}}=0.5$ gave lactam 23 as colorless crystals ($6.8 \mathrm{mg}, 53 \%$), m.p. 167$168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta=1.94(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H})$, $2.23(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 2.74-2.90(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe})$, 3.15 (dt, $J=10.0,3.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}$), 3.86, 3.92, 3.93 (each s , each 3 H), $4.69(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}$, benzylic H), 6.65, 6.69, 6.71 (each s, each $1 \mathrm{H}, 1-, 4-$, and $10-\mathrm{H}$), 7.29-7.45 (m, 5 H , benzyl H), $7.59(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (67.8 MHz): $\delta=24.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{CH}), 37.7\left(\mathrm{NCH}_{3}\right), 56.0(\mathrm{OMe})$, $56.2(3 \mathrm{OMe}), 59.3(\mathrm{NCH}), 70.8\left(\mathrm{OCH}_{2}\right), 108.1(\mathrm{CH}), 110.7(\mathrm{CH})$, $113.4(\mathrm{CH}), 113.9(\mathrm{CH}), 121.4(\mathrm{C}), 126.3(\mathrm{C}), 127.3(2 \mathrm{CH}), 127.8$ $(\mathrm{CH}), 128.5(2 \mathrm{CH}), 129.0(\mathrm{C}), 134.9$ (C), 136.8 (C), 147.6 (C), 147.9 (C), 158.2 (C), 151.9 (C), 164.7 (C=O) ppm. IR (Nujol): $\tilde{v}=$ 1647, $16001515,1506 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=459(43.3)[\mathrm{M}]^{+}$, 368 (72.6), 337 (44.6), 232 (13.2), 91 (100). $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5}$ (459.53): calcd. C 73.18, H 6.36, N 3.05; found C 73.40, H 6.23, N 2.97.
Entry 1 in Table 4: A stirred mixture of $21(43.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(22.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was heated at reflux in an atmosphere of CO for 3 h . To the cooled reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}$ solution, 10 mL$)$. The mixture was
stirred for 30 min , and the resultant precipitate was removed by suction filtration. The filtrate was diluted with water (50 mL), and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with water (50 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue (34 mg) was subjected to preparative TLC on silica gel $\left(4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Upon crystallization from MeOH , a band with $R_{\mathrm{f}}=0.8$ gave lactam $23(17.3 \mathrm{mg}$, 27%), m.p. $167-168{ }^{\circ} \mathrm{C}$.
Entry 2 in Table 4: Similarly, a stirred mixture of $\mathbf{2 1} \cdot \mathrm{HCl}(23.5 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 100 \mathrm{~mol}-\%)$ in toluene $(1 \mathrm{~mL})$ was heated at reflux in an atmosphere of CO for 3 h . Workup and crystallization from MeOH afforded 23 ($16.3 \mathrm{mg}, 71 \%$), m.p. $167-$ $168^{\circ} \mathrm{C}(\mathrm{MeOH})$.

Carbonylation of 21 (Method A)

