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Abstract: 3-(5-Tocopheryl)propionic acid (g-tocopherol-5-prop-
ionic acid, 13) has been synthesized by a multi-step sequence in-
volving the hetero-Diels-Alder reaction between O-methyl-C,O-
bis-(trimethylsilyl)ketene  acetal   (10)   and   the   ortho-quinone
methide of a-tocopherol (5) as the key step. The title compound is
the first 5a-substituted tocopherol that shows an oxidation behavior
largely similar to a-tocopherol.

Key words: a-tocopherol, 5a-substituted tocopherols, ortho-quino-
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a-Tocopherol (vitamin E, 1) is a biological radical scav-
enger and a potent lipophilic antioxidant.1 Derivatives of
a-tocopherol are currently undergoing a surge of interest
as they show changed properties, such as an altered redox
behavior or increased hydrophilicity as compared to vita-
min E. 5a-Substituted tocopherols 2 differ considerably
from a-tocopherol in the chemical behavior, even though
they possess the two structural features crucial for physio-
logical effectiveness, a free phenolic hydroxyl group and
an intact isoprenoid side chain.2 The altered chemical
properties are caused by the electronic influence of the
substituent at C-5a. These effects are much larger than one
would expect, they are even pronounced enough to deter-
mine the reactivity of the whole tocopherol system. The
special role of the 5a-position in vitamin E chemistry is
often named by the rather vague term “Mills-Nixon ef-
fect”, but it is very far from being comprehensively under-
stood.3 

Figure 1

5-Tocopherylacetic acid (3), carrying a carboxylic substit-
uent at C-5a, forms a reversible redox system which
makes it different from all vitamin E derivatives known so
far.4 However, in 3-(5-tocopheryl)propionic acid (13)
which can be regarded as “homo”-tocopherylacetic acid,
the direct influence of the substituent on C-5a is interrupt-
ed by a methylene group. Hence, the oxidation behavior
of this compound should “return to normal”, that means,
resemble again that of a-tocopherol. For these reasons, 3-
(5-tocopheryl)propionic acid (13) was expected to be a re-
warding synthetic target as the first 5a-substituted toco-
pherol with possibly largely unchanged oxidation
behavior as compared to the parent compound vitamin E. 

The synthesis of 13 turned out to be unexpectedly diffi-
cult. Neither the alkylation of g-tocopherol (6)5 with b-ha-
lopropionic acid derivatives nor the reaction of a-
tocopheryl-Grignard (7)6 with haloacetic acid derivatives
produced the desired compound in exploitable yields.
Other attempts to obtain 13 failed similarly. Consequent-
ly, we used a multi-step approach which was admittedly
less direct, but provided 3-(5-tocopheryl)propionic acid in
a satisfying overall yield. The key step of the sequence is
the ZnCl2-catalyzed hetero-Diels-Alder reaction of O-me-
thyl-C,O-bis-(trimethylsilyl)ketene acetal (10) with the
ortho-quinone methide 5.7

Intermediate 5 is readily formed from 5a-bromo-a-toco-
pherol (4) by elimination of hydrogen bromide at temper-
atures above 50°C8 and is conveniently prepared by
adding a solution of 4 into the preheated reaction mixture
(Scheme 1). The ortho-quinone methide normally under-
goes dimerization to the spiro-dimer of a-tocopherol (15),
unless it is trapped in a faster reaction, as in the present ex-
ample. 

Scheme 1
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To obtain the trapping reagent 10, methyl bromoacetate
(8) was treated with trimethylsilyl chloride and zinc to
produce methyl trimethylsilylacetate (9).9 Treatment with
lithium diisopropyl amide and quenching with an excess
of trimethylsilyl chloride finally provided O-methyl-C,O-
bis-(trimethylsilyl)ketene acetal (10) in a good overall
yield (Scheme 2).10

Scheme 2

The primary product of the hetero-Diels-Alder reaction
between 5 and an excess of 10, the ortho-ester derivative
11,11 was not isolated, but immediately hydrolyzed to me-
thyl 3-(5-tocopheryl)-2-trimethylsilyl-propionate (12).12

Further treatment with tetrabutylammonium fluoride
(TBAF) and acidic hydrolysis finally produced 3-(5-toco-
pheryl)-propionic acid (13) in 72% overall yield13 from
5a-bromo-a-tocopherol (4), (Scheme 3).

Scheme 3

It is recommended not to replace O-methyl-C,O-bis-(tri-
methylsilyl)ketene acetal (10) by another dienophile. O-
methyl-O-(trimethylsilyl)ketene acetal, for instance, gave
very poor yields when employed instead of 10. The addi-
tional step in the synthesis of 13, the removal of the trim-
ethylsilyl group, is more than compensated by the gain in
yield in the addition step. 

Bromination of 13 with elemental bromine is a very inter-
esting reaction providing 3-(5-tocopheryl)-3-bromoprop-
ionic acid (14) in almost quantitative yield.14 Thus, this re-
action yields a b-bromocarboxylic acid from a propanoic

acid derivative, a surprising result since one should expect
a-halogenation. However, the mechanism for the forma-
tion of 3-(5-tocopheryl)-3-bromopropionic acid (14) is
completely different, namely a two-step oxidation-addi-
tion process analogous to the one which had been estab-
lished for the bromination of a-tocopherol.7 The outcome
of the reaction is consequently a first indication that 1 and
13 behave chemically quite similarly.

Apart from the bromination reaction, the following exper-
iments clearly demonstrated that 3-(5-tocopheryl)prop-
ionic acid (13) and vitamin E (1) react alike in oxidative
processes. Oxidation of 13 with Ag2O in n-hexane pro-
duced the spiro-dimer 16 by dimerization of the interme-
diate ortho-quinone methide in 69% isolated yield.15 An
analogous reaction, the formation of spiro-dimer 15, is
well-known for vitamin E.16 Oxidation of 13 with FeCl3 in
a water/methanol mixture afforded the correspondent
para-quinone 18.17 This reaction too, finds its counterpart
in the conversion of vitamin E to para-tocopheryl quinone
(17).18 

Figure 2

In summary, we have prepared 3-(5-tocopheryl)propionic
acid (13), a less lipophilic, base soluble tocopherol deriv-
ative. Contrary to all 5a-substituted tocopherols known so
far, the compound resembles a-tocopherol in its chemical
behavior as demonstrated by bromination and oxidation
reactions typical of vitamin E. Moreover, 13 appears to be
easily applicable as a starting material for further deriva-
tization due to its carboxylic function as site of attach-
ment. This opens the way to novel tocopherol derivatives
that exhibit some modified properties, such as solubility
or lipophilicity, but maintain essentially the same chemi-
cal behavior as vitamin E itself. 
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