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Abstract 
The amine functionalized cubic mesoporous silica nanoparticles  (cSiO2-NH2) were successfully synthesized through biphasic 
stratification approach. The synthesized material was characterised by various spectroscopic and physicochemical techniques; 
such as, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron 
microscope and Brunauer–Emmett–Teller surface area. The mesoporous cubic silica nanomaterial  (SiO2-NH2) was utilized 
as recyclable catalyst for liquid phase Knoevenagel condensation reaction. The catalyst could be easily recovered by simple 
methods like, filtration and centrifugation and be reused for multiple catalytic cycles without any noticeable effect on its 
activity.
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1 Introduction

Industrialisation and globalization has brought various 
challenges that include large scale production of chemical 
compounds for variety of purposes. In order to meet the 
ever increasing requirement, scientific community needs 

to develop clean, sustainable and economically efficient 
methods. Globally, most of chemical processes and more 
than half of the chemical products are produced by catalysis 
based synthesis. Homogenous catalysts have been widely 
utilized for a range of synthetic reactions. Although these are 
more efficient than their heterogeneous counterparts but do 
have some limitations. The major drawback associated with 
heterogeneous catalysts is tedious task of separation from 
reaction mixtures which results in contamination of products 
[1]. Homogenous catalysts could not be reused for further 
catalytic cycles and hence these are not considered economi-
cally viable [1]. In order to overcome the limitations associ-
ated with homogenous catalysts, heterogenization happens 
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to be the most viable alternative. Although heterogeneous 
catalysts have less active sites as compared to homogenous 
catalysts but these can be easily recovered from the reaction 
mixtures and then be reused for multiple catalytic cycles, 
which makes these environment friendly and economically 
more efficient. Various heterogeneous catalytic systems have 
been developed and reported in past years [2, 3], still there 
are problems such as, high catalyst loading, ambient reac-
tion conditions etc. that need to be addressed. Therefore, 
the required demands could be furnished by utilizing prop-
erties of both homogenous and heterogonous catalysts by 
heterogenization of homogenous catalyst. In the last couple 
of years’ scientific community has designed and developed 
various heterogeneous catalytic systems by utilizing various 
solid support materials such as  Fe3O4, silica based materials 
and nano carbon based materials [4–11] and utilized these 
in various fields like catalysis, energy production, sensing 
etc. [12–17]. Various silica based materials with different 
morphologies such as spherical, cubic, tubular, fibrous, 
mesoporous, dendritic, 2D sheets have been utilized to het-
erogenize the homogenous catalysts. These materials have 
high specific surface area and are thermally and chemically 
stable and consist of surface OH groups hence could be eas-
ily functionalized with silylating agents [18, 19]. Over the 
period of time various reports has been published where dif-
ferent type of organic moieties have been immobilized over 
the surface of silica through covalent bond and utilized as 
catalyst for various organic transformations. The silica based 
material can be easily fished out from reaction mixture by 
simple centrifugation and filtration and could be utilized in 
further catalytic cycles.

Silica based materials having spherical structure with 
either mesoporous or dendritic morphology have been 
extensively utilized for various applications such as sensing, 
energy production and storage, catalysis, environment reme-
diation, pharmaceutical industry, drug delivery etc [20–30].

Cubic mesoporous silica materials have provided an alter-
native and therefore these materials have been extensively 
utilised for various applications as sensors, catalysis and in 
drug delivery [31–34]. The cubic mesoporous silica have 
large surface area, uniform pore size and chances of pore 
blocking are minimum as compared to the spherical den-
dritic silica particles. These cubic silica particles could be 
an alternate to their spherical counter parts for immobiliz-
ing various catalytic active sites to synthesize heterogene-
ous catalyst. In the last few years some reports have been 
published where mesoporous cubic silica particles have been 
utilized for synthesizing heterogeneous catalysts [35]. Dif-
ferent types of basic functionalities were immobilized over 
the surface of silica nano spheres having different morpholo-
gies and utilised them for base catalysed reactions such as 
Knoevenagel’s reaction, Heck reaction, Hantzsch reaction, 
etc. [36–38]. In continuation of our efforts to design and 