Preparation of cis-2-Benzyloxy-3,7,8-trimethoxy-4-methyl-4b,5,6,10b,11,12-hexahydrobenzo[c|phenanthridin-6-one (22)
Entry 5 in Table 4: Freshly prepared amine 21 (21.7 mg , $0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.6 \mathrm{mg}, 5 \mathrm{~mol}-\%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(4.6 \mathrm{mg}$, $50 \mathrm{~mol}-\%$) in DMSO (1 mL) was heated to $120^{\circ} \mathrm{C}$ under CO ($1 \mathrm{~atm}, 1.5 \mathrm{~mL}$) containing air $(3 \mathrm{~mL})$ for 24 h . The mixture was filtered through powdered MgSO_{4}, and the filtrate was washed with water $(4 \times 20 \mathrm{~mL})$ and concentrated to give a brown oil ($23 \mathrm{mg}, \mathbf{2 2} /$ 23, 3:10), which was subjected to preparative silica gel TLC developed $(2 \times)$ with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A band with $R_{\mathrm{f}}=0.4$ gave 22 as a colorless oil $(2.8 \mathrm{mg}, 12 \%)$. ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}): \delta=2.01(\mathrm{~m}$, $1 \mathrm{H}, 11-\mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 2.77(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H})$, 3.11 (s, $3 \mathrm{H}, \mathrm{NMe}$), 3.18 (m, $1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}$), 3.84, 3.85, 3.96 (each s, each $3 \mathrm{H}, \mathrm{OMe}$), $4.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{~b}-\mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}$, benzylic H), 6.59, 6.69 (each s, each $1 \mathrm{H}, 1-$ and $4-\mathrm{H}$), 6.95 ($\mathrm{s}, 2 \mathrm{H}$, 9- and $10-\mathrm{H}$), $7.30-7.44(\mathrm{~m}, 5 \mathrm{H}$, benzyl H) ppm. IR (Nujol): $\tilde{\mathrm{v}}=$ 1648, 1514, $1252 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%)=459$ (38.7) $[\mathrm{M}]^{+}, 368$ (49.9), 337 (21.6) 320 (13.4), 91 (100). HRMS (EI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5} 459.2045$; found 459.2055. A band with $R_{\mathrm{f}}=0.6$ gave 23 as colorless crystals ($6.2 \mathrm{mg}, 27 \%$), m.p. $167-168^{\circ} \mathrm{C}(\mathrm{MeOH})$.
Entry 6 in Table 4: A similar catalytic carbonylation in a $1: 1$ mixture of toluene and DMSO afforded a mixture of 21, 22, and 23 in 1:4:11 ratio. A band with $R_{\mathrm{f}}=0.6$ gave 23 as colorless crystals ($10.4 \mathrm{mg}, 45 \%$), m.p. $167-168^{\circ} \mathrm{C}(\mathrm{MeOH})$.
2-Benzyloxy-3,8,9-trimethoxy-5-methyl-5,6-dihydrobenzo[c]phen-anthridin-6-one (24): A mixture of lactam 23 ($49.2 \mathrm{mg}, 0.107 \mathrm{mmol}$) and DDQ $(98 \%$ active, $77.6 \mathrm{mg}, 0.332 \mathrm{mmol})$ in dry benzene $(11 \mathrm{~mL})$ was heated at reflux for 2 h . The resulting precipitate was filtered, and the filtrate was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$, and the resulting solution was washed with $\mathrm{NaOH}(2 \mathrm{~N}$ solution, $2 \times 15 \mathrm{~mL}$) and brine $(10 \mathrm{~mL})$ and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated. Crystallization of the residue from MeOH afforded benzolactam 24 as colorless crystals ($37.7 \mathrm{mg}, 77 \%$), m.p. $227-229^{\circ} \mathrm{C}$ (ref. ${ }^{[4 \mathrm{a}]} \mathrm{m} . \mathrm{p} .219-221^{\circ} \mathrm{C}$; ref. ${ }^{[12 e]}$ m.p. $227-229^{\circ} \mathrm{C}$).
Supporting Information (see footnote on the first page of this article): Copies of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new and related compounds.

Acknowledgments

We thank the Akiyama Foundation for its generous financial support and N. E. ChemCat. Co. Ltd. for the generous donation of palladium catalysts.
[1] a) K. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem.

