Versatile Methods for Preparation of New Cyclometalated Gold(III) Complexes

Eirin Langseth,^a Carl Henrik Görbitz,^a Richard H. Heyn,^b and Mats Tilset^{c,*}

^a Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway,
^b SINTEF Materials and Chemistry, P.O. Box 124, Blindern, 0314 Oslo, Norway, ^c Centre for
Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo,
P.O. Box 1033 Blindern, 0315 Oslo, Norway.
Corresponding author: mats.tilset@kjemi.uio.no

Supporting Information

General Experimental Methods	2
Compound 1	3
Compound 2	4
Compound 3	5
Compound 4	6
Compound 5	7
Compound 6	8
Compound 7	9
¹ H, ¹⁹ F, ¹³ C, COSY, NOESY and ¹⁹ F- ¹ H HOESY NMR spectra	10
Crystallographic Methods	38
Compound 1 Crystallographic Data	39
Compound 2 Crystallographic Data	46

General Experimental Methods. MeLi, PhLi, MeMgBr, EtMgBr and PhMgBr were purchased from Sigma-Aldrich and used as received. TFA and NMR-solvents were used as received. CH₂Cl₂ and THF were dried by use of the solvent purification system MB SPS-800 from MBraun. AuCl₂(tpy) was prepared as previously reported (Shaw, A. P.; Tilset, M.; Heyn, R. H.; Jakobsen, S. J. Coord. Chem. 2011, 64, 38-47). All reactions were performed with magnetic stirring, including microwave reaction. The microwave oven used was of the type Milestone MicroSYNTH with a rotor of the type SK-10. All reactions were performed under argon, except when performed in the microwave. In the Grignard reactions neutral distilled water neutralized with NaHCO₃ was used for washing, Elemental analyses were performed by School of Chemistry, University of Birmingham, England (compounds 1 and 2) and Mikroanalytisches Laboratorium Kolbe, Mülheim an der Ruhr, Germany (compounds 3-6). NMR spectra were recorded on a Bruker Avance DPX200 operating at 200 MHz (¹H), DPX300 operating at 300 MHz (¹H) and AVII400 operating on at 400 MHz (¹H). 19 F has been referenced to CFCl₃ by using C₆F₆ (-164.9 ppm with respect to CFCl₃ at 0 ppm) as an internal standard. ¹H NMR assignments were made on the basis of COSY and NOESY experiments and refer to the numbering schemes shown below. Mass spectrometry was performed with Waters ProSpec (EI) and Q-TOF-2 (ESI) instruments.

Compound 1: Au(OCOCF₃)₂(tpy)

A solution of Au(OAc)₃ (0.384 g, 1.03 mmol, 1.00 equiv.) and 2-(*p*-tolyl)pyridine (186 μ L, 1.09 mmol, 1.06 equiv.) in a 1:1 mixture of water (15.0 mL) and trifluoroacetic acid (15.0 mL) was heated in the microwave oven at 120 °C for 30 min. After the reaction, the light yellow solution was cooled at room temperature for 15-30 min and then decanted over to an Erlenmeyer flask. If the product had started to precipitate out, TFA was added to redissolve the product before decanting, in order to remove a small amount of unreacted Au(OAc)₃. The product can be precipitated by either addition of water (20-50 mL), by cooling to 0 °C, or by combined water addition and cooling. The precipitate was collected on a fine frit and washed with water (3 x 5 mL) and diethyl ether (5 mL) and dried under a stream of air for 30-40 min. The product was obtained in 94 % yield (0.572 g).

¹H NMR (400 MHz, CD_2Cl_2): δ 8.42 (d, 6-*CH*, *J* = 5.8 Hz, 1H), 8.19 (t, 4-*CH*, *J* = 7.7 Hz, 1H), 7.92 (d, 3-*CH*, *J* = 8.0 Hz, 1H), 7.50-7.42 (m, 5,3'-*CH*, 2H), 7.23 (d, 4'-*CH*, *J* = 7.8 Hz, 1H), 6.71 (s, 6'-*CH*, 1H), 2.37 (s, Ar*CH*₃, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 165.0, 147.7, 144.3, 144.2, 142.7, 138.2, 131.2, 129.1, 125.9, 124.2, 121.5, 22.4 (For the CF₃ and CO signals, coupling to ¹⁹F was not observed).

¹⁹F NMR (377 MHz, CD₂Cl₂): δ -76.1 (s, CF₃ (trans to N), 3F), -77.0 (s, CF₃ (cis to N), 3F).

MS (ESI in CH₃CN): m/z = 859.1, 614.1 (63 % [M+Na⁺]⁺), 478.1 (100 % [M-OCOCF₃]⁺).

MS-HR (CH₃CN): 614.0067, calculated for C₁₆H₁₀AuF₆NNaO₄ 614.0077 (-1.68 ppm).

Anal. Calcd for C₁₆H₁₀AuF₆NO₄: C, 32.51; H, 1.7; N, 2.37. Found: C, 32.69; H, 1.61; N, 2.48.

A solution of Au(OCOCF₃)₂(tpy) (1) (0.150 g, 0.253 mmol, 1.00 equiv.) in THF (5.0 mL) was cooled in a dry ice/acetone bath and then MeLi (1.6 M in Et₂O, 0.560 mL, 0.896 mmol, 3.54 equiv.) was added. No change in color was observed upon addition. The reaction was stirred for 1 h at -78 °C and then allowed to warm up to rt. The solution turned purple upon warming up. THF was removed *in vacuo*. The resulting solid was dissolved in dry CH₂Cl₂ and filtered through Celite to give a light yellow solution. In case of a continued purple solution, filter solution again. CH₂Cl₂ was removed *in vacuo* to give a white powder of compound **2** (0.093 g, 93 %)

AuMe₂(tpy) (**2**) could also be synthesized from AuCl₂(tpy) (0.104 g, 0.239 mmol, 1.00 equiv.) and MeLi (1.6 M in Et₂O, 0.500 mL, 0.800 mmol, 3.34 equiv) using the same procedure (except stirring at -78 °C for 3.5 h), yielding 0.085 g (89 %) of **2**.

¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, 6-C*H*, *J* = 5.5 Hz, 1H), 7.98-7.81 (m, 3,4-C*H*, 2H), 7.67 (d, 3'-C*H*, *J* = 7.9 Hz, 1H), 7.56 (s, 6'-C*H*, 1H), 7.30-7.24 (m, 5-C*H*, 1H), 7.07 (dd, 4'-C*H*, *J* = 7.9, 1.0 Hz, 1H), 2.41 (s, ArC*H*₃, 3H), 1.38 (s, AuC*H*₃ (trans to *N*), 3H), 0.44 (s, AuC*H*₃ (cis to *N*), 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.2, 167.4, 146.5, 143.8, 141.0, 139.7, 132.9, 126.6, 124.7, 122.4, 119.8, 22.1, 13.2, 1.6. MS (EI in CH₃CN): *m*/*z* = 395 (11 % [M]⁺), 380 (84 % [M-Me]⁺), 182 (100 %).

MS-HR (CH₃CN): 395.093983, calculated for $C_{14}H_{16}AuN$ 395.094835 (+2.2 ppm).