develop nano structured material for catalysis, [39, 40] we 
have immobilized amine groups over the surface of porous 
cubic silica particle having uniform pores and then stud-
ied its catalytic properties in Knoevenagel’s condensation 
reaction. In recent years Knoevenagel’s reaction has drawn 
major attention of the researchers because of its industrial 
applications. Its intermediate are of great importance in vari-
ous biological [41], therapeutic and pharmacological prod-
ucts [39, 42]. Due to all these advantages of Knoevenagel’s 
reaction various reports have been published where homog-
enous as well as heterogeneous catalyst were used for this 
reaction. Among the heterogeneous catalysts silica based 
mesoporous and dendritic nano spheres were immobilized 
with basic functionalities to catalyse this reaction. Although 
the result was satisfactory but due to non-uniform pore size 
of spherical (mesoporous and dendritic) silica particle pore 
blocking affected their efficiency when utilized for multiple 
catalytic reactions. In view of the above base functional-
ized cubic silica particles with uniform pore size have been 
anticipated to be the suitable candidates for catalysing these 
kind of organic reactions. In this work we have utilized base 
functionalized cubic mesoporous silica particles. The cata-
lyst could be easily recycled by means of filtration and cen-
trifugation and could be utilized for multiple catalytic cycle 
without any noticeable loss in activity.

2  Experimental

2.1  Preparation of Mesoporous Cubic Silica 
Particles  (cSiO2)

The synthesis was carried out following the Stöber process 
[43]. In the typical synthesis (Scheme 1), 2 g of CTAB was 
taken in 300 mL distilled water. After dissolving CTAB, 
14 mL concentrated ammonia water was poured slowly into 
the CTAB solution, ammonia water added until the for-
mation of clear solution. A separate mixture of n-hexane 
(40 mL) and TEOS (10 mL) was added to the solution drop-
wise at magnetic stirrer at 35 °C. After some time (approxi-
mately 50 min) a homogenous milky solution appeared, the 
mixture was kept at stirrer (3000 rpm) for next 12 h. After 
that the product was collected and washed by ethanol and 
deionized water for 3–4 times then dried in vacuum oven at 
80 °C for 10 h. Finally, the product was calcined in furnace 
at 600 °C for 6 h. The white solid sample was collected after 
cooling.

2.2  Preparation of Amine Functionalised 
Mesoporous Cubic Silica Particles  (cSiO2‑NH2)

The synthesised  cSiO2 was functionalised with amine groups 
as depicted in Scheme 1. The synthesized mesoporous cubic 
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silica particles (200 mg) were mixed with 20 mL anhydrous 
toluene in 250 mL round bottom flask. The solution was 
sonicated for 30 min and kept on stirrer for another half hour. 
Then 0.300 mL of 3-aminopropyltriethoxysilane (APTES) 
was poured into the mixture. After that the reaction mixture 
was refluxed at 100 °C in nitrogen atmosphere for 15 h. The 
 NH2 functionalized silica was centrifuged and washed with 
water and ethanol. Finally, the product was dried overnight 
in oven at 80 °C.

2.3  Preparation of Knoevenagel Product 
by Utilising  cSiO2‑NH2 as Nanocatalyst

Knoevenagel condensation reaction was carried out using an 
aldehyde and an active methylene compound. In the typical 
procedure aldehyde (1 mmol) and active methylene com-
pound (1 mmol) were taken in a round shape flask contain-
ing 5 mL ethanol and  cSiO2-NH2 nanocatalyst (10 mg). The 
mixture was kept on a magnetic stirrer for appropriate time 
at room temperature. The reaction was monitored through 
thin layer chromatography (TLC). After the completion of 
the reaction, the catalyst was recovered through centrifuga-
tion. The product was purified after recrystallization in abso-
lute ethanol. The leaching of catalytic active moieties in the 
reaction mixture during catalysis was explored by filtration 
test. Typically, benzaldehyde and malononitrile were used 
as model substrate for filtration test. After the completion of 
half of the reaction, the catalyst was separated from reaction 
mixture through centrifugation and the reaction was allowed 
to continue without the catalyst to check whether it proceeds 
or not. Recovery of the catalyst was carried out using simple 
centrifugation method after the formation of product.

3  Characterization Techniques

Powder X-Ray diffraction of synthesised materials were 
recorded (using Bruker, D8 Discover, X-ray source Cu, 3 
KW) in 2θ range of 5°–60°, the scanning was performed 
at rate of 2°  min−1. Scanning electron microscope (SEM) 
analysis ware performed (using EVOS Zeiss scanning elec-
tron microscope) and images were recorded at different mag-
nifications. Similarly, Transmission Electron Microscope 
(TEM) was utilized for analysis of morphology and shape 
of synthesised material (using TALOS Thermo scientific). 
Fourier transform infrared (FT-IR) spectrum of synthesised 
material was recorded in the range of 400–4500  cm−1 (using 
Perkin Elmer Spectrum RXI-Mid IR spectrometer). The total 
surface area and pore dimensions were analysed using BET 
technique (Quantachrome Instrument ASI-CI-11). TGA 
(Thermogravimetric analysis) was performed to check the 
stability of synthesized material.