Soc. 2004, 126, 14342-14343; b) K. Orito, M. Miyazawa, T. Nakamura, A. Horibata, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, T. Yamazaki, M. Tokuda, J. Org. Chem. 2006, 71, 5951-5958.
[2] For reviews, see: a) M. Suffness, G. A. Cordell in The Alkaloids (Ed.: A. Brossi), Academic Press, Inc., Orlando, 1985, vol. 25, pp. 178-187; b) V. Simánek in The Alkaloids (Ed.: A. Brossi), Academic Press, Inc., Orlando, 1985, vol. 26, pp. 185-240; c) J. Dostäl, M. Potäcek, Collect. Czech. Chem. Commun. 1990, 55, 2840-2873; d) S. P. Mackay, O. Meth-Cohn, R. D. Waich in Advances in Heterocyclic Chemistry, Academic Press, New York, 1997, vol. 67, pp. 345-389; e) T. Ishikawa, H. Ishii, Heterocycles 1999, 50, 627-639.
[3] For selected articles (1998-2005) on the syntheses of benzo[c]phenanthridine alkaloids and related compounds, see: a) T. Nakanishi, M. Suzuki, J. Nat. Prod. 1998, 61, 1263-1267; b) T. Harayama, K. Sibaike, Heterocycles 1998, 191-195; c) G. R. Geen, I. S. Mann, M. V. Mullane, A. Mckillop, Tetrahedron 1998, 54, 9875-9894; d) W.-J. Cho, M.-J. Park, T. Imanishi, B.H. Chung, Chem. Pharm. Bull. 1999, 47, 900-902; e) T. Nakanishi, M. Suzuki, Org. Lett. 1999, 1, 985-988; f) M. Treus, J. C. Estévez, L. Castedo, R. J. Estévez, Tetrahedron Lett. 2000, 41, 6351-6353; g) T. Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe, Y. Takeuchi, Synthesis 2001, 444 450; h) T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, Y. Akiyama, H. Abe, Y. Takeuchi, J. Chem. Soc. Perkin Trans. 1 2001, $523-528$; i) I. Moreno, I. Tellitu, J. Etayo, R. SanMartín, E. Domínguez, Tetrahedron 2001, 57, 5403-5411; j) T. Harayama, Y. Akiyama, Y. Nakano, K. Sibaike, H. Akamatsu, A. Hori, H. Abe, Y. Takeuchi, Synthesis 2002, 237-241; k) T. Harayama, A. Hori, Y. Nakano, H. Abe, Y. Takeuchi, Heterocycles 2002, 58, 159-164; 1) M. Treus, J. C. Estévez, L. Castedo, R. J. Estévez, Tetrahedron Lett. 2002, 43, 5323-5325; m) T. Harayama, T. Sato, Y. Nakano, H. Abe, Y. Takeuchi, Heterocycles 2003, 59, 293-301; n) T. Watanabe, Y. Ohashi, R. Yoshino, N. Komano, M. Eguchi, S. Maruyama, T. Ishikawa, Org. Biomol. Chem. 2003, 1, 3024-3032; o) T. N. Le, S. G. Gang, W.-J. Cho, Tetrahedron Lett. 2004, 45, 2763-2766; T. N. Le, S. G. Gang, W.-J. Cho, J. Org. Chem. 2004, 69, 2768-2772; p) T. Harayama, Heterocycles 2005, 65, 697-713; q) I. Kock, B. Clement, Synthesis 2005, 1052-1054.
[4] For selected articles (2006-2011) on the syntheses of benzo[c]phenanthridine alkaloids and related compounds, see: a) T. N. Le, W.-J. Cho, Chem. Pharm. Bull. 2006, 54, 476-480; b) T. Harayama, Yakugaku Zasshi 2006, 126, 543-564; c) Y. Luo, Y. Mei, J. Zhang, W. Lu, J. Tang, Tetrahedron 2006, 62, 91319134; d) J. Styskala, P. Canker, M. Scoural, I. Hlavac, P. Hradil, J. Vicar, V. Simanek, Heterocycles 2007, 73, 769-775; e) X.-G. Cui, Q.-J. Zhao, Q.-L. Chen, L. Xu, Y.-S. Song, D.-F. Xu, Helv. Chim. Acta 2008, 91, 155-158; f) P. H. Bernardo, K.-F. Wan, T. Sivaraman, J. Xu, F. K. Moore, A. W. Hung, H. Y. Mok, V. Yu, C. L. L. Chai, J. Med. Chem. 2008, 51, 6699-6710; g) P. Ramani, G. Fontana, Tetrahedron Lett. 2008, 49, 5262-5264; h) K. Kohno, S. Azuma, T. Choshi, J. Nobuhiro, S. Hibino, Tetrahedron Lett. 2009, 50, 590-592; i) T. Enomoto, A. L. Girad, Y. Yasui, Y. Takemoto, J. Org. Chem. 2009, 74, 9158-9164; j) R. P. Korivi, C. H. Cheng, Chem. Eur. J. 2010, 16, 282-287; k) H. Abe, N. Kobayashi, Y. Takeuchi, T. Harayama, Heterocycles 2010, 80, 873-877; 1) H. Fuchino, M. Kawano, K. MoriYasumoto, S. Sekita, M. Satake, T. Ishikawa, F. Kikuchi, N. Kawahara, Chem. Pharm. Bull. 2010, 58, 1047-1050; m) G. Maestri, M.-H. Larraufie, E. Derat, C. Ollivier, L. Fensterbank, L. Lacôte, M. Malacria, Org. Lett. 2010, 12, 5692-5695; n) M. Blanchot, D. A. Candito, F. Larnaud, M. Lautens, Org. Lett. 2011, 13, 1486-1489; o) Y. Ishihara, S. Azumi, T. Choshi, K. Kohno, K. Ono, H. Tsutsumi, T. Ishizu, S. Hibino, Tetrahedron 2011, 67, 1320-1333.
[5] a) W. M. Mesmer, M. Tin-Wa, H. H. S. Fong, C. Bevelle, N. R. Farnsworth, D. J. Abraham, J. Trojánek, J. Pharm. Sci. 1972, 61, 1858-1859; b) M. Tin-Wa, C. L. Bell, C. Bevelle, H. H. S.