Anal. Calcd for C₁₄H₁₆AuN: C, 42.54; H, 4.08; N, 3.54. Found: C, 42.27; H, 3.99; N, 3.48.

A solution of Au(OCOCF₃)₂(tpy) (1) (0.154 g, 0.261 mmol, 1.00 equiv.) in THF (5.0 mL) was cooled in a dry ice/acetone bath and then PhLi (1.8 M in Et₂O, 0.490 mL, 0.896 mmol, 3.39 equiv.) was added. The solution turned orange upon addition. The reaction was stirred for 1 h at -78 °C and then was warmed up to rt. THF was removed *in vacuo*. The resulting brown oil was dissolved in dry CH_2Cl_2 and filtered through Celite to give a light brown solution. In case of a continued purple solution, the solution was filtered again. CH_2Cl_2 was removed *in vacuo* and gave a brown powder (0.126 g, 93 %)

AuPh₂(tpy) (**3**) could also be synthesized from AuCl₂(tpy) (0.101 g, 0.231 mmol, 1.00 equiv.) and PhLi (1.8 M in Et₂O, 0.450 mL, 0.810 mmol, 3.51 equiv) using the same procedure (except stirring at -78 °C for 2 h), yielding 0.096 g (80 %) of **3**.

¹H NMR (400 MHz, CD₂Cl₂): δ 8.09 (d, 6-CH, J = 5.3 Hz, 1H), 7.97-7.84 (m, 3,4-CH, 2H), 7.70 (d, 3'-CH, J = 7.9 Hz, 1H), 7.48 (d, o'-CH, J = 7.3 Hz, 2H), 7.43 (d, o-CH, J = 7.6 Hz, 2H), 7.23 (t, m'-CH, J = 7.3 Hz, 2H), 7.18-7.11 (m, m,5-CH, 3H), 7.09-7.01 (m, p,p',4'-CH, 3H), 6.82 (s, 6'-CH, 1H), 2.21 (s, ArCH₃, 3H).

¹³C NMR (101 MHz, CD₂Cl₂): δ 169.8, 167.9, 167.3, 149.6, 143.9, 142.8, 141.8, 140.9, 137.0, 135.8, 133.0, 129.3, 129.3, 127.6, 125.2, 124.7, 124.7, 123.4, 120.4, 22.2.

MS (ESI in CH₃CN): $m/z = 558.1 (100 \% [M+K]^+)$.

MS-HR (CH₃CN): 558.0880, calculated for C₂₄H₂₀AuKN 558.0898 (-3.30 ppm).

Anal. Calcd for C₂₄H₂₀AuN: C, 55.50; H, 3.88; N, 2.70. Found: C, 55.69; H, 4.01; N, 2.51.

A solution of Au(OCOCF₃)₂(tpy) (1) (0.100 g, 0.169 mmol, 1.00 equiv.) in THF (10.0 mL) was cooled in a dry ice/acetone bath and MeMgBr (3.0 M in Et₂O, 0.080 mL, 0.240 mmol, 1.42 equiv.) was added. The solution formed an off-white, milky suspension shortly after addition. The reaction was stirred for 1 h at -78 °C and then at rt for 1 h. While warming to ambient temperature, the reaction cleared up to a light yellow solution. THF was removed *in vacuo*. The resulting off-white solid was dissolved in CH₂Cl₂ (25 mL) and washed with distilled water (pH=7, 3 x 25 mL), and the organic phase turned slightly purple. The organic phase was dried over MgSO₄ and filtered through Celite to give a light yellow solution and solvent was removed *in vacuo* to yield **4** as an off-white powder, 0.068 g (87 %).

Compound 4 could be synthesized from $AuCl_2(tpy)$, but was not isolated. $AuCl_2(tpy)$ (0.076 g, 0.175 mmol, 1.00 equiv.) and MeMgBr (3.0 M in Et₂O, 0.170 mL, 0.510 mmol, 2.92 equiv) using the same procedure. The ¹H NMR spectrum is shown.

¹H NMR (400 MHz, CD₂Cl₂): δ 9.53 (d, 6-*CH*, *J* = 5.4 Hz, 1H), 7.98 (td, 4-*CH*, *J* = 7.7, 1.5 Hz, 1H), 7.91 (d, 3-*CH*, *J* = 8.0 Hz, 1H), 7.68 (d, 3'-*CH*, *J* = 7.9 Hz, 1H), 7.45-7.42 (m, 5-*CH*, 1H), 7.32 (s, 6'-*CH*, 1H), 7.20 (d, 4'-*CH*, *J* = 8.0 Hz, 1H), 2.43 (s, Ar*CH*₃, 3H), 1.62 (s, Au*CH*₃, 3H). ¹³C NMR (101 MHz, CD₂Cl₂): δ 162.2, 149.2, 147.9, 142.4, 141.8, 141.1, 130.5, 128.9, 125.9, 124.5, 120.0, 22.2, 8.4, 1.3. MS (EI in CH₃CN): *m/z* = 460.9 (10 % [M(⁸¹Br)]⁺), 458.9 (11 % [M(⁷⁹Br)]⁺), 445.9 (9 % [M(⁸¹Br)-

MS (E1 in CH₃CN): m/z = 460.9 (10 % [M(Br)]), 458.9 (11 % [M(Br)]), 445.9 (9 % [M(Br)-Me]⁺), 443.9 (9 % [M(⁷⁹Br)-Me]⁺), 380.0 (55 % [M-Br]⁺), 365.0 (9 % [M-Br-Me)]⁺), 182.0 (100%). MS-HR (CH₃CN): 458.990018, calculated for C₁₃H₁₃Au⁷⁹BrN 458.989696 (-0.7 ppm). Anal. Calcd for C₁₃H₁₃AuBrN: C, 33.93; H, 2.85; N, 3. 40. Found: C, 33.91; H, 2.87; N, 3.03.

A solution of Au(OCOCF₃)₂(tpy) (1) (0.101 g, 0.171 mmol, 1.00 equiv.) in THF (10.0 mL) was cooled in a dry ice/acetone bath and then EtMgBr (3.0 M in Et₂O, 0.080 mL, 0.240 mmol, 1.41 equiv.) was added. No color change was observed upon addition. The reaction was stirred for 1 h at -78 °C and then at rt for 1 h. During warming to rt, the reaction cleared up to a light yellow solution. THF was removed *in vacuo*. The resulting off-white solid was dissolved in CH₂Cl₂ (25 mL) and washed with distilled water (pH=7, 3 x 25 mL), and the organic phase turned slightly purple. The organic phase was dried over MgSO₄ and filtered through Celite to give a light yellow solution and solvent was removed *in vacuo* to yield **5** as a light yellow powder, 0.053 g (66 %).

