Note

A simple preparation of aromatic 1-thioglycosides

YURY E. TSVETKOV, NARGUIZ É. BYRAMOVA, AND LEON V. BACKINOWSKY N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R. Moscow (U.S.S.R.) (Received July 19th, 1982; accepted for publication, November 10th, 1982)

1-Thioglycosides are an important class of sugar derivative. They are employed as inhibitors of enzymes¹, in affinity chromatography², and in synthesis for temporary protection of the anomeric centre³ and for preparation of glycosides^{4, 2}.

Synthesis of acylated aromatic 1-thioglycosides is most often accomplished by the reaction of acylglycosyl halides with thiols in the presence of strong bases, *e.g.*, sodium methoxide^{6,7}, sodium hydride⁸, and alkali hydroxides and carbonates⁹⁻¹¹; yields are in the range of 20-80°_o. The strong bases used to generate thiolate anions may cause deacylation, thus necessitating inconvenient acetylation of the reaction products^{6,7,12}.

Condensation of peracylated sugar derivatives with aromatic thiols in the presence of protic or Lewis acids¹³ is less popular; moderate yields and the formation of anomeric 1-thioglycosides¹⁴ are the main drawbacks. Boron trifluoride etherate appears to be the most effective catalyst of this reaction¹⁵. Alkylation of 1-thio sugar derivatives with alkyl halides¹³ and the aforementioned reaction of peracylated sugars with aliphatic thiols are the most common methods for the synthesis of aliphatic 1-thioglycosides.

We now describe a simple and effective method of synthesis of peracetylated aromatic 1-thioglycosides based on the reaction of peracetylglycosyl bromides with aromatic thiols ($pK_a \sim 5.7$) in the presence of triethylamine. Thus, the reaction of 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl bromide (1) with aromatic thiols (10°_{\circ} molar excess) in acetonitrile in the presence of 2 molar equivalents of triethylamine at room temperature afforded the corresponding aryl 1-thio- β -D-glucopyranoside tetra-acetates (2–7) in essentially quantitative yield (t.l.c.) within 0.5-1 h. The yields and properties of these compounds isolated by direct crystallisation are recorded in Table I. Acetylated aryl 1-thio- β -D-galactopyranosides 8 and 9 were synthesised in an analogous manner from 2,3,4,6-tetra-*O*-acetyl- γ -D-galactopyranosyl bromide.

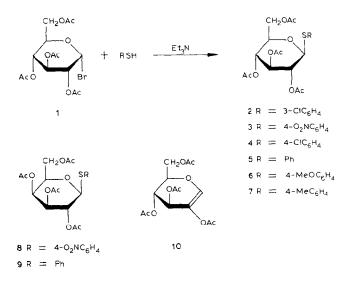
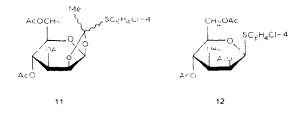

This reaction is not applicable for the synthesis of aliphatic 1-thioglycosides from the less acidic ($pK_a \sim 10$ -11) aliphatic thiols. Thus, treatment of 1 with ethanethiol for 48 h in the presence of triethylamine gave traces (t.l.c.) of peracetylated

TABLE I

YIELDS AND PROPERTIES OF AROMATIC THIOGLYCOSIDES

Compound	Yield (° ₀)	M.p. (degrees)	[a] ²⁰ # (degrees)	Literature data		
				M.p. (degrees)	$[\alpha]_{D}^{20 \ \alpha}$ (degrees)	Ref.
3	72	182–184 ^b	-35	185–186	-33	16
4	81	108–111 ^b	-23	113	-25	11
5	79.5	115-117 ^b	-17	118	40.1	17
			41		(toluene)	
			(toluene)		. ,	
6	64	95–97 ^b	-27	101-102	-28.1	11
7	77	113-115 ^b	-19	118	-21	11
8	88	155–157 ^b	-8	158-159	7	6
9	82	69-73°	+4	70.5	+ 5	18


^aIn chloroform, unless otherwise stated (c 1.2–1.7). ^bCrystallised from ethanol. ^cCrystallised from ether-hexane.

ethyl 1-thio-D-glucopyranoside and the isomeric 1,2-thio-orthoester, the main component being 2,3,4,6-tetra-O-acetyl-1,5-anhydro-D-*arabino*-hex-1-enitol (10, iso-lated in 56% yield).