Fong, N. R. Farnsworth, J. Pharm. Sci. 1974, 63, 1476-1477; c) R. K.-Y. Zee-Cheng, C. C. Cheng, J. Med. Chem. 1975, 18, 66-71; d) F. R. Stermitz, J. P. Gillespie, L. G. Amoros, R. Romero, T. A. Stermitz, K. A. Larson, S. Earl, J. E. Ogg, J. Med. Chem. 1975, 18, 708-713; e) H. Ishii, Y. Ishikawa, E. Kawanabe, M. Ishikawa, T. Ishikawa, K. Kuretani, M. Inamata, A. Hoshi, Chem. Pharm. Bull. 1985, 33, 4139-4151; f) T. Nakanishi, M. Suzuki, A. Saimoto, T. Kabasawa, J. Nat. Prod. 1999, 62, $864-867$; g) T. Nakanishi, A. Masuda, M. Suwa, Y. Akiyama, N. Hoshino-Abe, M. Suzuki, Bioorg. Med. Chem. Lett. 2000, 10, 2321-2323.
[6] a) R. K.-Y. Zee-Cheng, C. C. Cheng, J. Med. Chem. 1975, 18, 66-71; b) L. Comoe, P. Jeannesson, C. Trentesaux, B. Desoize, J.-C. Jardillier, Leukemia Res. 1989, 11, 445-451.
[7] J. Chen, Y. Chang, C. Teng, W. Lin, Y. Chen, I. Chen, Planta Med. 2001, 67, 423-427.
[8] G. G. A. Cordell, N. R. Fanthworth, Heterocycles 1976, 4, $393-$ 427.
[9] a) G. T. Tan, J. M. Pezzuto, A. D. Kinghorn, J. Nat. Prod. 1991, 54, 143-154; b) M. A. Rashid, K. R. Gustafson, Y. Kashman, J. H. Cardellina, J. B. MacMahon, M. R. Boyd, Nat. Prod. Lett. 1995, 6, 153-156; c) T. Schmeller, B. Latz-Brüning, M. Wink, Phytochemistry 1997, 44, 257-266; d) Y.-C. Chang, P.-W. Hsieh, F.-R. Chang, R. R. Wu, C.-C. Liaw, K.-H. Lee, Y.-C. Wu, Planta Med. 2003, 69, 148-152; e) T. Ishikawa, Med. Res. Rev. 2000, 21, 61-72.
[10] J. M. Herbert, J. M. Augereau, J. Gleye, J. P. Maffrand, Biochem. Biophys. Res. Commun. 1990, 172, 993-999.
[11] a) S. D. Fang, L. K. Wang, S. M. Hecht, J. Org. Chem. 1993, 58, 5025-5027; b) Y. L. Janin, A. Croisy, J.-F. Riou, E. Bisagni, J. Med. Chem. 1993, 36, 3686-3692; c) D. Makhey, B. Gatto, C. Yu, A. Liu, E. J. LaVoie, Bioorg. Med. Chem. 1996, 4, 781791 ; d) F. Fleury, A. Sukhanova, A. Ianoul, J. Devy, I. Kudelina, O. Duval, A. J. P. Alix, J. C. Jardillier, I. J. Nabiev, J. Biol. Chem. 2000, 275, 3501-3509; e) M. A. Lynch, O. Duval, A. Sukhanova, J. Devy, S. P. Mackay, R. D. Waigh, I. Nabiev, Bioorg. Med. Chem. Lett. 2001, 11, 2643-2646.
[12] For synthesis of benzo[c]phenanthridines through their 6-oxo derivatives, see: a) S. V. Kessar, G. Singh, P. Balakrishnan, Tetrahedron Lett. 1974, 15, 2269-2270; b) H. Ishii, E. Ueda, K. Nakajima, T. Ishida, T. Ishikawa, E. Kawanabe, K. Harada, I. Ninomiya, T. Naito, T. Kiguchi, Chem. Pharm. Bull. 1978, 26, 864-873; c) W. J. Begley, J. Grimshaw, J. Chem. Soc. Perkin Trans. 1 1977, 2324-2328; d) M. Hanaoka, T. Motonishi, C. Mukai, J. Chem. Soc., Chem. Commun. 1984, 718-719; e) M. Hanaoka, H. Yamagishi, M. Marutani, C. Mukai, Tetrahedron Lett. 1984, 25, 5169-5172; M. Hanaoka, H. Yamagishi, M. Marutani, C. Mukai, Chem. Pharm. Bull. 1987, 35, 2348-2354; f) Y. L. Janin, E. Bisagni, Tetrahedron 1993, 49, 10305-10316.
[13] H. Ishii, E. Kawanabe, K. Harada, T. Deuchi, E. Ueda, T. Watanabe, Y. Ichikawa, M. Sakamoto, T. Ishida, T. Takahashi, Chem. Pharm. Bull. 1983, 31, 3039-3055.
[14] H. Ishii, I.-S. Chen, S. Ueki, M. Araike, M. Ishikawa, Chem. Pharm. Bull. 1987, 38, 2717-2725.
[15] T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer, G. Wilkinson, J. Chem. Soc. 1965, 3632-3640.
[16] S. R. Fix, J. L. Brice, S. S. Stahl, Angew. Chem. 2002, 114, 172; Angew. Chem. Int. Ed. 2002, 41, 164-166.
[17] S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996, 61, 7240-7241.