¹H NMR (400 MHz, CD₂Cl₂): δ 9.48 (d, 6-C*H*, *J* = 4.8 Hz, 1H), 7.96 (td, 4-C*H*, *J* = 7.7, 1.6 Hz, 1H), 7.91 (d, 3-C*H*, *J* = 7.9 Hz, 1H), 7.69 (d, 3'-C*H*, *J* = 7.9 Hz, 1H), 7.46-7.39 (m, 5,6'-C*H*, 2H), 7.20 (d, 4'-C*H*, *J* = 8.4 Hz, 1H), 2.53 (q, AuC*H*₂, *J* = 7.6 Hz, 2H), 2.46 (s, ArC*H*₃, 3H), 1.40 (t, CH₂C*H*₃, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CD₂Cl₂): δ 161.9, 149.4, 149.4, 142.7, 141.7, 141.0, 130.7, 128.8, 125.7, 124.3, 120.0, 27.7, 22.3, 16.6.

MS (EI in CH₃CN): m/z = 475.0 (2 % $[M(^{81}Br)]^+$), 473.0 (2 % $[M(^{79}Br)]^+$), 445.9 (10 % $[M(^{81}Br)-Et]^+$), 443.9 (11 % $[M(^{79}Br)-Et]^+$), 394.0 (7 % $[M-Br]^+$), 365.0 (12 % $[M-Et-Br]^+$), 196 (100 %). MS-HR (CH₃CN): 473.005165, calculated for C₁₄H₁₅Au⁷⁹BrN 473.005346 (+0.4 ppm). Anal. Calcd for C₁₄H₁₅AuBrN: C, 35.46; H, 3.19; N, 2. 95. Found: C, 35.36; H, 3.19; N, 2.87.

A solution of Au(OCOCF₃)₂(tpy) (1) (0.100 g, 0.169 mmol, 1.00 equiv.) in THF (10.0 mL) was cooled in a dry ice/acetone bath and then PhMgBr (1.0 M in THF, 0.350 mL, 0.350 mmol, 2.07 equiv.) was added. No color change was observed upon addition. The reaction was stirred for 1 h at -78 °C and then at rt for 1 h. The solution was light yellow. THF was removed *in vacuo*. The resulting white solid was dissolved in CH₂Cl₂ (25 mL) and washed with distilled water (pH=7, 3 x 25 mL), and the organic phase turned slightly purple. The organic phase was dried over MgSO₄ and filtered through Celite to give a light yellow solution and solvent was removed *in vacuo* to yield **6** as an white powder, 0.083 g (94 %).

¹H NMR (400 MHz, CD₂Cl₂): δ 9.61 (d, 6-C*H*, *J* = 5.1 Hz, 1H), 8.03 (td, 4-C*H*, *J* = 8.0, 1.4 Hz, 1H), 7.94 (d, 3-C*H*, *J* = 8.1 Hz, 1H), 7.63 (d, 3'-C*H*, *J* = 8.0 Hz, 1H), 7.52-7.40 (m, 5,o-C*H*, 3H), 7.25 (t, m-C*H*, *J* = 7.3 Hz, 2H), 7.19 (m, p-C*H*, 1H), 7.14 (d, 4'-C*H*, *J* = 7.8 Hz, 1H), 6.55 (s, 6'-C*H*, 1H), 2.18 (s, ArC*H*₃, 3H).

¹³C NMR (101 MHz, CD₂Cl₂): δ 163.1, 150.8, 149.7, 143.3, 142. 8, 141.6, 140.9, 134.8, 133.6, 129.8, 128.9, 126.2, 125.3, 124.4, 120.3, 22.1.

MS (EI in CH₃CN): $m/z = 522.9 (0.6 \% [M(^{81}Br)]^+), 521.0 (0.7 \% [M(^{79}Br)]^+), 442.0 (0.1 \% [M-Br]^+), 365.0 (4 \% [M-Ph-Br]^+), 245.1 (31 \%), 244.1 (100 \%).$

MS-HR (CH₃CN): 521.006245, calculated for C₁₈H₁₅Au⁷⁹BrN 521.005346 (-1.7 ppm).

Anal. Calcd for C₁₈H₁₅AuBrN: C, 41.40; H, 2.90; N, 2.68. Found: C, 41.91; H, 3.40; N, 2.63.

In an NMR tube, AuBrMe(tpy) (4), an excess of AgOTf and CDCl₃ was added. ¹H NMR spectra was acquired after approximately 24 hours. The only observed species was AuMe(OTf)(tpy) (7). ¹H NMR (400 MHz, CDCl₃): δ 8.86 (d, 6-C*H*, *J* = 5.6 Hz, 1H), 8.03 (td, 4-C*H*, *J* = 8.1, 1.6 Hz, 1H), 7.92 (d, 3-C*H*, *J* = 8.1 Hz, 1H), 7.61 (d, 3'-C*H*, *J* = 7.9 Hz, 1H), 7.57-7.50 (m, 5-C*H*, 1H), 7.22 (s, 6'-C*H*, 1H), 7.19 (d, 4'-C*H*, *J* = 7.9 Hz, 1H), 2.42 (s, ArCH₃, 3H), 1.66 (s, AuCH₃, 3H).

Au(OCOCF₃)₂(tpy) 400 MHz (¹H) CD₂Cl₂

 1 H NMR spectrum of Au(OCOCF₃)₂(tpy) (1)

 1 H COSY NMR spectrum of Au(OCOCF₃)₂(tpy) (1)

¹H NOESY NMR spectrum of Au(OCOCF₃)₂(tpy) (1)

 1 H NOESY NMR spectrum of AuPh₂(tpy) (3)

AuBrMe(tpy) 400 MHz (¹H) COSY45SW CD₂Cl₂

¹H COSY NMR spectrum of AuBrMe(tpy) (4)

¹H NOESY NMR spectrum of AuBrMe(tpy) (4)

AuBrEt(tpy) 400 MHz (¹H) COSY45SW CD₂Cl₂

¹H NOESY NMR spectrum of AuBrEt(tpy) (5)

¹³C NMR spectrum of AuBrPh(tpy) (6)

¹H COSY NMR spectrum of AuBrPh(tpy) (6)

¹H NOESY NMR spectrum of AuBrPh(tpy) (6)

Crystallographic Methods. Date collection was performed on a Bruker Apex II CCD Diffractometer. Data integration and cell refinement with SAINT-Plus (Bruker AXS, Inc. SAINT-Plus; Bruker AXS, Inc.: Madison, Wisconsin, USA, 2007), absorption correction by SADABS (Bruker AXS, Inc. SADABS; Bruker AXS, Inc.: Madison, Wisconsin, USA, 2007), structure solution by SHELXTL (Sheldrick, G. M. *Acta Crystallogr. Sect. A* **2008**, *64*, 112-122). Crystals of **1** and **2** were grown from dichloromethane layered with pentane.