4  Results and Discussion

The amine functionalized mesoporous cubic silica particles 
 (cSiO2-NH2) were synthesized as depicted in Scheme 1.

Fourier transform infrared spectroscopy (FTIR) has 
been performed to study the covalent functionalization of 
amine groups over the surface of mesoporous cubic silica 
particles. In the FTIR spectra (Fig. 1A) of  cSiO2, the peaks 
appearing at 3375  cm−1 and 1085  cm−1 could be attributed 
to Si–OH groups and symmetric stretching vibrations of 
Si–O–Si bonds respectively. The peaks at 942  cm−1 and 
810  cm−1 could be assigned to Si–O–Si asymmetric stretch-
ing and C-Si stretching vibrations, respectively. From the 
FTIR spectra of  cSiO2, it was confirmed that large number 
of silanol groups are present over the surface of material and 
could act as linker to anchor catalytic active organic moie-
ties through covalent interaction. After functionalising  cSiO2 
with APTES, a new peak appeared at 2960  cm−1 and it could 
be attributed to the vibration of alkyl chain of APTES. The 
FTIR spectra of  cSiO2 functioned with APTES confirms that 
amine groups were successfully anchored over surface of 
mesoporous cubic silica particles. The amine group over the 
surface of silica particle was quantified through CHN analy-
sis of prepared material. In the CHN analysis of  cSiO2-NH2 
weight percent (wt%) of carbon, hydrogen, nitrogen was 
obtained to be 6.02, 2.13 and 4.25 respectively.

Powder X-ray diffraction (XRD) of  cSiO2-NH2 was 
recorded to examine the structure of synthesised material. 
In the XRD pattern of  cSiO2-NH2, a broad peak appeared 
between 15° to 35° that could be due to amorphous silica 
(Figure S1). No specific peak for amine group was observed 
in XRD patterns of  cSiO2-NH2. Small angle powder XRD 

Scheme 1  Synthesis of amine functionalised cubic mesoporous nan-
oparticles  (cSiO2-NH2)
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pattern of  cSiO2-NH2 was analysed in order to determine 
mesoporosity of the synthesised material (Figure S2). 
The reflection plane 2θ at 3° as shown in Figure S2 could 
clearly indicate the mesoporous structure of the synthesized 
material.

As reported earlier silica particles either silica nano-
sphere or cubes shows weight loss of physisorbed water 
below 150 °C and no weight loss was reported at elevated 
temperature above 150 °C [35, 39]. In the TG analysis of 
 cSiO2-NH2, the weight loss below 150 °C could be due to 
physisorbed water molecules (Fig. 2). The approximately 
20% weight loss after 200 °C could be due to the APTES 
molecules anchored over  cSiO2.

The morphology, size and shape of prepared material 
were analysed by using transmission electron microscopy 
(TEM) and scanning electron microscopy (SEM). The TEM 
images (Fig. 3D) of  cSiO2 could clearly confirm the synthe-
sis of uniformly dispersed mesoporous cubic silica particle. 
After the immobilization of amine group, no significant 
change in the shape of cubic silica particle was observed 
(Fig. 3E, F). It remains in well-defined cubic shape with-
out any aggregation. SEM analysis of prepared material 
further confirms the cubic morphology of the synthesised 
silica material, which is uniformly dispersed (Fig. 3A) and 
remains in cubic shape after anchoring it with organic moi-
eties. SEM images also revealed that after functionaliza-
tion with amine groups,  cSiO2 retains its cubic morphology 
without any aggregation (Fig. 3B, C). From TEM and SEM 
analysis of the prepared materials, the average particle size 
was found in the range of 100–150 nm.

In order to determine surface area, pore diameter and 
pore volume of the prepared material, BET surface area 

measurements experiments was performed. The  N2 adsorp-
tion–desorption experiment (Fig. 1B) of  cSiO2-NH2 showed 
type-IV curve indicating the mesoporous nature of prepared 
material. The BET surface area was found to be 685.63  m2/g 
and the average pore diameter and pore volume were found 
to 6.9 nm and 1.19  cm3/g respectively. The obtained results 
indicate that the synthesized  cSiO2-NH2 is highly porous 
material with high surface area and could be effectively uti-
lized for catalytic purpose where substrate molecules could 
easily interact with catalytically active moieties.