[18] a) M. Shammna, H. H. Tomlinson, J. Org. Chem. 1978, 43, 2852-2855; b) J. Smidrkal, Collect. Czech. Chem. Commun. 1984, 49, 1412-1420; c) H. Ishii, T. Ishikawa, Y. Ichikawa, M. Sakamoto, M. Ishikawa, T. Takahashi, Chem. Pharm. Bull. 1984, 32, 2984-2994.
[19] a) K. W. Gopinath, T. R. Govindachari, N. Viswanathan, Tetrahedron 1961, 14, 322-325; b) H. R. Arthur, W. H. Hui, Y. L. Ng, J. Chem. Soc. 1959, 4007-4009; c) I. Ninomiya, T. Naito, H. Ishii, T. Ishida, M. Ueda, K. Harada, J. Chem. Soc. Perkin Trans. 1 1975, 762-764.
[20] In connection with these carbonylative cyclizations, it should be added that the Bischler-Napieralski cyclization is useful for the preparation of $\mathbf{6}$. The treatment of $\mathbf{2 a}$ with $\mathrm{Tf}_{2} \mathrm{O}$ and 4DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to room temperature for 24 h , see: (M. G. Banwell, B. D. Bissett, S. Busato, C. J. Vowden, D. C. R. Hockless, J. W. Holman, R. W. Read, A. W. Wu, J. Chem. Soc., Chem. Comтun. 1995, 2551-2553), afforded 6 in 92% yield, and an alternative treatment of $\mathbf{2 a}$ with $\mathrm{P}_{2} \mathrm{O}_{5}$ in refluxing POCl_{3} for 2 h , see: (X. Wang, J. Tan, K. Grozinger, Tetrahedron Lett. 1998, 39, 6609-6612), gave $\mathbf{6}$ in 65% yield. The classical conditions using POCl_{3} in refluxing toluene for 2 h , see (W. M. Whaley, T. R. Govindachari in Organic Reactions (Ed.: Roger Adams), John Wiley \& Sons, Inc., London, 1951, vol. 6, pp. 74-155), could not start the cyclization at all. Tetralin carbamate 1a failed to give any lactams like 4 under those conditions, probably because the N-acylamino group at the benzyl position was lost under the acidic and thermal conditions.
[21] M. M. Hashem, K. D. Berlin, W. Chesnut, N. N. Durham, J. Med. Chem. 1976, 19, 229-243.
[22] J. T. Pinhey, B. A. Rowe, Aust. J. Chem. 1980, 33, 113-120.
[23] a) H. Suginome, K. Orito, K. Yorita, M. Ishikawa, N. Shimoyama, T. Sasaki, J. Org. Chem. 1995, 60, 3052-3064; b) K. Orito, T. Sasaki, H. Suginome, J. Org. Chem. 1995, 60, 6208-6210.
[24] A. P. Krapdho, Synthesis 1982, 893-914.
[25] F. Elsinger in Organic Syntheses (Ed.: H. E. Baumgarten), John Wiley \& Sons, Inc., 1973, coll. vol. 5, pp. 76-80.
[26] R. Beugelmans, M. Bois-Choussy, Tetrahedron 1992, 48, 82858294.
[27] M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108-11109.
[28] T. Ishikawa, T. Watanabe, Y. Oku, N. Fukazawa, H. Ishii in 70th Symposium on Organic Synthesis Japan, Tokyo, 1996, Nov. 6-8, Abstracts 2-10, pp. 127-130.
[29] a) J. M. Tedder, Chem. Rev. 1955, 55, 787-827; b) R. Ferrier, J. M. Tedder, J. Chem. Soc. 1957, 1435-1437.
[30] J. Gillespie, L. G. Amoros, F. R. Stermitz, J. Am. Chem. Soc. 1974, 96, 3239-4241.
[31] H. Ishii, I.-S. Chen, T. Ishikawa, Chem. Pharm. Bull. 1983, 31, 2963-2966.
[32] J. Smidrkal, Collect. Czech. Chem. Commun. 1984, 49, 14121420.
[33] M. Shamma, H. H. Tomlinson, J. Org. Chem. 1978, 43, 28522855.
[34] J. Slavīk, L. Slavíková, Collect. Czech. Chem. Commun. 1960, 25, 1667-1675.
[35] C. Tani, N. Takano, Yakugaku Zasshi 1962, 82, 755-759.
[36] V. B. Pandey, A. B. Ray, B. Dasgupta, Phytochemistry 1979, 18, 695-696.
[37] M. M. Hashem, K. D. Berlin, W. Chesnut, N. N. Durham, J. Med. Chem. 1976, 19, 229-239.
[38] J. L. Vicario, D. Badía, E. Dominguez, L. Carrillo, Tetrahedron: Asymmetry 2000, 11, 1227-1237.
[39] T. Richardson, R. Robinson, E. Seijo, J. Chem. Soc. 1937, 835841.
[40] K. Orito, T. Hatakeyama, M. Takeo, H. Suginome, Synthesis 1995, 1273-1277.