Compound 1 Crystallographic Data

Table 1. Crystal data and structure refinem	ent for 1.	
Identification code	el358	
Empirical formula	$C_{16}H_{10}AuF_6NO_4\\$	
Formula weight	591.22	
Temperature	106(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /c	
Unit cell dimensions	a = 8.230(3) Å	$\alpha = 90.00^{\circ}$
	b = 21.745(7) Å	$\beta = 100.924(3)^{\circ}$
	c = 9.403(3) Å	$\gamma = 90.00^{\circ}$
Volume	1652.2(9) Å ³	
Z	4	
Density (calculated)	2.385 Mg/m ⁻³	
Absorption coefficient	8.994 mm ⁻¹	
F(000)	1120	
Crystal size	$1.2 \ge 0.3 \ge 0.05 \text{ mm}^3$	
Theta range for date collection	2.40 to 28.78°	
Index ranges	-11<=h<=10, -25<=k<=28, -	12<=1<=12
Reflections collected	13129	
Independent reflections	3984 [$R_{\rm int} = 0.0509$]	
Completeness to theta = 27.29°	99.1 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.638 and 0.158	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3984 / 0 / 254	
Goodness-of-fit on F ²	1.139	
Final R indices [I>2sigma(I)]	$R_1 = 0.0480, wR_2 = 0.1362$	
R indices (all data)	$R_1 = 0.0561, wR_2 = 0.1425$	
Largest diff. peak and hole	2.274 and -3.087 e.Å ⁻³	