The reaction of 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide at 37° for 20 h with 1.5 molar equivalents of 4-chlorothiophenol in acetonitrile in the presence of 4 equivalents of triethylamine gave a mixture of isomeric 1,2-thio-ortho-esters 11 and the thiomannoside 12; the *endo*-Me isomer of 11 and 12 had identical $R_{\rm F}$ values and could not be separated by chromatography. Therefore, the reaction

mixture was treated with mercuric bromide in aqueous acetone to convert 11 into more-polar hydrolysis products¹⁹. Subsequent column chromatography afforded 40.5°, of a mixture (~9:1) of 12 and its α anomer (¹H- and ¹³C-n.m.r. data) from which 12 was isolated in 34°, yield by crystallisation.

The use of triethylamine as a base is advantageous for preparation of peracetates of aromatic 1-thioglycosides, as complications due to deacetylation of the reaction products are avoided.

FXPERIMENTAL

Acetonitrile was distilled from P_2O_5 and then from CaH_2 . Optical rotations were determined with a Perkin–Elmer 141 polarimeter. Melting points were determined with a Kofler apparatus and are uncorrected. ¹H-N.m.r. spectra were recorded with Varian DA-60-IL (¹H, 60 MHz) and Bruker WM-250 (¹H, 250 MHz; ¹³C, 62.89 MHz) instruments for solutions in CDCl₃ with tetramethylsilane as the internal standard. Column chromatography was performed on Silica Gel L (100/250 μ m, CSSR) with gradient elution benzene \rightarrow ether. Solutions were concentrated *in vacuo* at 40⁻².

3-Chlorophenyl 2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranoside (2). – To a solution of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (1; 820 mg, 2 mmol) in acetonitrile (4 mL) were added triethylamine (0.56 mL, 4 mmol) and 3-chloro-thiophenol (0.25 mL, 2.2 mmol). The mixture was kept for 1 h at ambient temperature, diluted with chloroform (50 mL), and washed with water (3 × 50 mL). the organic layer was evaporated, and the residue was crystallised from ethanol to give 2 (670 mg, 70.5°, m.p. 87–89, $[\alpha]_D^{20} - 26'$ (c 1.2, chloroform). ¹H-N.m.r. data (60 MHz): δ 1.96, 1.98, 2.04, 2.05 (4 s, 12 H, 4 Ac), and 7.18–7.53 (m, 4 H, aromatic).

Anal. Calc. for $C_{20}H_{23}CIO_9S$: C, 50.58; H, 4.88; Cl, 7.46; S. 6.75. Found: C, 50.75; H, 4.90; Cl, 7.37; S, 6.67.

Compounds 3-9 (Table I) were obtained in an analogous manner.

The reaction of 1 with ethanethiol and triethylamine. --- A mixture of 1 (820 mg, 2 mmol), ethanethiol (0.17 mL, 2.2 mmol), and triethylamine (0.56 mL, 4 mmol) in acetonitrile (4 mL) was kept for 48 h at ambient temperature, diluted with chloroform (50 mL), and washed with water (3 × 50 mL), and the organic layer was evaporated. The residue was subjected to column chromatography to give 10 (370 mg, 56°_{0}), m.p. $55-57^{\circ}$ (from ether-hexane), $[\alpha]_{0}^{20} - 33^{\circ}$ (c 0.5, chloroform), -17

(c 1.15, ethanol); lit.²⁰ m.p. 61°, $[\alpha]_D^{20} - 20^\circ$ (ethanol). ¹H-N.m.r. data (60 MHz): δ 2.03 (s, 3 H, Ac), 2.09 (s, 9 H, 3 Ac), 4.26-4.55 (m, 3 H, H-4,6,6'), 5.23 (m, 1 H, H-5), 5.55 (d, 1 H, $J_{3,4}$ 4 Hz, H-3), and 6.62 (s, 1 H, H-1).