Received: March 5, 2012 Published Online:

Aromatic Carbonylation

A study of the syntheses of benzo[c]phenanthridine alkaloids based on a $\mathrm{Pd}(\mathrm{OAc})_{2}$ induced direct aromatic carbonylation was carried out, starting with preparing the substrates for the carbonylation, exploring
site selectivities for the cyclopalladation, and investigating efficient additives and solvents. Oxysanguinarine, oxyavicine, O methyloxyfagaronine, and O-benzyloxyfagaronine were obtained.
E. Kumazawa, T. Tokuhashi, A. Horibata,
N. Kurono, H. Senboku, M. Tokuda,
T. Ohkuma, K. Orito*

1-13

Synthesis of Benzo[c]phenanthridine Alkaloids by $\mathrm{Pd}(\mathrm{OAc})_{2}$-Induced Direct Aromatic Carbonylation

Keywords: Alkaloids / Synthetic methods / Nitrogen heterocycles / Carbonylation / Palladium

[^0]: [a] Laboratory of Organic Synthesis,
 Division of Molecular Chemistry,
 Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
 Fax: +81-11-761-5383
 E-mail: orito@eng.hokudai.ac.jp
 [b] Laboratory of Organic Synthesis,
 Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
 [c] Laboratory of Organic Reaction, Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
 \square Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200262.

[^1]: [a] Mol- $\%$ relative to 1. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yield.