Au(1)-O(1) $1.993(5)$ Au(1)-C(5) $1.995(7)$ Au(1)-O(3) $2.111(5)$ F(1)-C(2) $1.304(14)$ F(2)-C(2) $1.342(14)$ F(3)-C(2) $1.302(14)$ F(4)-C(4) $1.315(9)$ F(5)-C(4) $1.333(9)$ O(1)-C(1) $1.309(9)$ O(1)-C(1) $1.309(9)$ O(2)-C(1) $1.196(9)$ O(3)-C(3) $1.210(9)$ N(1)-C(12) $1.342(14)$ N(1)-C(12) $1.342(14)$ N(1)-C(11) $1.369(9)$ C(1)-C(2) $1.544(14)$ C(3)-C(4) $1.542(14)$ C(5)-C(6) $1.371(11)$ C(5)-C(6) $1.371(11)$ C(5)-C(10) $1.400(11)$ C(6)-H(6) 0.95000 C(7)-C(8) $1.387(12)$ C(8)-C(9) $1.374(12)$ C(8)-H(8) 0.95000 C(7)-C(10) $1.396(11)$ C(8)-H(8) 0.95000 C(10)-C(11) $1.443(14)$ C(11)-C(15) $1.380(11)$ C(12)-H(12) 0.95000 C(12)-H(12) 0.95000 C(13)-C(14) $1.406(11)$	Au(1)-N(1)	1.991(6)
Au(1)-C(5) $1.995(7)$ Au(1)-O(3) $2.111(5)$ F(1)-C(2) $1.304(14)$ F(2)-C(2) $1.342(14)$ F(3)-C(2) $1.302(14)$ F(4)-C(4) $1.315(9)$ F(5)-C(4) $1.333(9)$ P(6)-C(4) $1.333(9)$ O(1)-C(1) $1.309(9)$ O(2)-C(1) $1.309(9)$ O(2)-C(1) $1.399(9)$ O(2)-C(1) $1.399(9)$ O(2)-C(1) $1.399(9)$ O(4)-C(3) $1.210(9)$ N(1)-C(12) $1.342(1)$ N(1)-C(12) $1.342(1)$ N(1)-C(11) $1.369(9)$ C(1)-C(2) $1.544(1)$ C(3)-C(4) $1.542(1)$ C(5)-C(6) $1.371(1)$ C(5)-C(6) $1.371(1)$ C(5)-C(10) $1.400(1)$ C(6)-H(6) 0.9500 C(7)-C(8) $1.387(12)$ C(7)-C(8) $1.387(12)$ C(7)-C(16) $1.512(12)$ C(8)-H(8) 0.9500 C(7)-C(16) $1.396(1)$ C(8)-H(8) 0.9500 C(10)-C(11) $1.443(14)$ C(11)-C(15) $1.380(1)$ C(12)-H(12) 0.9500 C(12)-H(12) 0.9500 C(12)-H(12) 0.9500 C(13)-C(14) $1.406(1)$	Au(1)- O(1)	1.993(5)
Au(1)-O(3) $2.111(5)$ F(1)-C(2) $1.304(1)$ F(2)-C(2) $1.342(1)$ F(3)-C(2) $1.302(1)$ F(4)-C(4) $1.315(9)$ F(5)-C(4) $1.333(9)$ F(6)-C(4) $1.333(9)$ O(1)-C(1) $1.309(9)$ O(2)-C(1) $1.196(9)$ O(2)-C(1) $1.196(9)$ O(2)-C(1) $1.287(9)$ O(4)-C(3) $1.210(9)$ N(1)-C(12) $1.342(1)$ N(1)-C(12) $1.342(1)$ N(1)-C(11) $1.369(9)$ C(1)-C(2) $1.544(1)$ C(3)-C(4) $1.542(1)$ C(5)-C(6) $1.371(1)$ C(5)-C(6) $1.371(1)$ C(5)-C(6) $1.371(1)$ C(5)-C(10) $1.400(1)$ C(6)-H(6) 0.9500 C(7)-C(8) $1.387(12)$ C(7)-C(16) $1.512(12)$ C(8)-H(8) 0.9500 C(9)-C(10) $1.396(1)$ C(9)-C(10) $1.396(1)$ C(10)-C(11) $1.443(14)$ C(11)-C(15) $1.380(1)$ C(12)-H(12) 0.9500 C(12)-H(12) 0.9500 C(13)-C(14) $1.406(1)$	Au(1)-C(5)	1.995(7)
F(1)-C(2) $1.304(14)$ $F(2)-C(2)$ $1.342(14)$ $F(3)-C(2)$ $1.302(14)$ $F(4)-C(4)$ $1.315(9)$ $F(4)-C(4)$ $1.333(9)$ $F(6)-C(4)$ $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.399(9)$ $O(2)-C(1)$ $1.399(9)$ $O(2)-C(1)$ $1.399(9)$ $O(2)-C(1)$ $1.399(9)$ $O(2)-C(1)$ $1.399(9)$ $O(4)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(11)$ $N(1)-C(12)$ $1.342(11)$ $N(1)-C(12)$ $1.342(11)$ $N(1)-C(12)$ $1.342(11)$ $N(1)-C(12)$ $1.342(11)$ $C(3)-C(4)$ $1.542(11)$ $C(5)-C(6)$ $1.371(11)$ $C(5)-C(10)$ $1.400(11)$ $C(6)-R(6)$ 0.9500 $C(7)-C(16)$ $1.512(11)$ $C(6)-H(6)$ 0.9500 $C(7)-C(16)$ $1.512(11)$ $C(8)-R(8)$ 0.9500 $C(9)-C(10)$ $1.396(11)$ $C(9)-C(10)$ $1.396(11)$ $C(10)-C(11)$ $1.443(14)$ $C(10)-C(11)$ $1.443(14)$ $C(10)-C(11)$ $1.380(11)$ $C(12)-H(12)$ 0.9500 $C(12)-H(12)$ 0.9500 $C(12)-H(12)$ 0.9500 $C(12)-H(12)$ 0.9500	Au(1)-O(3)	2.111(5)
F(2)-C(2) $1.342(14)$ $F(3)-C(2)$ $1.302(14)$ $F(4)-C(4)$ $1.315(9)$ $F(5)-C(4)$ $1.333(9)$ $F(6)-C(4)$ $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.196(9)$ $O(2)-C(1)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-R(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(16)$ $1.512(12)$ $C(8)-R(9)$ $1.374(12)$ $C(8)-R(9)$ $1.374(12)$ $C(9)-R(10)$ $1.396(1)$ $C(9)-R(10)$ $1.396(1)$ $C(10)-C(11)$ $1.443(14)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-R(12)$ 0.9500 $C(12)-R(12)$ 0.9500 $C(12)-R(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	F(1)-C(2)	1.304(10)
F(3)-C(2) $1.302(14)$ $F(4)-C(4)$ $1.315(9)$ $F(5)-C(4)$ $1.333(9)$ $F(6)-C(4)$ $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.196(9)$ $O(3)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(16)$ $1.512(12)$ $C(8)-H(8)$ 0.9500 $C(7)-C(16)$ $1.374(12)$ $C(8)-H(8)$ 0.9500 $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(14)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-H(12)$ 0.9500 $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	F(2)-C(2)	1.342(10)
F(4)-C(4) $1.315(9)$ $F(5)-C(4)$ $1.333(9)$ $F(6)-C(4)$ $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.196(9)$ $O(2)-C(1)$ $1.196(9)$ $O(3)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-R(6)$ 0.9500 $C(7)-C(16)$ $1.512(11)$ $C(8)-C(9)$ $1.374(12)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(14)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-H(12)$ 0.9500 $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	F(3)-C(2)	1.302(10)
F(5)-C(4) $1.333(9)$ $F(6)-C(4)$ $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.196(9)$ $O(3)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-R(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(16)$ $1.512(12)$ $C(8)-H(8)$ 0.9500 $C(7)-C(16)$ $1.374(12)$ $C(8)-H(8)$ 0.9500 $C(9)-R(10)$ $1.396(1)$ $C(9)-R(10)$ $1.380(1)$ $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-R(12)$ 0.9500 $C(12)-R(12)$ 0.9500 $C(12)-R(12)$ 0.9500	F(4)-C(4)	1.315(9)
F(6)-C(4) $1.333(9)$ $O(1)-C(1)$ $1.309(9)$ $O(2)-C(1)$ $1.196(9)$ $O(3)-C(3)$ $1.287(9)$ $O(4)-C(3)$ $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-R(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(8)$ $1.387(12)$ $C(8)-C(9)$ $1.374(12)$ $C(8)-C(9)$ $1.374(12)$ $C(8)-R(8)$ 0.9500 $C(10)-C(11)$ $1.443(14)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-C(14)$ $1.406(1)$	F(5)-C(4)	1.333(9)
O(1)- $C(1)$ $1.309(9)$ $O(2)$ - $C(1)$ $1.196(9)$ $O(3)$ - $C(3)$ $1.287(9)$ $O(4)$ - $C(3)$ $1.210(9)$ $N(1)$ - $C(12)$ $1.342(1)$ $N(1)$ - $C(11)$ $1.369(9)$ $C(1)$ - $C(2)$ $1.544(1)$ $C(3)$ - $C(4)$ $1.542(1)$ $C(5)$ - $C(6)$ $1.371(1)$ $C(5)$ - $C(10)$ $1.400(1)$ $C(6)$ - $C(7)$ $1.396(1)$ $C(6)$ - $H(6)$ 0.9500 $C(7)$ - $C(8)$ $1.387(12)$ $C(7)$ - $C(16)$ $1.512(12)$ $C(8)$ - $C(9)$ $1.374(12)$ $C(8)$ - $C(9)$ $1.374(12)$ $C(8)$ - $H(8)$ 0.9500 $C(9)$ - $C(10)$ $1.396(1)$ $C(9)$ - $C(10)$ $1.396(1)$ $C(10)$ - $C(11)$ $1.443(14)$ $C(11)$ - $C(15)$ $1.380(1)$ $C(12)$ - $C(13)$ $1.366(1)$ $C(12)$ - $C(14)$ $1.406(1)$	F(6)-C(4)	1.333(9)
O(2)- $C(1)$ $1.196(9)$ $O(3)$ - $C(3)$ $1.287(9)$ $O(4)$ - $C(3)$ $1.210(9)$ $N(1)$ - $C(12)$ $1.342(1)$ $N(1)$ - $C(11)$ $1.369(9)$ $C(1)$ - $C(2)$ $1.544(1)$ $C(3)$ - $C(4)$ $1.542(1)$ $C(3)$ - $C(4)$ $1.542(1)$ $C(5)$ - $C(6)$ $1.371(1)$ $C(5)$ - $C(6)$ $1.371(1)$ $C(5)$ - $C(10)$ $1.400(1)$ $C(6)$ - $C(7)$ $1.396(1)$ $C(6)$ - $H(6)$ 0.9500 $C(7)$ - $C(16)$ $1.374(1)$ $C(8)$ - $H(8)$ 0.9500 $C(9)$ - $C(10)$ $1.396(1)$ $C(9)$ - $C(10)$ $1.396(1)$ $C(9)$ - $H(9)$ 0.9500 $C(10)$ - $C(11)$ $1.443(1)$ $C(11)$ - $C(15)$ $1.380(1)$ $C(12)$ - $C(13)$ $1.366(1)$ $C(12)$ - $C(13)$ $1.366(1)$ $C(13)$ - $C(14)$ $1.406(1)$	O(1)-C(1)	1.309(9)
O(3)- $C(3)$ $1.287(9)$ $O(4)$ - $C(3)$ $1.210(9)$ $N(1)$ - $C(12)$ $1.342(1)$ $N(1)$ - $C(11)$ $1.369(9)$ $C(1)$ - $C(2)$ $1.544(1)$ $C(3)$ - $C(4)$ $1.542(1)$ $C(5)$ - $C(6)$ $1.371(1)$ $C(5)$ - $C(6)$ $1.371(1)$ $C(5)$ - $C(10)$ $1.400(1)$ $C(6)$ - $C(7)$ $1.396(1)$ $C(6)$ - $H(6)$ 0.9500 $C(7)$ - $C(16)$ $1.512(1)$ $C(8)$ - $C(9)$ $1.374(1)$ $C(8)$ - $H(8)$ 0.9500 $C(9)$ - $C(10)$ $1.396(1)$ $C(9)$ - $H(9)$ 0.9500 $C(10)$ - $C(11)$ $1.443(1)$ $C(11)$ - $C(15)$ $1.380(1)$ $C(12)$ - $C(13)$ $1.366(1)$ $C(12)$ - $C(13)$ $1.406(1)$	O(2)-C(1)	1.196(9)
O(4)-C(3) $1.210(9)$ $N(1)-C(12)$ $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(16)$ $1.512(12)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	O(3)-C(3)	1.287(9)
N(1)-C(12) $1.342(1)$ $N(1)-C(11)$ $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(12)$ $C(7)-C(16)$ $1.512(12)$ $C(8)-C(9)$ $1.374(12)$ $C(8)-C(9)$ $1.374(12)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-C(10)$ $1.396(1)$ $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	O(4)-C(3)	1.210(9)
N(1)-C(11) $1.369(9)$ $C(1)-C(2)$ $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(14)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	N(1)-C(12)	1.342(11)
C(1)-C(2) $1.544(1)$ $C(3)-C(4)$ $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-C(10)$ $1.380(1)$ $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	N(1)-C(11)	1.369(9)
C(3)-C(4) $1.542(1)$ $C(5)-C(6)$ $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	C(1)-C(2)	1.544(11)
C(5)-C(6) $1.371(1)$ $C(5)-C(10)$ $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(10)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	C(3)-C(4)	1.542(11)
C(5)-C(10) $1.400(1)$ $C(6)-C(7)$ $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(1)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	C(5)-C(6)	1.371(11)
C(6)-C(7) $1.396(1)$ $C(6)-H(6)$ 0.9500 $C(7)-C(8)$ $1.387(1)$ $C(7)-C(16)$ $1.512(1)$ $C(8)-C(9)$ $1.374(1)$ $C(8)-H(8)$ 0.9500 $C(9)-C(10)$ $1.396(1)$ $C(9)-C(10)$ $1.396(1)$ $C(9)-H(9)$ 0.9500 $C(10)-C(11)$ $1.443(1)$ $C(11)-C(15)$ $1.380(1)$ $C(12)-C(13)$ $1.366(1)$ $C(12)-H(12)$ 0.9500 $C(13)-C(14)$ $1.406(1)$	C(5)-C(10)	1.400(11)
C(6)-H(6) 0.9500 C(7)-C(8) 1.387(12) C(7)-C(16) 1.512(12) C(8)-C(9) 1.374(12) C(8)-H(8) 0.9500 C(9)-C(10) 1.396(12) C(9)-C(10) 1.396(12) C(9)-H(9) 0.9500 C(10)-C(11) 1.443(12) C(11)-C(15) 1.380(12) C(12)-C(13) 1.366(12) C(12)-H(12) 0.9500 C(13)-C(14) 1.406(12)	C(6)-C(7)	1.396(11)
C(7)-C(8) 1.387(12) C(7)-C(16) 1.512(12) C(8)-C(9) 1.374(12) C(8)-H(8) 0.9500 C(9)-C(10) 1.396(12) C(9)-C(10) 1.396(12) C(9)-H(9) 0.9500 C(10)-C(11) 1.443(14) C(11)-C(15) 1.380(12) C(12)-C(13) 1.366(12) C(12)-H(12) 0.9500 C(13)-C(14) 1.406(12)	C(6)-H(6)	0.9500
C(7)-C(16) 1.512(12) C(8)-C(9) 1.374(12) C(8)-H(8) 0.9500 C(9)-C(10) 1.396(12) C(9)-C(10) 1.396(12) C(9)-H(9) 0.9500 C(10)-C(11) 1.443(14) C(11)-C(15) 1.380(12) C(12)-C(13) 1.366(12) C(12)-H(12) 0.9500 C(13)-C(14) 1.406(12)	C(7)-C(8)	1.387(12)
C(8)-C(9) 1.374(12) C(8)-H(8) 0.9500 C(9)-C(10) 1.396(1 C(9)-H(9) 0.9500 C(10)-C(11) 1.443(14) C(11)-C(15) 1.380(1 C(12)-C(13) 1.366(1 C(12)-H(12) 0.9500 C(13)-C(14) 1.406(1	C(7)-C(16)	1.512(12)
C(8)-H(8) 0.9500 C(9)-C(10) 1.396(1 C(9)-H(9) 0.9500 C(10)-C(11) 1.443(14 C(11)-C(15) 1.380(1 C(12)-C(13) 1.366(1 C(12)-H(12) 0.9500 C(13)-C(14) 1.406(1	C(8)-C(9)	1.374(12)
C(9)-C(10) 1.396(1 C(9)-H(9) 0.9500 C(10)-C(11) 1.443(14 C(11)-C(15) 1.380(1 C(12)-C(13) 1.366(1 C(12)-H(12) 0.9500 C(13)-C(14) 1.406(1	C(8)-H(8)	0.9500
C(9)-H(9)0.9500C(10)-C(11)1.443(14)C(11)-C(15)1.380(14)C(12)-C(13)1.366(14)C(12)-H(12)0.9500C(13)-C(14)1.406(14)	C(9)-C(10)	1.396(11)
C(10)-C(11)1.443(14)C(11)-C(15)1.380(14)C(12)-C(13)1.366(14)C(12)-H(12)0.9500C(13)-C(14)1.406(14)	C(9)-H(9)	0.9500
C(11)-C(15)1.380(1C(12)-C(13)1.366(1C(12)-H(12)0.9500C(13)-C(14)1.406(1	C(10)-C(11)	1.443(10)
C(12)-C(13)1.366(1C(12)-H(12)0.9500C(13)-C(14)1.406(1	C(11)-C(15)	1.380(11)
C(12)-H(12) 0.9500 C(13)-C(14) 1.406(1	C(12)-C(13)	1.366(11)
C(13)-C(14) 1.406(1	C(12)-H(12)	0.9500
	C(13)-C(14)	1.406(11)
C(13)-H(13) 0.9500	С(13)-Н(13)	0.9500