4-Chlorophenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-mannopyranoside (12). — To a solution of 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide [obtained²¹ from 1,2,3,4,6-penta-O-acetyl-D-mannopyranose (1.04 g, 2.67 mmol)] in acetonitrile (7 mL) were added 4-chlorothiophenol (580 mg, 4 mmol) and triethylamine (1.5 mL, 10.7 mmol), the mixture was kept for 20 h at 37°, diluted with chloroform (100 mL), and washed with water (3 \times 100 mL), and the organic layer was evaporated. The residue was dissolved in acetone (10 mL), and water (2 drops) and mercuric bromide (360 mg, 1 mmol) were added. The precipitate was filtered off, the filtrate was evaporated, and the residue was chromatographed to give a chromatographically homogeneous syrup (510 mg, 40.5%), $\lceil \alpha \rceil_{\rm D}^{20} - 49^{\circ}$ (c 1.9, chloroform). The ¹³Cn.m.r. spectrum contained, inter alia, signals at δ 85.3 and 76.6 (C-1 and C-5 of 12), and 85.6 and 69.3 (C-1 and C-5 of the α anomer of **12**) in a ratio of ~ 9 : 1. Crystallisation occurred during several days, and recrystallisation from ether-hexane gave 12 (430 mg, 34%), m.p. 99–102°, $[\alpha]_{p}^{20}$ – 73.5° (c 1.2, chloroform). N.m.r. data: ¹H (250 MHz), δ 1.99, 2.05, 2.10, 2.21 (4 s, 12 H, 4 Ac), 3.72 (m, 1 H, $J_{5.6}$ 2.5, $J_{5.6'}$ 6.5 Hz, H-5), 4.17 (dd, 1 H, $J_{6,6'}$ 12.5 Hz, H-6), 4.29 (dd, 1 H, H-6'), 4.92 (d, 1 H, $J_{1,2}$ 1 Hz, H-1), 5.07 (dd, $J_{3,2}$ 3.5, $J_{3,4}$ 10 Hz, 1 H, H-3), 5.28 (t, 1 H, $J_{4,5}$ 10 Hz, H-4), 5.66 (dd, 1 H, H-2), 7.29, 7.47 (2 d, 4 H, J 8.5 Hz, aromatic); ¹³C, δ 85.3 (C-1), 76.6 (C-5), 71.8 (C-3), 70.5 (C-2), 66.0 (C-4), 62.8 (C-6), 20.5, and 20.4 (Ac).

Anal. Calc. for C₂₀H₂₃ClO₉S: C, 50.58; H, 4.88; Cl, 7.46; S, 6.75. Found: C, 50.61; H, 4.96; Cl, 7.24; S, 6.72.

REFERENCES

- 1 E. STEERS, P. CUATRECASAS, AND H. B. POLLARD, J. Biol. Chem., 246 (1971) 196-200.
- 2 P. CUATRECASAS, Adv. Enzymol., 36 (1972) 29-89.
- 3 P. J. PFÄFFLI, S. H. HIXON, AND L. ANDERSON, Carbohydr. Res., 23 (1972) 195-206.
- 4 R. J. FERRIER, R. W. HAY, AND N. VETHAVIYASAR, Carbohydr. Res., 27 (1973) 55-61.
- 5 T. MUKAYAMA, T. NAKATSUKA, AND S. SHODA, Chem. Lett., (1979) 487-490.
- 6 R. H. SHAH AND O. P. BAHL, Carbohydr. Res., 32 (1974) 15-23.
- 7 R. H. SHAH AND O. P. BAHL, Carbohydr. Res., 65 (1978) 153-158.
- 8 K. L. MATTA, R. N. GIROTRA, AND J. J. BARLOW, Carbohydr. Res., 43 (1975) 101-109.
- 9 S. CHIPOWSKY AND Y. C. LEE, Carbohydr. Res., 31 (1973) 339-346.
- 10 P. L. DURETTE AND T. Y. SHEN, Carbohydr. Res., 67 (1978) 484-490.
- 11 E. M. MONTGOMERY, N. K. RICHTMYER, AND C. S. HUDSON, J. Org. Chem., 11 (1946) 301-306.
- 12 N. JANAKI, J. R. PATIL, AND J. L. BOSE, Indian J. Chem., 7 (1969) 227-228.
- 13 D. HORTON AND D. H. HUTSON, Adv. Carbohydr. Chem., 18 (1963) 123-199.
- 14 M. L. CHAWLA AND O. P. BAHL, Carbohydr. Res., 32 (1974) 25-29.
- 15 R. J. FERRIER AND R. H. FURNEAUX, Carbohydr. Res., 52 (1976) 63-68.
- 16 M. ČERNÝ, D. ZACHYSTALOVÁ, AND J. PACÁK, Collect. Czech. Chem. Commun., 26 (1961) 2206– 2211.
- 17 E. FISCHER AND K. DELBRÜCK, Ber., 42 (1909) 1476-1482.

- 18 B. CAPON, P. M. COLLINS, A. A. LEVY, AND W. G. OVERFND, J. Chem. Soc., (1964) 3242-3254.
- 19 L. V. BACKINOWSKY, YU. E. TSVETKOV, N. É. BYRAMOVA, N. F. BALAN, AND N. K. KOCHETKOV, Izv. Akad. Nauk SSSR., Ser. Khim., (1980) 1905-1911
- 20 R. U. LEMIEUX AND D. R. LINEBACK, Can. J. Chem., 43 (1965) 94-105.
- 21 V. I. BETANFLI, M. V. OVCHINNIKOV, L. V. BACKINOWSKY, AND N. K. KOCHLIKOV, Izt. 4kad. Nauk SSSR., Ser. Khim., (1979) 2751–2758.