Fig. 1  A FTIR image of of  cSiO2 and  cSiO2-NH2; B BET adsorption–desorption isotherm of  cSiO2-NH2. (Inset) Pore size distribution of 
 cSiO2-NH2

Fig. 2  Thermogravimetric analysis of  cSiO2-NH2
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4.1  Catalytic Activity

The  cSiO2-NH2 has been assessed as solid base cata-
lyst in solvent phase Knoevenagel condensation reaction 
(Scheme 2). In this reaction, aldehyde was taken along with 
compounds bearing active methylene group under optimized 
conditions.

Initially, different reaction parameters were optimized 
through condensation of benzaldehyde and malononitrile as 

a sample reaction. Different type of solvent such as water, 
ethanol, DCM and THF were used to perform this reaction. 
The result obtained (Table 1) shows that maximum yield of 
the product was obtained when ethanol is used as solvent. 
Although a good result was obtained when water was used 
as solvent but at the elevated temperature as compared to 
ethanol.

Furthermore, both  cSiO2 and  cSiO2-NH2 were utilized 
for Knoevenegel reaction. It was observed that the reaction 
proceeds only with  cSiO2-NH2, which indicates that amine 
groups are necessary to catalyse this type of reaction. The 
amount of catalyst was also optimized and is presented in 
Table 2. Different amounts of catalyst i.e.  cSiO2-NH2 were 
utilized and it was observed that the maximum yield of prod-
uct was obtained when 10 mg of catalyst was used (Table 2, 
entry 2). After optimization of various reaction parameters, 
 cSiO2-NH2 was utilized as catalyst for Knoevenegel reac-
tion with different substrate of aldehyde and malononitrile 
(Table 3). Aldehyde having both electron and electron donat-
ing groups were utilized to check the efficiency of catalyst. 
In all the cases good to excellent yield of product was 
obtained. The excellent catalytic ability of catalyst could be 
due to mesoporous cubic morphology of the catalyst. The 
large surface area and pore diameter can easily facilitate 
the interaction of reactants with catalytic active amine sites 
without any pore blocking. The yield obtained for ortho sub-
stituted aromatic aldehydes was less and it could be due to 
steric hindrance at the reaction site.

Fig. 3  A SEM image of  cSiO2; B, C SEM image of  cSiO2-NH2; D TEM image of  cSiO2 and E, F TEM image of  cSiO2-NH2

Scheme  2  Utilization of  cSiO2-NH2 in Knoevenagel condensation 
reaction
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Table 1  Optimization of the solvent for Knoevenagel reaction

CHO
CN

CN
+

CN

CN
NH2

Temp, Solvent

Reaction parameters: Aldehyde (1 mmol), Active methylene compound (1 mmol), catalyst (10 mg), RT
a Isolated yield

S. no Catalyst Solvent Temperature (℃) Time (min) Isolated 
 yielda 
(%)

1 cSiO2-NH2 Ethanol RT 15 95
2 cSiO2-NH2 H2O 40 15 80
3 cSiO2-NH2 DCM 50 30 60
4 cSiO2-NH2 THF 50 30 40

Table 2  Optimization of catalyst and catalyst amount for Knoevenagel reaction

CHO

R

CN

CN
+

CN

CN

R

NH2

RT, Ethanol

Reaction parameters: Aldehyde (1 mmol), Active methylene compound (1 mmol), RT, Ethanol: 5 mL
a Isolated yield

S. no Catalyst Catalyst amount (mg) Isolated 
 yielda %

1 cSiO2-NH2 5 80
2 cSiO2-NH2 10 95
3 cSiO2-NH2 20 95
4 cSiO2 25
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Table 3  SiO2-NH2 catalysed Knoevenagel condensation

CHO

R

CN

CN
+

CN

CN

R

NH2

RT, 15 min
Ethanol

S. no Substrate Aldehyde Product Time (min) Isolated  yieldb 
%

TON/TOF

1 NC CN CHO CN

NC

15 95 62/248

2
NC CN CHO

CH3

CN

NC

CH3

15 96 63/252

3 NC CN CHO

NO2

CN

NC

NO2

5 99 65/780

4 NC CN CHO

Cl

CN

NC

Cl

10 95 62/372
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Finally, filtration test was carried out in order to check 
the leaching of catalytic active moieties in the reaction 
mixture during catalysis. Benzaldehyde and malononi-
trile were used as model substrate for filtration test. The 
catalyst was separated during the course of reaction from 
the reaction mixture through centrifugation and the reac-
tion was allowed to continue without the catalyst. It was 
observed that reaction could not progress further without 
the catalyst, which confirms the strong binding of amine 
group with mesoporous cubic silica particle as its leaching 
was not detected in reaction mixture.