 Table 2. Bond lengths [Å] and angles [°] for 1.

C(14)-C(15)	1.368(11)
C(14)-H(14)	0.9500
С(15)-Н(15)	0.9500
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
N(1)-Au(1)-O(1)	175.5(2)
N(1)-Au(1)-C(5)	81.8(3)
O(1)-Au(1)-C(5)	96.4(3)
N(1)-Au(1)-O(3)	93.1(2)
O(1)-Au(1)-O(3)	88.8(2)
C(5)-Au(1)-O(3)	174.8(3)
C(1)-O(1)-Au(1)	117.8(5)
C(3)-O(3)-Au(1)	112.5(4)
C(12)-N(1)-C(11)	120.6(7)
C(12)-N(1)-Au(1)	123.2(5)
C(11)-N(1)-Au(1)	116.2(5)
O(2)-C(1)-O(1)	129.6(8)
O(2)-C(1)-C(2)	120.1(7)
O(1)-C(1)-C(2)	110.2(6)
F(3)-C(2)-F(1)	109.1(8)
F(3)-C(2)-F(2)	105.7(7)
F(1)-C(2)-F(2)	106.0(7)
F(3)-C(2)-C(1)	112.9(7)
F(1)-C(2)-C(1)	112.3(7)
F(2)-C(2)-C(1)	110.3(7)
O(4)-C(3)-O(3)	128.5(7)
O(4)-C(3)-C(4)	117.3(7)
O(3)-C(3)-C(4)	114.1(6)
F(4)-C(4)-F(6)	108.5(7)
F(4)-C(4)-F(5)	107.9(7)
F(6)-C(4)-F(5)	106.8(6)
F(4)-C(4)-C(3)	114.7(7)
F(6)-C(4)-C(3)	107.8(6)

F(5)-C(4)-C(3)	110.9(6)
C(6)-C(5)-C(10)	121.7(7)
C(6)-C(5)-Au(1)	126.2(6)
C(10)-C(5)-Au(1)	112.1(6)
C(5)-C(6)-C(7)	119.5(8)
C(5)-C(6)-H(6)	120.2
C(7)-C(6)-H(6)	120.2
C(8)-C(7)-C(6)	119.2(8)
C(8)-C(7)-C(16)	120.8(8)
C(6)-C(7)-C(16)	120.1(8)
C(9)-C(8)-C(7)	121.3(8)
C(9)-C(8)-H(8)	119.4
C(7)-C(8)-H(8)	119.4
C(8)-C(9)-C(10)	120.1(8)
C(8)-C(9)-H(9)	120.0
С(10)-С(9)-Н(9)	120.0
C(9)-C(10)-C(5)	118.2(7)
C(9)-C(10)-C(11)	124.3(8)
C(5)-C(10)-C(11)	117.4(7)
N(1)-C(11)-C(15)	119.1(7)
N(1)-C(11)-C(10)	112.5(7)
C(15)-C(11)-C(10)	128.4(7)
N(1)-C(12)-C(13)	121.8(7)
N(1)-C(12)-H(12)	119.1
С(13)-С(12)-Н(12)	119.1
C(12)-C(13)-C(14)	118.4(7)
С(12)-С(13)-Н(13)	120.8
C(14)-C(13)-H(13)	120.8
C(15)-C(14)- C(13)	119.3(8)
C(15)-C(14)-H(14)	120.4
C(13)-C(14)-H(14)	120.4
C(14)-C(15)-C(11)	120.7(8)
C(14)-C(15)-H(15)	119.7
C(11)-C(15)-H(15)	119.7
C(7)-C(16)-H(16A)	109.5

C(7)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(7)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

Table 3. Torsion angles [°] for 1.

N(1)-Au(1)-O(1)-C(1)	143(3)
C(5)-Au(1)-O(1)-C(1)	77.0(6)
O(3)-Au(1)-O(1)-C(1)	-102.7(5)
N(1)-Au(1)-O(3)-C(3)	-95.8(5)
O(1)-Au(1)-O(3)-C(3)	88.3(5)
C(5)-Au(1)-O(3)-C(3)	-88(3)
O(1)-Au(1)-N(1)-C(12)	110(3)
C(5)-Au(1)-N(1)-C(12)	176.2(6)
O(3)-Au(1)-N(1)-C(12)	-4.5(5)
O(1)-Au(1)-N(1)-C(11)	-69(3)
C(5)-Au(1)-N(1)-C(11)	-2.2(5)
O(3)-Au(1)-N(1)-C(11)	177.1(5)
Au(1)-O(1)-C(1)-O(2)	-5.0(12)
Au(1)-O(1)-C(1)-C(2)	177.9(5)
O(2)-C(1)-C(2)-F(3)	0.3(11)
O(1)-C(1)-C(2)-F(3)	177.7(7)
O(2)-C(1)-C(2)-F(1)	124.2(9)
O(1)-C(1)-C(2)-F(1)	-58.4(9)
O(2)-C(1)-C(2)-F(2)	-117.7(9)
O(1)-C(1)-C(2)-F(2)	59.7(9)
Au(1)-O(3)-C(3)-O(4)	-5.7(10)
Au(1)-O(3)-C(3)-C(4)	169.4(5)
O(4)-C(3)-C(4)-F(4)	-172.7(7)
O(3)-C(3)-C(4)-F(4)	11.6(10)
O(4)-C(3)-C(4)-F(6)	66.3(9)
O(3)-C(3)-C(4)-F(6)	-109.3(7)
O(4)-C(3)-C(4)-F(5)	-50.2(9)
O(3)-C(3)-C(4)-F(5)	134.1(7)

N(1)-Au(1)-C(5)-C(6)	-178.4(7)
O(1)-Au(1)-C(5)-C(6)	-2.5(7)
O(3)-Au(1)-C(5)-C(6)	174(2)
N(1)-Au(1)-C(5)-C(10)	2.5(5)
O(1)-Au(1)-C(5)-C(10)	178.3(5)
O(3)-Au(1)-C(5)-C(10)	-5(3)
C(10)-C(5)-C(6)-C(7)	-1.5(11)
Au(1)-C(5)-C(6)-C(7)	179.4(6)
C(5)-C(6)-C(7)-C(8)	1.6(11)
C(5)-C(6)-C(7)-C(16)	-179.6(7)
C(6)-C(7)-C(8)-C(9)	-1.7(12)
C(16)-C(7)-C(8)-C(9)	179.5(8)
C(7)-C(8)-C(9)-C(10)	1.7(12)
C(8)-C(9)-C(10)-C(5)	-1.5(11)
C(8)-C(9)-C(10)-C(11)	-178.1(7)
C(6)-C(5)-C(10)-C(9)	1.5(10)
Au(1)-C(5)-C(10)-C(9)	-179.4(5)
C(6)-C(5)-C(10)-C(11)	178.3(7)
Au(1)-C(5)-C(10)-C(11)	-2.5(8)
C(12)-N(1)-C(11)-C(15)	3.8(10)
Au(1)-N(1)-C(11)-C(15)	-177.8(5)
C(12)-N(1)-C(11)-C(10)	-177.0(6)
Au(1)-N(1)-C(11)-C(10)	1.4(7)
C(9)-C(10)-C(11)-N(1)	177.4(6)
C(5)-C(10)-C(11)-N(1)	0.8(9)
C(9)-C(10)-C(11)-C(15)	-3.5(12)
C(5)-C(10)-C(11)-C(15)	179.9(7)
C(11)-N(1)-C(12)-C(13)	-3.9(10)
Au(1)-N(1)-C(12)-C(13)	177.8(5)
N(1)-C(12)-C(13)-C(14)	1.5(11)
C(12)-C(13)-C(14)-C(15)	0.9(11)
C(13)-C(14)-C(15)-C(11)	-1.0(11)
N(1)-C(11)-C(15)-C(14)	-1.4(11)
C(10)-C(11)-C(15)-C(14)	179.6(7)

Table 4. Crystal data and structure refinem	ent for 2 .	
Identification code	el323	
Empirical formula	C ₁₄ H ₁₆ AuN	
Formula weight	395.26	
Temperature	105	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 4.9545(3) Å	$\alpha = 90.00^{\circ}$
	b = 8.5064(5) Å	$\beta = 90.00^{\circ}$
	c = 28.8920(17) Å	$\gamma = 90.00^{\circ}$
Volume	1217.65(13)	
Z	4	
Density (calculated)	2.156 Mg/m ⁻³	
Absorption coefficient	12.053 mm ⁻¹	
F(000)	744	
Crystal size	1.75 x 0.10 x 0.07 mm ³	
Theta range for date collection	2.50 to 37.09°	
Index ranges	-8<=h<=8, -14<=k<=14, -48<=l<=48	
Reflections collected	24687	
Independent reflections	$6192 [R_{\rm int} = 0.0460]$	
Completeness to theta = 37.09°	99.5 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.207 and 0.430	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	6192 / 0 / 148	
Goodness-of-fit on F ²	1.098	
Final R indices [I>2sigma(I)]	$R_1 = 0.0316$, w $R_2 = 0.0548$	
R indices (all data)	$R_1 = 0.0424, wR_2 = 0.0570$	
Largest diff. peak and hole	2.865 and -1.976 e.Å ⁻³	