The recyclability of the catalyst has been examined with 
benzaldehyde and malononitrile as a model reaction. After 
completion of reaction, the catalyst was filtered out from 
the reaction mixture, minutely washed with ethanol and 
dried under vacuum at 60 ℃. The separated catalyst was 
further tested for its activity in the consecutive catalytic 
cycle. We observed that the catalyst remains active till 
the 5th catalytic cycle with negligible loss in its activity 
(Fig. 4).

The catalytic efficiency of  cSiO2-NH2 was compared 
with some of the earlier reported heterogeneous catalyst 

Reaction parameters: Aldehyde (1 mmol), Active methylene compound (1 mmol), catalyst (10 mg), Room temperature, Ethanol: 05 mL. bIso-
lated Yield, Turnover number (TON) = Yeild (%)/ Catalyst (mol %), Turnover frequency (TOF) = TON per hour

Table 3  (continued)

S. no Substrate Aldehyde Product Time (min) Isolated  yieldb 
%

TON/TOF

5 NC CN CHO
Cl

CN

NC
Cl

20 91 59/180

6 NC CN CHO

OH

CN

NC

OH

15 94 61/248

7 NC CN CHO

OCH3

CN

NC

OCH3

12 92 60/300

8 NC CN CHO

NO2

NC

CN

NO2

10 94 61/372

9
NC CN CHO

OCH3

CN

NC

OCH3

12 95 62/310
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(Table 4). Some of the reports suggest that alongside het-
erogeneous catalyst elevated temperature was utilized for 
the synthesis of Knoevenagel product. [44, 45] In the other 
reported heterogeneous catalyst although the amount of 
catalyst is comparatively lesser but the reaction time was 
longer for the synthesis of Knoevenagel product as com-
pared to  cSiO2-NH2. From the comparative study presented 
in Table 4 our prepared catalyst i.e.  cSiO2-NH2 shows more 
efficient activity for the synthesis of Knoevenagel product 
when compared with other reported heterogeneous coun-
terpart in terms of lesser reaction time, minimum use of 
catalyst amount and reaction at room temperature.

4.2  Proposed Mechanism for the Knoevenagel 
Condensation Reaction

A probable mechanism has been proposed for the activity of 
 cSiO2-NH2 on the basis of the existing mechanism for this 
reaction (Fig. 5). In the first step the amine group  (NH2) of 
the catalyst extracts a proton of active methylene compound, 
which can lead to the generation of negative charge on this 
compound. In the second step the negatively charged species 
acts as the nucleophile and could attack on carbonyl carbon 
which results in the synthesis of β-hydroxyl compounds and 

the catalyst could be regenerated. In the final step β-hydroxyl 
compound results in the formation of the product by elimi-
nating a water molecule [39, 46].

5  Conclusion

In the present work, the  cSiO2-NH2 mesoporous cubic sil-
ica particles have been synthesised following the biphasic 
approach. The amine groups were uniformly anchored over 
the surface of mesoporous cubic silica particles through 
covalent interaction. The synthesised material was charac-
terized by using various techniques such as, FTIR, SEM, 
TEM, X-ray diffraction, BET and CHN analysis. Due to 
high surface area and larger pore diameter, the material was 
employed as recyclable catalyst for Knoevenagel reaction. 
The use of the reported nanocatalyst has been advantageous 
in two ways. One is its easy separation from the reaction 
mixture and the other being its reuse for multiple catalytic 
cycles. This makes it also a cost effective process causing 
less environmental hazards.

Fig. 4  Recyclability test of  cSiO2-NH2 for for Knoevenagel conden-
sation reaction

Table 4  Comparison of 
catalytic efficiency of 
 cSiO2-NH2 with earlier reported 
nanocatalysts for Knoevenagel 
condensation reaction

S. no Catalyst Amount of catalyst Time Temperature (℃) Solvent References

1 Chol-MSMs 50 mg 2 h 60 ℃ Ethanol [44]
2 Fe3O4@SiO2@

CuO–Fe2O3

30 mg 40 min 70 ℃ Water [45]

3 PMO-IL-NH2 0.5 mol% 90 min RT Solvent free [46]
4 MSiO2–NH2 20 mg 5 h RT Ethanol [47]
5 cSiO2–NH2 1.53 mol% (10 mg) 15 min RT Ethanol This study

Fig. 5  Proposed mechanism for Knoevenagel condensation reaction
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6  Supporting Information

Powder XRD of  cSiO2-NH2, proton and carbon NMR of 
various products.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10562- 021- 03749-8.
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