Au(1)-C(13)	2.038(4)
Au(1)-C(11)	2.062(4)
Au(1)-N(1)	2.130(3)
Au(1)-C(14)	2.134(4)
N(1)-C(1)	1.352(5)
N81)-C(5)	1.352(4)
C(1)-C(2)	1.387(6)
C(1)-H(11)	0.9500
C(2)-C(3)	1.388(7)
C(2)-H(21)	0.9500
C(3)-C(4)	1.380(6)
C(3)-H(31)	0.9500
C(4)-C(5)	1.404(5)
C(4)-H(41)	0.9500
C(5)-C(6)	1.472(5)
C(6)-C(7)	1.403(5)
C(6)-C(11)	1.415(5)
C(7)-C(8)	1.385(5)
C(7)-H(71)	0.9500
C(8)-C(9)	1.395(5)
C(8)-H(8A)	0.9500
C(9)-C(10)	1.402(5)
C(9)-C(12)	1.514(5)
C(10)-C(11)	1.401(5)
С(10)-Н(101)	0.9500
С(12)-Н(121)	0.9800
С(12)-Н(122)	0.9800
С(12)-Н(123)	0.9800
С(13)-Н(131)	0.9800
С(13)-Н(132)	0.9800
С(13)-Н(133)	0.9800
C(14)-H(141)	0.9800
C(14)-H(142)	0.9800
C(14)-H(143)	0.9800

 Table 5. Bond lengths [Å] and angles [°] for 2.

C(13)-Au(1)-C(11)	93.86(16)
C(13)-Au(1)-N(1)	173.78(14)
C(11)-Au(1)-N(1)	80.01(13)
C(13)-Au(1)-C(14)	89.13(17)
C(11)-Au(1)-C(14)	176.03(17)
N(1)-Au(1)-C(14)	97.04(15)
C(1)-N(1)-C(5)	120.4(3)
C(1)-N(1)-Au(1)	125.6(3)
C(5)-N/(1)-Au(1)	114.0(2)
N(1)-C(1)-C(2)	121.4(4)
N(1)-C(1)-H(11)	119.3
C(2)-C(1)-H(11)	119.3
C(1)-C(2)-C(3)	119.1(4)
C(1)-C(2)-H(21)	120.5
C(3)-C(2)-H(21)	120.5
C(4)-C(3)-C(2)	119.3(4)
C(4)-C(3)-H(31)	120.4
C(2)-C(3)-H(31)	120.4
C(3)-C(4)-C(5)	119.9(4)
C(3)-C(4)-H(41)	120.0
C(5)-C(4)-H(41)	120.0
N(1)-C(5)-C(4)	119.9(3)
N(1)-C(5)-C(6)	115.8(3)
C(4)-C(5)-C(6)	124.2(3)
C(7)-C(6)-C(11)	120.4(3)
C(7)-C(6)-C(5)	123.0(3)
C(11)-C(6)-C(5)	116.6(3)
C(8)-C(7)-C(6)	120.4(3)
C(8)-C(7)-H(71)	119.8
C(6)-C(7)-H(71)	119.8
C(7)-C(8)-C(9)	120.6(3)
C(7)-C(8)-H(8A)	119.7
C(9)-C(8)-H(8A)	119.7
C(8)-C(9)-C(10)	118.8(3)

C(8)-C(9)-C(12)	121.2(4)
C(10)-C(9)-C(12)	119.9(4)
C(11)-C(10)-C(9)	122.1(3)
С(11)-С(10)-Н(101)	118.9
С(9)-С(10)-Н(101)	118.9
C(10)-C(11)-C(6)	117.7(3)
C(10)-C(11)-Au(1)	128.9(3)
C(6)-C(11)-Au(1)	113.4(2)
C(9)-C(12)-H(121)	109.5
C(9)-C(12)-H(122)	109.5
H(121)-C(12)-H(122)	109.5
С(9)-С(12)-Н(123)	109.5
H(121)-C(12)-H(123)	109.5
H(122)-C(12)-H(123)	109.5
Au(1)-C(13)-H(131)	109.5
Au(1)-C(13)-H(132)	109.5
H(131)-C813)-H(132)	109.5
Au(1)-C(13)-H(133)	109.5
H(131)-C(13)-H(133)	109.5
H(132)-C(13)-H(133)	109.5
Au(1)-C(14)-H(141)	109.5
Au(1)-C(14)-H(142)	109.5
H(141)-C(14)-H(142)	109.5
Au(1)-C(14)-H(143)	109.5
H(141)-C(14)-H(143)	109.5
H(142)-C(14)-H(143)	109.5

Table 6. Torsion angles [°] for 2.

C(13)-Au(1)-N(1)-C(1)	-168.3(13)
C(11)-Au(1)-N(1)-C(1)	-177.7(3)
C(14)-Au(1)-N(1)-C(1)	5.0(3)
C(13)-Au(1)-N(1)-C(5)	10.5(16)
C(11)-Au(1)-N(1)-C(5)	1.2(3)
C(14)-Au(1)-N(1)-C(5)	-176.1(3)
C(5)-N(1)-C(1)-C(2)	-0.6(6)

Au(1)-N(1)-C(1)-C(2)	178.2(3)
N(1)-C(1)-C(2)-C(3)	0.4(6)
C(1)-C(2)-C(3)-C(4)	-0.1(6)
C(2)-C(3)-C(4)-C(5)	0.0(6)
C(1)-N(1)-C(5)-C(4)	0.5(5)
Au(1)-N(1)-C(5)-C(4)	-178.4(3)
C(1)-N(1)-C(5)-C(6)	179.8(3)
Au(1)-N(1)-C(5)-C(6)	0.9(4)
C(3)-C(4)-C(5)-N(1)	-0.2(5)
C(3)-C(4)-C(5)-C(6)	-179.5(3)
N(1)-C(5)-C(6)-C(7)	175.2(3)
C(4)-C(5)-C(6)-C(7)	-5.5(5)
N(1)-C(5)-C(6)-C(11)	-3.7(5)
C(4)-C(5)-C(6)-C(11)	175.6(3)
C(1)-C(6)-C(7)-C(8)	-1.2(5)
C(5)-C(6)-C(7)-C(8)	179.9(3)
C(6)-C(7)-C(8)-C(9)	-0.7(6)
C(7)-C(8)-C(9)-C(10)	1.5(5)
C(7)-C(8)-C(9)-C(12)	-178.2(4)
C(8)-C(9)-C(10)-C(11)	-0.5(6)
C(12)-C(9)-C(10)-C(11)	179.3(4)
C(9)-C(10)-C(11)-C(6)	-1.4(5)
C(9)-C(10)-C(11)-Au(1)	174.5(3)
C(7)-C(6)-C(11)-C(10)	2.2(5)
C(5)-C(6)-C(11)-C(10)	-178.9(3)
C(7)-C(6)-C(11)-Au(1)	-174.3(3)
C(5)-C(6)-C(11)-Au(1)	4.6(4)
C(13)-Au(1)-C(11)-C(10)	1.9(4)
N(1)-Au(1)-C(11)-C(10)	-179.2(4)
C(14)-Au(1)-C(11)-C(10)	-137(2)
C(13)-Au(1)-C(11)-C(6)	177.9(3)
N(1)-Au(1)-C(11)-C(6)	-3.1(2)
C(14)-Au(1)-C(11)-C(6)	39(2)